首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for the assay of guanylate cyclase is described utilizing alpha-[32P]-GTP as substrate for the enzyme reaction. 100-150 microgram of enzyme protein is incubated in a 15.6 mM Tris-HCl buffer incubation mixture, pH 7.6. The reaction is stopped by the addition of EDTA. The [32P]-cyclic GMP formed is separated by a two-step column chromatography on Dowex 50W-X4 ion-exchange resin and neutral alumina. The recovery for cyclic GMP was about 70%. The blank values ranged from 0.001-0.003% of the added alpha-[32P]-GTP which had been purified by Dowex 50W-X4 column chromatography. This method was employed for the assay of guanylate cyclase activities in different tissues.  相似文献   

2.
An extremely rapid and sensitive assay for guanylate cyclase utilizing [alpha-32P]-GTP has been developed. It involves incubation of 5-100 mug of enzyme protein with 1 mM [alpha-32P]-GTP in 40 mM Tris HC1 buffer (pH 7.4) containing 3-3 mM MnSO2, 10 mM theophylline and 1 mM cyclic GMP. The reaction is terminated by addition of EDTA, and [32P]-cyclic GMP formed is isolated by sequential chromatography on Dowex-50-H+ and alumina. Recovery of 75-85% of [3H]-cyclic GMP and a blank of 0.001-0.003% of added [32P]-GTP was routinely obtained. The [32P] radioactivity isolated was shown to be cyclic GMP by a variety of techniques. The assay has also been shown to be applicable for a variety of tissues.  相似文献   

3.
The purpose of this study was to elucidate the mechanisms by which arachidonic acid activates guanylate cyclase from guinea pig lung. Guanylate cyclase activities in both homogenate and soluble fractions of lung were examined. Guanylate cyclase activity was determined by measuring formtion of [32-P] cyclic GMP from alpha-[32-P] GTP in the presence of Mn2+, a phosphodiesterase inhibitor and a suitable GTP regenerating system. Arachidonic acid, and to a slight extent dihomo-gamma-linolenic acid, activated guanylate cyclase in homogenate but not soluble fractions. Similarly, phospholipase A2 activated homogenate but not soluble guanylate cyclase. Methyl arachidonate, linolenic, linoleic and oleic acids did not activate guanylate cyclase in either fraction. High concentrations of indomethacin, meclofenamate and aspirin inhibited activation of homogenate guanylate cyclase by arachidonic acid and phospholipase A2, without altering basal enzyme activity. These data suggested that a product of cyclooxygenase activity, present in the microsomal fraction, may have accounted for the capacity of arachidonic acid to activate homogenate guanylate cyclase. This view was supported by the findings that addition of the microsomal fraction to be soluble fraction enabled arachidonic acid to activate soluble guanylate cyclase, an effect which was reduced with cycloooxygenase inhibitors. Lipoxygenase activated guanylate cyclase in homogenate and soluble fractions. Arachidonic acid potentiated the activation of soluble guanylate cyclase by lipoxygenase, and this effect was inhibited with nordihydroguairetic acid, 1-phenyl-3-pyrazolidone and hydroquinone, but not with high concentrations of indomethacin, meclofenamate or aspirin. These data suggest that arachidonic acid activates guinea pig lung guanylate cyclase indirectly, via two independent mechanisms, one involving the microsomal fraction and the other involving lipoxygenase.  相似文献   

