首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ethanolic extract of leaves of O. sanctum was investigated for normal wound healing and dexamethasone depressed healing using incision, excision and dead space wound models in albino rats. The extract of O. sanctum significantly increased the wound breaking strength in incision wound model. The extract treated wounds were found to epithelialize faster and the rate of wound contraction was significantly increased as compared to control wounds. Significant increase in wet and dry granulation tissue weight, granulation tissue breaking strength and hydroxyproline content in dead space wound model was observed. The extract significantly decreased the antihealing activities of dexamethasone in all the wound models. The results indicated that the leaf extract promotes wound healing significantly and able to overcome the wound healing suppressing action of dexamethasone. Histological examination of granulation tissue to determine the pattern of lay-down for collagen confirmed the results.  相似文献   

2.
Ethanolic extract of leaves of Hyptis suaveolens was evaluated for its wound healing activity in ether-anaesthetized Wistar rats at two different doses (400 and 800 mg/kg) using incision, excision, and dead space wound model. Significant increase in skin breaking strength, granuloma breaking strength, wound contraction, hydroxyproline content and dry granuloma weight and decrease in epithelization period was observed. A supportive study made on granuloma tissue to estimate the levels of catalase and superoxide dismutase recorded a significant increase in the level of these antioxidant enzymes. Granuloma tissue was subjected to histopathological examination to determine the pattern of lay-down for collagen using Van Gieson and Masson Trichrome stains. Enhanced wound healing activity may be due to free radical scavenging action of the plant and enhanced level of antioxidant enzymes in granuloma tissue. Better collagenation may be because of improved antioxidant studies.  相似文献   

3.
Aqueous extract of leaves of M. oleifera was investigated and rationalised for its wound healing activity. The aqueous extract was studied at dose level of 300 mg/kg body weight using resutured incision; excision and dead space wound models in rats. Significant increase in wound closure rate, skin-breaking strength, granuloma breaking strength, hydroxyproline content, granuloma dry weight and decrease in scar area was observed. The prohealing actions seem to be due to increased collagen deposition as well as better alignment and maturation. From the results obtained, it may be concluded that the aqueous extract of M. oleifera has significant wound healing property.  相似文献   

4.
Nonsteroidal antiinflammatory drugs like ibuprofen impede tissue repair by virtue of retarding inflammation. The present study was undertaken to explore if linking of nitrooxyethyl ester to ibuprofen reverses its healing-depressant propensity. Nitrooxyethyl ester of ibuprofen (NOE-Ibu) was synthesized in our laboratory through a well-established synthetic pathway. NOE-Ibu was screened for its influence on collagenation, wound contraction and epithelialization phases of healing, and scar size of healed wound in three wound models, namely, incision, dead space, and excision wounds. Besides, its influence on the oxidative stress (levels of GSH and TBARS) was also determined in 10-day-old granulation tissue. NOE-Ibu was further screened for its antiinflammatory activity in rat paw edema model. NOE-Ibu promoted collagenation (increase in breaking strength, granulation weight, and collagen content), wound contraction and epithelialization phases of healing. NOE-Ibu also showed a significant antioxidant effect in 10-day-old granulation tissue as compared to ibuprofen. Results vindicate that the esterification of ibuprofen with nitrooxyethyl group reverses the healing-suppressant effect of ibuprofen. The compound also showed equipotent antiinflammatory activity as ibuprofen.  相似文献   

5.
As blood coagulation is a prelude for wound healing, a systemic haemocoagulant (Botropase) and local procoagulants (thrombin and fibrin) were evaluated on physical (wound breaking strength, wound half-closure time and period of epithelization), biochemical (granuloma-hydroxyproline and hexosamine) and histological attributes of healing wounds in albino rats. Botropase prompted all phases of tissue repair. Thrombin delayed wound contraction whereas fibrin had no discernable action. The findings that procoagulants modify healing process has bearing on their surgical use.  相似文献   