4.
The purpose of this study was to elucidate the mechanisms by which arachidonic acid activates guanylate cyclase from guinea pig lung. Guanylate cyclase activities in both homogenate and soluble fractions of lung were examined. Guanylate cyclase activity was determined by measuring formation of [32-P] cyclic GMP from α-[32-P] GTP in the presence of Mn2+, a phosphodiesterase inhibitor and a suitable GTP regenerating system. Arachidonic acid, and to a slight extent dihomo-γ-linolenic acid, activated guanylate cyclase in homogenate but not soluble fractions. Similarly, phospholipase A2 activated homogenate but not soluble guanylate cyclase. Methyl arachidonate, linolenic, linoleic and oleic acids did not activate guanylate cyclase in either fraction. High concentrations of indomethacin, meclofenamate and aspirin inhibited activation of homogenate guanylate cyclase by arachidonic acid and phospholipase A2, without altering basal enzyme activity. These data suggested that a product of cyclooxygenase activity, present in the microsomal fraction, may have accounted for the capacity of arachidonic acid to activate homogenate guanylate cyclase. This view was supported by the findings that addition of the microsomal fraction to the soluble fraction enabled arachidonic acid to activate soluble guanylate cyclase, an effect which was reduced with cyclooxygenase inhibitors. Lipoxygenase activated guanylate cyclase in homogenate and soluble fractions. Arachidonic acid potentiated the activation of soluble guanylate cyclase by lipoxygenase, and this effect was inhibited with nordihydroguaiaretic acid, 1-phenyl-3-pyrazolidone and hydroquinone, but not with high concentrations of indomethacin, meclofenamate or aspirin. These data suggest that arachidonic acid activates guinea pig lung guanylate cyclase indirectly, via two independent mechanisms, one involving the microsomal fraction and the other involving lipoxygenase.  相似文献   

5.
Direct phosphorylation of purified rat brain guanylate cyclase by cyclic AMP-dependent protein kinase is demonstrated. In the presence of [γ-32P]ATP, 32P was incorporated into the protein to the extent of 0.8 to 0.9 mol/mol of guanylate cyclase. The presence of 32P in the guanylate cyclase molecule was demonstrated by gel-filtration and by autoradiography after gel electrophoresis. The phosphorylation was accompanied by an increase in enzyme activity, characterized by an increase of VM. These results suggest that the activity of guanylate cyclase may be regulated in vivo by phosphorylation.  相似文献   

6.
J K Bentley  H Shimomura  D L Garbers 《Cell》1986,45(2):281-288
Resact, a peptide obtained from eggs, causes a change in the Mr, and a loss of 32P from a plasma membrane protein identified as guanylate cyclase. Here, a resact analog (125I-[Tyr1, Ser8] resact) was synthesized and shown to bind to isolated sperm membranes. Resact, but not speract, competed with the radiolabeled ligand for binding. When membranes were prepared under appropriate conditions, guanylate cyclase remained at Mr 160,000; the incubation of membranes with gamma-32P-ATP resulted in the formation of 32P-labeled guanylate cyclase. The addition of resact to the membranes caused a shift in the Mr, a complete loss of 32P, and a 70% reduction in guanylate cyclase activity within 1 min; resact had an ED 50 at 100 nM concentration. Speract failed to cause any of these effects. This represents the first demonstration of receptor-mediated responses of isolated sperm membranes identical to those seen in the intact cell.  相似文献   

7.
A method has been developed for the enzymatic preparation of alpha-(32)P-labeled ribo- and deoxyribonucleoside triphosphates, cyclic [(32)P]AMP, and cyclic [(32)P]GMP of high specific radioactivity and in high yield from (32)Pi. The method also enables the preparation of [gamma-(32)P]ATP, [gamma-(32)P]GTP, [gamma-(32)P]ITP, and [gamma-(32)P]-dATP of very high specific activity and in high yield. The preparation of the various [alpha-(32)P]nucleoside triphosphates relies on the phosphorylation of the respective 3'-nucleoside monophosphates with [gamma-(32)P]ATP by polynucleotide kinase and a subsequent nuclease reaction to form [5'-(32)P]nucleoside monophosphates. The [5'-(32)P]nucleoside monophosphates are then converted enzymatically to the respective triphosphates. All of the reactions leading to the formation of [alpha-(32)P]nucleoside triphosphates are carried out in the same reaction vessel, without intermediate purification steps, by the use of sequential reactions with the respective enzymes. Cyclic [(32)P]AMP and cyclic [(32)P]GMP are also prepared enzymatically from [alpha-(32)P]ATP or [alpha-(32)P]GTP by partially purified preparations of adenylate or guanylate cyclases. With the exception of the cyclases, all enzymes used are commerically available. The specific activity of (32)P-labeled ATP made by this method ranged from 200 to 1000 Ci/mmol for [alpha-(32)P]ATP and from 5800 to 6500 Ci/mmol for [gamma-(32)P]ATP. Minor modifications of the method should permit higher specific activities, especially for the [alpha-(32)P]nucleoside triphosphates. Methods for the use of the [alpha-(32)P]nucleoside phosphates are described for the study of adenylate and guanylate cyclases, cyclic AMP- and cyclic GMP phosphodiesterase, cyclic nucleotide binding proteins, and as precursors for the synthesis of other (32)P-labeled compounds of biological interest. Moreover, the [alpha-(32)P]nucleoside triphosphates prepared by this method should be very useful in studies on nucleic acid structure and metabolism and the [gamma-(32)P]nucleoside triphosphates should be useful in the study of phosphate transfer systems.  相似文献   

8.
Adenylate and guanylate cyclases were assayed in silkmoth fat body homogenates by measuring the conversion of [α-32P]nucleoside triphosphates to cyclic [32P]nucleotides. Adenylate cyclase was dependent on dithiothreitol, required either Mg2+ or Mn2+ for activity, was activated by NaF, and inhibited by triton X-100. Guanylate cyclase was not dependent on dithiothreitol, was strictly dependent upon Mn2+, unaffected by NaF, and activated by triton X-100. Both cyclases had pH optima near 8.0 and were located chiefly in the particulate fraction of homogenates. Activities of both cyclases were maintained or elevated during the larval-pupal transformation and, in contrast to cyclic nucleotide phosphodiesterases, showed little decline in the early diapausing pupa.  相似文献   

9.
Receptor-mediated regulation of guanylate cyclase activity in spermatozoa   总被引:2,自引:0,他引:2  
Two peptides, speract (Gly-Phe-Asp-Leu-Asn-Gly-Gly-Gly-Val-Gly) and resact (Cys-Val-Thr-Gly-Ala-Pro-Gly-Cys-Val-Gly-Gly-Gly-Arg-Leu-NH2), which activate sperm respiration and motility and elevate cyclic GMP concentrations in a species-specific manner, were tested for effects on guanylate cyclase activity. The guanylate cyclase of sea urchin spermatozoa is a glycoprotein and it is localized entirely on the plasma membrane. When intact sea urchin sperm cells were incubated with the appropriate peptide for time periods as short as 5 s and subsequently homogenized in detergent, guanylate cyclase activity was found to be as low as 10% of the activity of cells not treated with peptide. The peptides showed complete species specificity and analogues of one peptide (speract) caused decreases in enzyme activity coincident with their receptor binding properties. The peptides did not inhibit enzyme activity when added after detergent solubilization of the enzyme. When detergent-solubilized spermatozoa were incubated at 22 degrees C, guanylate cyclase activity declined in previously nontreated cells to the peptide-treated level. The rate of decline was dependent on temperature and protein concentration. When spermatozoa were first incubated with 32P, the decrease in guanylate cyclase activity was accompanied by a shift in the apparent molecular weight of a major plasma membrane protein (160,000-150,000) and a loss of 32P label from the 160,000 band. Other agents (Monensin A, NH4Cl) which were capable of stimulating sperm respiration and motility also caused decreases of guanylate cyclase activity when added to intact but not detergent-solubilized spermatozoa. The maximal decrease in guanylate cyclase activity occurred 5-10 min after addition of these agents. The enzyme response to Monensin A required extracellular Na+ suggestive that the ionophore caused the effect on guanylate cyclase activity by virtue of its ability to catalyze Na+/H+ exchange. These studies demonstrate that guanylate cyclase activity of sperm cells can be altered by the specific interaction of egg-associated peptides with their plasma membrane receptors.  相似文献   