6.
Delayed wound healing is a common complication in diabetes mellitus. From this point of view, the main purpose of the present study is to investigate the effect of extremely low frequency pulsed electromagnetic fields (ELF PEMFs) on skin wound healing in diabetic rats. In this study, diabetes was induced in male Wistar rats via a single subcutaneous injection of 65 mg/kg streptozocin (freshly dissolved in sterile saline, 0.9%). One month after the induction of diabetes, a full‐thickness dermal incision (35 mm length) was made on the right side of the paravertebral region. The wound was exposed to ELF PEMF (20 Hz, 4 ms, 8 mT) for 1 h per day. Wound healing was evaluated by measuring surface area, percentage of healing, duration of healing, and wound tensile strength. Obtained results showed that the duration of wound healing in diabetic rats in comparison with the control group was significantly increased. In contrast, the rate of healing in diabetic rats receiving PEMF was significantly greater than in the diabetic control group. The wound tensile strength also was significantly greater than the control animals. In addition, the duration of wound healing in the control group receiving PEMF was less than the sham group. Based on the above‐mentioned results we concluded that this study provides some evidence to support the use of ELF PEMFs to accelerate diabetic wound healing. Further research is needed to determine the PEMF mechanisms in acceleration of wound healing in diabetic rats. Bioelectromagnetics 31:318–323, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
The strength of healing full-thickness incised dermal wounds in P/J mice was less than that of CD-1 mice although the strength of intact skin was similar for each strain. Five days after surgery, P/J mice had wounds with tensile strengths of 65 +/- 18g while CD-1 mice had wounds with strengths of 85 +/- 15g. The wound breaking strength of P/J mice was restored to normal values (86 +/- 18g) by administering glucan. The consequence of defective monocytes in wound repair is discussed in reference to P/J mice.  相似文献   

8.
With a view to investigate the contribution and role of environment within a wooden pyramid model on the wound healing suppressant effect of dexamethasone in rats, wound breaking strength, dry weight, hydroxyproline content and histology of granulation tissue of the dead space wound were studied in rats. The results indicate that the environment within the wooden pyramid not only promotes significant wound healing but also reduces the wound healing suppressant effect of dexamethasone. Histological studies also confirmed the results.  相似文献   

9.
Effect of two calcium channel blockers (CCBs) nifedipine and amlodipine, was studied on normal and steroid depressed wound healing in albino rats, using the dead space wound model. The drugs enhanced normal healing as evidenced by increase in tensile strength of 10 days old granulation tissue. There was neither a significant change in the hydroxyproline level (or collagen) nor a change in the glycosaminoglycan content in granulation tissue. However, lysyloxidase level was increased significantly. The increase in tensile strength could thus be attributed to better cross-linking and maturation of collagen rather than collagen synthesis per se. The drugs were also able to overcome steroid depressed wound healing. It is likely that the prohealing effects may be related to the improved antioxidant status too, since superoxide dismutase levels were observed to be higher in the CCB- treated animals.  相似文献   

10.
Assay of radiation effects in mouse skin as expressed in wound healing   总被引:2,自引:0,他引:2  
The effect of 150 kVp X irradiation on the healing of full depth surgical wounds in the lower dorsal skin of the mouse was assayed by measuring the wound strength of seven 2-mm-wide segments along each wound. The strength of unirradiated wounds increased with time in two phases: during the first 2 weeks it reached nearly half of the values recorded from unwounded skin, after which the rate of increase slowed for at least 2 weeks before beginning a second increase. By 150 days, the breaking strength of the wound was about 80% of that of unwounded skin. A single dose of 18 Gy prior to wounding reduced the strength of the wounds to about one-third to one-half that of an unirradiated wounds within the 3 months of follow-up. The effect of irradiation on wound strength did not change as the interval between exposure and wounding was increased to 2 months but decreased slightly when this interval was extended to 3 months. When the healing wound was irradiated within 5 days of surgery, the effect on healing was about the same as with preirradiation; if irradiation was delayed for 12 days after wounding the second phase of healing was only postponed and the wound strength ultimately approached the values recorded from unirradiated wounds. The wound strength of skin preirradiated by X rays and assayed 14 days after wounding showed a clear sigmoid dose response with a threshold between 8 and 10 Gy and a plateau at the maximum effect above 20 Gy. The persistence for at least 3 months of the effect of radiation on wound healing suggests that the tissues involved in the healing process are normally proliferating slowly. The accelerated expression of radiation injury through surgical wounding permits the early quantification of the radiation response of tissues that would normally be delayed in their expression of radiation damage.  相似文献   