10.
Inhibition of guanylate cyclases by methylxanthines and papaverine   总被引:2,自引:0,他引:2  
The inhibition of guanylate cyclase activity by theophylline, methylisobutylxanthine, and papaverine has been studied with partially purified soluble and particulate enzyme preparations from rat organs. An excess of unlabeled cGMP has been used in the assays to eliminate significant further metabolism of the radioactive cGMP formed from [alpha-32P]GTP. All of the guanylate cyclases examined were significantly inhibited by millimolar concentrations of theophylline and papaverine. Inhibition of soluble liver guanylate cyclase by theophylline was competitive with respect to GTP while inhibition by papaverine was noncompetitive. Thus, some drugs which are often used as inhibitors of cyclic nucleotide phosphodiesterases can inhibit guanylate cyclases as well.  相似文献   

11.
A new, very sensitive, rapid and reliable assay for guanylate cyclase has been established based on conversion of [32P]GTP to [32P]guanosine 3':5'-monophosphate and its separation on Dowex 50 and aluminium oxide columns. The optimum conditions for the assay of mouse parotid guanylate cyclase have been established and using this procedure the properties of the enzyme have been investigated. The enzyme was found in both the particulate and supernatant fractions. The particulate enzyme was activated 12-fold by Triton X-100 and the supernatant enzyme activity increased 2-fold. In the presence of detergent guanylate cyclase activity was distributed 85% in the particulate and 15% in the supernatant fractions, respectively. The particulate activity was localised in a plasma membrane fraction. Guanylate cyclase activity was also assayed in a wide variety of other tissues. In all cases enzymatic activity was found in both the particulate and supernatant fractions. The distribution varied with the tissue but only the intestinal mucosa had a greater proportion of total guanylate cyclase activity in the particulate fraction than the parotid. The two enzymes showed some similar properties. Their pH optima were pH 7.4, both enzymes were inhibited by ATP, dATP, dGTP and ITP, required Mn2+ for activity and plots of activity versus Mn2+ concentration were sigmoidal. However, in many properties the enzymes were dissimilar. The ratios of Mn2+ to GTP for optimum activity were 4 and 1.5 for the supernatant and plasma-bound enzymes, respectively. The slope of Hill plots for the supernatant enzyme with varying Mn2+ was 2. The particulate enzyme plots also had a slope of 2 at low Mn2+ concentration but at higher concentrations (above 0.7 mM) the Hill coefficient shifted abruptly to 4. Calcium ions reduced sigmoidicity of the kinetics lowering the Hill coefficient, activated the enzyme at all Mn2+ concentrations but had no effect on the Mn2+:GTP ratio with the supernatant enzyme while with the plasma membrane enzyme Ca2+ had no effect on the sigmoid form of the kinetics at low Mn2+ but prevented the shift to a greater Hill coefficient at higher Mn2+, inhibited the activity at low Mn2+ and shifted the Mn2+:GTP optimum ratio to 4. For the particulate enzyme plots of activity versus GTP concentration were sigmoid (n = 1.3), while the supernatant enzyme exhibited hyperbolic kinetics.  相似文献   

12.
Sodium nitroprusside, a potent activator of soluble guanylate cyclase, potentiated mixed disulfide formation between cystine, a potent inhibitor of the cyclase, and enzyme purified from rat lung. Incubation of soluble guanylate cyclase with nitroprusside and [35S]cystine resulted in a twofold increase in protein-bound radioactivity compared to incubations in the absence of nitroprusside. Purified enzyme preincubated with nitroprusside and then gel filtered (activated enzyme) was activated 10- to 20-fold compared to guanylate cyclase preincubated in the absence of nitroprusside and similarly processed (nonactivated enzyme). This activation was completely reversed by subsequent incubation at 37 degrees C (activation-reversed enzyme). Incorporation of [35S]cystine into guanylate cyclase was increased twofold with activated enzyme, while no difference was observed with activation-reversed enzyme, compared to nonactivated enzyme. Cystine decreased the activity of nonactivated and activation-reversed enzyme about 40% while it completely inhibited activated guanylate cyclase. Mg+2- or Mn+2-GTP inhibited the incorporation of [35S]cystine into nonactivated or activated guanylate cyclase. Also, diamide, a potent thiol oxidant that converts juxtaposed sulfhydryls to disulfides, completely blocked incorporation of [35S]cystine into nonactivated or activated guanylate cyclase. These data indicate that activation of soluble guanylate cyclase by nitroprusside results in an increased availability of protein sulfhydryl groups for mixed disulfide formation with cystine. Protection against mixed disulfide formation with diamide or substrate suggests that these groups exist as two or more juxtaposed sulfhydryl groups at the active site or a site on the enzyme that regulates catalytic activity. Differential inhibition by mixed disulfide formation of nonactivated and activated enzyme suggests a mechanism for amplification of the on-off signal for soluble guanylate cyclase within cells.  相似文献   

13.
Twelve hyperglycemic, glycosuric, and ketonuric Djungarian hamsters with average blood glucose concentrations of 295+-32 mg/dl were compared to twelve non-glycosuric, but ketonuric Djungarian hamsters with average blood glucose concentrations of 88+-11 mg/dl with regards to their cyclic nucleotide metabolism. The glycosuric Djungarian hamsters had decreased guanylate cyclase (E.C.4.6.1.2.) activity in vitro and cyclic GMP levels in vivo in liver, lung, kidney, colon, heart, spleen, and pancreas that was approximately 50% of the guanylate cyclase activity in these same tissues of non-glycosuric Djungarian hamsters. The decreased tissue guanylate cyclase activity and cyclic GMP levels in the glycosuric animals could be restored to the level of non-glycosuric Djungarian hamsters with 100 U regular insulin, but not with 50 or 10 U of regular insulin. Fifty and 100 U of regular insulin also increased the level of guanylate cyclase activity in the non-glycosuric (control) animals. There was no change in adenylate cyclase (E.C.4.6.1.1.) activity but there were increased cyclic AMP levels in the glycosuric when compared to the non-glycosuric Djungarian hamsters that were correctable with 100 U of insulin. We conclude that guanylate cyclase activity is decreased in the peripheral tissues of glycosuric Djungarian hamsters as compared to non-glycosuric Djungarian hamsters and that insulin modulates this enzyme.  相似文献   

14.
Prolactin enhanced guanylate cyclase [E.C.4.6.1.2] two- to threefold in ovary, testis, mammary gland, liver and kidney. Dose response relationships revealed that maximal activation of this enzyme was at a concentration of one nanomolar and that increasing prolactin's concentration to the millimolar range caused no further increase in activity. There was an absolute cation requirement for prolactin's enhancement of guanylate cyclase. Calcium or manganese allowed prolactin to increase guanylate cyclase activity. Greater enhancement of this enzyme's activity by prolactin was observed when manganese was the co-factor. The data in this investigation suggest that guanylate cyclase may play a role in the mechanism of action of prolactin.  相似文献   