11.
目的:制备壳聚糖/魔芋葡甘露聚糖复合膜,研究其促创面愈合作用。方法:壳聚糖溶液和魔芋葡甘露聚糖溶液混合后冷冻干燥制成复合膜。扫描电镜观察膜的形态和孔径,并研究比较膜的吸水率,水蒸气透过率,拉伸强度,断裂伸长率和体外降解率。建立大鼠皮肤损伤模型,敷以复合膜治疗,比较创面愈合率,观察创面组织染色结果,评价复合膜的促创面愈合作用。结果:壳聚糖/魔芋葡甘露聚糖复合膜具有三维网状结构,壳聚糖复合魔芋葡甘露聚糖后,膜的吸水率、拉伸强度和断裂伸长率提高,体外降解加速,水蒸气透过率改善。愈合实验表明壳聚糖/魔芋葡甘露聚糖膜具有促进创面愈合作用。结论:壳聚糖/魔芋葡甘露聚糖复合膜制备工艺简单,能有效促进创面愈合,具有成为创伤敷料的潜力。  相似文献   

12.
Rats with essential fatty acid deficiency (EFAD) exhibit mild body growth retardation, diminished leukocyte influx in certain models of inflammation, and skin lesions characterized by ulceration, thinning and decreased pigmentation. In the present study we examined the role of EFAD in cutaneous wound healing, a process in which the inflammatory response and the macrophage play a central role. We reproduced the EFAD condition in Lewis rats (n = 35), and examined its effects in wound healing using the paired rat surgical incision model. Rats were compared with weight-matched controls, receiving standard chow diet. Skin samples harvested at days 5, 7, 14 and 21 post-wounding were evaluated for tensiometry and histology. EFAD rats exhibited all the characteristics of this condition, and the typical alteration of liver lipids. Skin samples harvested at different days post-wounding did not show difference in maximal breaking strength when compared to weight-matched controls. Histological evaluation of skin samples showed no difference in the cellular inflammatory infiltration in either EFAD rats or in weight-matched controls. Immunohistochemical studies revealed no difference in the influx of macrophages in the different groups of rats. Fatty acid supplementation of EFAD rats (n = 7), successfully reversed the EFAD state as assessed by the macroscopic skin and liver changes and liver fatty acid content, without modifying either tensile strength or cellular inflammatory infiltration. Our results suggest that EFAD does not alter the normal course of the cutaneous wound repair in rats, despite all the cutaneous alterations produced by this condition. We conclude that essential fatty acids (EFAs) are not essential for cutaneous wound repair.  相似文献   

13.
Wound healing in diabetes is frequently impaired and its treatment remains a challenge. Hyperbaric oxygen therapy (HBOT) receives a wide attendance and is often used as a last resort treatment option, however, its effectiveness for many conditions is unproven. We tested the effect of HBOT on healing of diabetic ulcers in an animal experimental setting. Experimental diabetes was induced by intraperitoneal injection of streptozotocin. Four weeks after diabetes induction, rats were ulcerated by clamping a pair of magnet disks on the dorsal skin for 16 h. After magnet removal, the animals received HBOT, daily on weekdays, for 4 weeks. To examine the effect of HBOT on diabetes impaired wound healing, the degree of wound tissue perfusion, inflammation, angiogenesis, and tissue breaking strength were evaluated. HBOT effects on the degree of inflammation and number of blood vessels could not be observed. HBOT improved the tissue breaking strength of the wound, however, this did not reach statistical significance. Twenty hours after ending the HBOT, a significantly improved oxygen saturation of the hemoglobin at the venous end of the capillaries and the quantity of hemoglobin in the micro-blood vessels was measured.  相似文献   

14.
Summary. The factors participating to the wound healing are complex and still obscure. Among these factors, epidermal growth factor (EGF) and histamine by increasing reepithelization and reparation tissue strength via enhancing collagen deposition to the wound site have a beneficial effect. This study was performed to investigate the effect of EGF dosage forms on the histamine content of the experimentally induced wound and some wound healing criters in the mice.Histological investigation of reepithelization, wound tensile strength for healing and collagen maturation, and histamine levels were assessed in the present study. Thirty two mice were divided into control, and EGF treated groups. Controls included three subgroups; untreated (n=5), 0.9% NaCl applied (n=5), and gel applied (n=5). Experimental groups were treated with two forms of EGF; EGF, solution form in 0.9% NaCl (n=5) and the gel form in 0.2% w/w in carbopol 940 (n=7). The discrepancy between these forms were evaluated. This evaluation was done by the application of two forms of EGF for 15 days on experimentally induced wound healing.Gel form of EGF by sustained release from bioadhesive polymer is found to be more effective than the soluble form, on the healing of the wound, by acceleration of reepithelization and increment of wound tensile strength. The tensile strength of the wound indicates the rate of repair and collagen maturation. It has been observed that when physiological saline and carbopol 940 exposed to incision without EGF causes a significant increase in tissue histamine content.According to the results of the present investigation; the histamine content is found to be decreased by EGF gel dosage form treatment, therefore preventing abnormal collagen formation has a beneficial effect on wound healing.  相似文献   