15.
1. Under optimal ionic conditions (4 mM-MnCl2) the specific activity of guanylate cyclase in fresh platelet lysates was about 10nmol of cyclic GMP formed/20 min per mg of protein at 30 degrees C. Activity was 15% of optimum with 10mM-MgCl2 and negligible with 4mM-CaCl2. Synergism between MnCl2 and MgCl2 or CaCl2 was observed when [MnCl2] less than or equal to [GPT]. 2. Lower than optimal specific activities were obtained in assays containing large volumes of platelet lysate, owing to the presence of inhibitory factors that could be removed by ultrafiltration. Adenine nucleotides accounted for less than 50% of the inhibitory activity. 3. Preincubation of lysate for 1 h at 30 degrees C increased the specific activity of platelet guanylate cyclase by about 2-fold. 4. Lubrol PX (1%, w/v) stimulated guanylate cyclase activity by 3--5-fold before preincubation and by about 2-fold after preincubation. Triton X-100 was much less effective. 5. Dithiothreitol inhibited the guanylate cyclase activity of untreated, preincubated and Lubrol PX-treated lysates and prevented activation by preincubation provided that it was added beforehand. 6. Oleate stimulated guanylate cyclase activity 3--4-fold and arachidonate 2--3-fold, whereas palmitate was almost inactive. Pretreatment of lysate with indomethacin did not inhibit this effect of arachidonate. Oleate and arachidonate caused marked stimulation of guanylate cyclase in preincubated lysate, but inhibited the enzyme in Lubrol PX-treated lysate. 7. NaN3 (10mM) increased guanylate cyclase activity by up to 7-fold; this effect was both time- and temperature-dependent. NaN3 did not further activate the enzyme in Lubrol PX-treated lysate. 8. The results indicated that preincubation, Lubrol PX, fatty acids and NaN3 activated platelet guanylate cyclase by different mechanisms. 9. Platelet particulate fractions contained no guanylate cyclase activity detectable in the presence or absence of Lubrol PX that could not be accounted for by contaminating soluble enzyme, suggesting that physiological aggregating agents may increase cyclic GMP in intact platelets through the effects of intermediary factors. The activated and inhibited states of the enzyme described in the present paper may be relevant to the actions of these factors.  相似文献   

16.
The mechanism of activation of soluble guanylate cyclase purified from bovine lung by phenylhydrazine is reported. Heme-deficient and heme-containing forms of guanylate cyclase were studied. Heme-deficient enzyme was activated 10-fold by NO but was not activated by phenylhydrazine. Catalase or methemoglobin enabled phenylhydrazine to activate guanylate cyclase 10-fold and enhanced activation by NO to over 100-fold. Heme-containing enzyme was activated only 3-fold by phenylhydrazine but over 100-fold by NO. Added hemoproteins enhanced enzyme activation by phenylhydrazine to 12-fold without enhancing activation by NO. Reducing or anaerobic conditions inhibited, whereas oxidants enhanced enzyme activation by phenylhydrazine plus catalase, and KCN had no effect. In contrast, enzyme activation by NO and NaN3 was inhibited by oxidants or KCN. NaN3 required native catalase, whereas phenylhydrazine also utilized heat-denatured catalase for enzyme activation. Thus, the mechanism of guanylate cyclase activation by phenylhydrazine differed from that by NO or NaN3. Guanylate cyclase activation by phenylhydrazine resulted from an O2-dependent reaction between phenylhydrazine and hemoproteins to generate stable iron-phenyl hemoprotein complexes. These complexes activated guanylate cyclase in the absence of O2, but lost activity after acidification, basification, or heating. Gel filtration of prereacted mixtures of [U-14C]phenylhydrazine plus hemoproteins resulted in co-chromatography of radioactivity, protein, and guanylate cyclase stimulating activity, and yielded a phenyl-hemoprotein binding stoichiometry of four under specified conditions (one phenyl/heme). [14C]Phenyl bound to heme-containing but not heme-deficient guanylate cyclase and binding correlated with enzyme activation. Moreover, reactions between enzyme and iron-[14C] phenyl hemoprotein complexes resulted in the exchange or transfer of iron-phenyl heme to guanylate cyclase and this correlated with enzyme activation.  相似文献   

17.
The nature and regulation of atrial natriuretic peptide (ANP)-sensitive guanylate cyclase in rat renal glomerular membranes was examined. By affinity crosslinking techniques, three bands with apparent molecular masses of 180, 130 and 64 kDa were specifically labeled with [125I]ANP. A specific antibody to the 180 kDa membrane guanylate cyclase of rat adrenocortical carcinoma recognized a 180 kDa band on Western blot analysis of solubilized, GTP-affinity purified glomerular membrane proteins. The same antibody completely inhibited ANP-stimulated guanylate cyclase activity in glomerular membrane fractions. Partially purified protein kinase C inhibited ANP-stimulated guanylate cyclase activity in glomerular membrane fractions. It is concluded that a 180 kDa ANP-sensitive guanylate cyclase is present in glomerular membranes, and that this enzyme is inhibited directly by protein kinase C.  相似文献   

18.
Complementary DNA clones corresponding to the 70- and 82-kDa subunits of soluble guanylate cyclase of rat lung have been isolated. Blot hybridization of total poly(A)+ RNA from rat tissues detected mRNA of about 3.4 kilobases for the 70-kDa subunit and about 5.5 kilobases for the 82-kDa subunit. Messenger RNA levels of both subunits were abundant in lung and cerebrum, moderate in cerebellum, heart, and kidney, and low in liver and muscle, consistent with previously described enzyme activities in these tissues. Southern blot analysis of high molecular weight genomic DNA from rat liver indicated that the genes for the 70- and 82-kDa subunits are different. The carboxyl-terminal region of the 70- and 82-kDa subunits showed a high degree of homology and also had a partial homology with the putative catalytic domain of particulate guanylate cyclase and adenylate cyclase, indicating that both the 70- and 82-kDa subunits have catalytic domains. The cDNAs were subcloned to an expression vector and transfected to L cells. The cells transfected with cDNA of the 70-kDa subunit or the 82-kDa subunit showed no guanylate cyclase activity, whereas the cells transfected with both the 70- and 82-kDa subunit cDNAs showed significant guanylate cyclase activity that was activated markedly by sodium nitroprusside. These data suggest that both subunits are required for both the basal catalytic and regulatory activity of soluble guanylate cyclase. Presumably both catalytic subunits must be present and interactive to permit synthesis of cyclic GMP and nitrovasodilator activation.  相似文献   

19.
Summary Gonadotropin releasing hormone enhanced guanylate cyclase [E.C.4.6.1.2] two- to threefold in pituitary, testis, liver and kidney. Dose response relationships revealed that at a concentration of 1 nanomolar, gonadotropin releasing hormone caused a maximal augmentation of guanylate cyclase activity and that increasing its concentration to the millimolar range caused no further enhancement of this enzyme. There was an absolute cation requirement for gonadotropin releasing hormone's enhancement of guanylate cyclase activity as there was no increase without any cation present. Gonadotropin releasing hormone could increase guanylate cyclase activity with either calcium or manganese in the incubation medium but more augmentation was observed with manganese. The data in this investigation suggest that guanylate cyclase may play a role in the mechanism of action of gonadotropin releasing hormone.  相似文献   

20.
The guanosine 3',5'-cyclic monophosphate (cGMP) level in the mouse splenic lymphocytes was increased about 2- to 3-fold by concanavalin A. This increase was completely dependent on the presence of Ca2+ in the medium. Homogenates of mouse splenic lymphocytes contained significant guanylate cyclase [EC 4.6.1.2] activity in both the 105,000 X g (60 min) particulate and supernatant fractions and both fractions required Mn2+ for full activity. Calcium ion (3mM) activated soluble guanylate cyclase 3-fold at a relatively low concentration of Mn2+ (less than 1mM) but inhibited the particulate enzyme slightly at all Mn2+ concentrations tested. Concanavalin A itself did not stimulate either fraction of guanylate cyclase. Thus these results suggest that elevation of the cGMP level in lymphocytes by concanavalin A might be brought about by stimulation of Ca2+ uptake and activation of soluble guanylate cyclase by the latter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号