15.
Daily therapeutic injections of cortisone to rats will cause weight loss and impaired wound healing. Weight loss is attributed to the catabolic effect of steroid, whereas impaired healing is associated with reductions in fibroplasia and connective tissue deposition. As the major structural protein component of connective tissue is collagen, its absence is responsible for the retarded gain in wound breaking strength. Cortisone also blocks wound closure by inhibiting wound contraction. An anabolic agent such as growth hormone may antagonize the effect of cortisone on the wound healing process. Endogenous GH can be released from the pituitary by exogenous injections of growth hormone-releasing factor (GRF). Two synthetic GRF peptides, a natural 44-amino acid peptide of the human GRF sequence, GRF-44, and an N-terminally substituted analog 29 residues, GRF-29A, were studied. Each was given twice daily with a single daily injection of cortisone for a 7-day period. Concurrent administration of GRF-44 or GRF-29A and cortisone to rats had no effect on restored body weight loss or inhibited wound contraction. While GRF-44 restored collagen deposition and caused restored wound breaking strength, GRF-29A was ineffective in restoring either. GRF-44, a synthetic peptide that stimulates pituitary release of growth hormone, antagonized some of the inhibiting effect of steroid on wound repair by promoting fibroplasia and collagen deposition.  相似文献   

16.
Repair of incision wounds closed by suturing is evaluated by the progressive gain in wound breaking strength. Previously the closure of open wounds in rats ingesting vanadate, an inhibitor of tyrosine phosphate phosphatases, was shown to occur with deposition of more uniformly organized collagen fiber bundles. The hypothesis of this study was that deposition of more uniformly organized collagen fibers would enhance the gain in wound breaking strength of incisional wounds. Six adult rats received vanadate-supplemented saline drinking water for 1 week before placement of two 6-cm, parallel, suture-closed wounds on their backs. Six control rats received identical wounds and were given saline drinking water. The drinking water regimen was continued for 1 week after wounding, and then wound strength was tested with a tensiometer and tissue samples were obtained for histologic evaluation. Wound breaking strength doubled in vanadate-treated rats compared with controls. Bright-field and polarized light microscopy showed that the connective tissue matrix of granulation tissue from control rats was oriented perpendicular to the surface of the skin. In contrast, the connective tissue matrix of granulation tissue from vanadate-treated rats was oriented parallel to the skin surface. The gap in granulation tissue between the edges of the wounds in the vanadate-treated rats was greater than that in controls. Electron microscopy showed that wounds in the vanadate-treated contained uniform collagen fibers that were 20 percent greater in diameter and more evenly spaced than they were in controls. It is proposed that these changes in the organization of collagen fibers within incisional wounds were responsible for the increased wound breaking strength observed in rats ingesting vanadate.  相似文献   

17.
Diabetes is characterized by poor wound healing which currently lacks an efficacious treatment. The innate repair receptor (IRR) is a master regulator of tissue protection and repair which is expressed as a response injury or metabolic stress, including in diabetes. Activation of the IRR might provide benefit for diabetic wound healing. A specific IRR agonist cibinetide was administered in an incisional wound healing model performed mice with genetic diabetes (db+/db+) and compared to the normal wild-type. Animals were treated daily with cibinetide (30 μg/kg/s.c.) or vehicle and euthanized 3, 7, and 14 days after the injury to quantitate vascular endothelial growth factor (VEGF), malondialdehyde (MAL), phospho-Akt (pAkt), phospho e-NOS (p-eNOS), and nitrite/nitrate content within the wound. Additional evaluations included quantification of skin histological change, angiogenesis, scar strength, and time to complete wound closure. Throughout the wound healing process diabetic animals treated with vehicle exhibited increased wound MAL with reduced VEGF, pAkt, peNOS and nitrite/nitrate, all associated with poor re-epitheliziation, angiogenesis, and wound breaking strength. Cibenitide administration significantly improved these abnormalities. The results suggest that cibinetide-mediated IRR activation may represent an interesting strategy to treat diabetes-associated wound healing.  相似文献   

18.
Cyclosporine has been reported to suppress the tensile strength of healing incision wound. Prednisolone, an inducer of hepatic microsomal enzymes, abolished the tensile strength suppressant effect of cyclosporine. Cyclosporine is metabolized by the hepatic cytochrome P-450 enzymes. Induction of microsomal enzymes with phenobarbitone was evaluated for its effect upon the wound healing suppressant effect of cyclosporine. Pretreatment of male rats with phenobarbitone (75 mg/kg/day, ip) for 3 days resulted in alleviating the tensile strength suppressant effect of cyclosporine (5 mg/kg/day, po for 10 days). Phenobarbitone, per se, did not affect the tensile strength. That phenobarbitone prevents cyclosporine induced nephrotoxicity without affecting the humoral immunosuppressant action of cyclosporine has recently been reported. The possibility of modulating microsomal enzymes with phenobarbitone offers another approach in preventing cyclosporine-associated toxicities during immunosuppression.  相似文献   

19.
The purpose of this investigation was to compare the effects of continuous passive motion (CPM) and cast immobilization on postoperative wound healing. Medical parapatellar skin incisions and arthrotomies were performed on both knees of 10 mature New Zealand rabbits. After closure of the incisions, one knee was immobilized in a cast while the other was treated by continuous passive motion for 3 weeks. Six standardized skin specimens (2 mm wide) from each wound were tested to failure and one specimen was examined histologically. With respect to the breaking force, tensile strength, strain at failure, stiffness, and toughness, the wounds in the continuous-passive-motion group were significantly stronger, stiffer, and tougher than those in the cast group. Histologically, the structural organization of the collagen fibers was also superior in the scars treated with continuous passive motion. The results of the present investigation indicate that compared to immobilization, continuous passive motion enhances postoperative wound healing in rabbits.  相似文献   

20.
Platelet-derived growth factor (PDGF) and transforming growth factor-beta (TGF-beta) markedly potentiate tissue repair in vivo. In the present experiments, both in vitro and in vivo responses to PDGF and TGF-beta were tested to identify mechanisms whereby these growth factors might each enhance the wound-healing response. Recombinant human PDGF B-chain homodimers (PDGF-BB) and TGF-beta 1 had identical dose-response curves in chemotactic assays with monocytes and fibroblasts as the natural proteins from platelets. Single applications of PDGF-BB (2 micrograms, 80 pmol) and TGF-beta 1 (20 micrograms, 600 pmol) were next applied to linear incisions in rats and each enhanced the strength required to disrupt the wounds at 5 d up to 212% of paired control wounds. Histological analysis of treated wounds demonstrated an in vivo chemotactic response of macrophages and fibroblasts to both PDGF-BB and to TGF-beta 1 but the response to TGF-beta 1 was significantly less than that observed with PDGF-BB. Marked increases of procollagen type I were observed by immunohistochemical staining in fibroblasts in treated wounds during the first week. The augmented breaking strength of TGF-beta 1 was not observed 2 and 3 wk after wounding. However, the positive influence of PDGF-BB on wound breaking strength persisted through the 7 wk of testing. Furthermore, PDGF-BB-treated wounds had persistently increased numbers of fibroblasts and granulation tissue through day 21, whereas the enhanced cellular influx in TGF-beta 1-treated wounds was not detectable beyond day 7. Wound macrophages and fibroblasts from PDGF-BB-treated wounds contained sharply increased levels of immunohistochemically detectable intracellular TGF-beta. Furthermore, PDGF-BB in vitro induced a marked, time-dependent stimulation of TGF-beta mRNA levels in cultured normal rat kidney fibroblasts. The results suggest that TGF-beta transiently attracts fibroblasts into the wound and may stimulate collagen synthesis directly. In contrast, PDGF is a more potent chemoattractant for wound macrophages and fibroblasts and may stimulate these cells to express endogenous growth factors, including TGF-beta, which, in turn, directly stimulate new collagen synthesis and sustained enhancement of wound healing over a more prolonged period of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号