首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of regulatory genes have been implicated in neural crest development. However, the molecular mechanism of how neural crest determination is initiated in the exact ectodermal location still remains elusive. Here, we show that the cooperative function of Pax3 and Zic1 determines the neural crest fate in the amphibian ectoderm. Pax3 and Zic1 are expressed in an overlapping manner in the presumptive neural crest area of the Xenopus gastrula, even prior to the onset of the expression of the early bona fide neural crest marker genes Foxd3 and Slug. Misexpression of both Pax3 and Zic1 together efficiently induces ectopic neural crest differentiation in the ventral ectoderm, whereas overexpression of either one of them only expands the expression of neural crest markers within the dorsolateral ectoderm. The induction of neural crest differentiation by Pax3 and Zic1 requires Wnt signaling. Loss-of-function studies in vivo and in the animal cap show that co-presence of Pax3 and Zic1 is essential for the initiation of neural crest differentiation. Thus, co-activation of Pax3 and Zic1, in concert with Wnt, plays a decisive role for early neural crest determination in the correct place of the Xenopus ectoderm.  相似文献   

2.
Zic family genes encode zinc finger proteins, which are homologues of the Drosophila pair-rule gene odd-paired. In the present study, we characterized the fifth member of the mouse Zic family gene, mouse Zic5. Zic5 is located near Zic2, which is responsible for human brain malformation syndrome (holoprosencephaly, or HPE). In embryonic stages, Zic5 was expressed in dorsal part of neural tissues and limbs. Expression of Zic5 overlapped with those of other Zic genes, most closely with Zic2, but was not identical. Targeted disruption of Zic5 resulted in insufficient neural tube closure at the rostral end, similar to that seen in Zic2 mutant mice. In addition, the Zic5-deficient mice exhibited malformation of neural-crest-derived facial bones, especially the mandible, which had not been observed in other Zic family mutants. During the embryonic stages, there were delays in the development of the first branchial arch and extension of the trigeminal and facial nerves. Neural crest marker staining revealed fewer neural crest cells in the dorsal cephalic region of the mutant embryos without significant changes in their migration. When mouse Zic5 was overexpressed in Xenopus embryos, expression of a neural crest marker was enhanced. These findings suggested that Zic5 is involved in the generation of neural crest tissue in mouse development. ZIC5 is also located close to ZIC2 in humans, and deletions of 13q32, where ZIC2 is located, lead to congenital brain and digit malformations known as the "13q32 deletion syndrome". Based on both their similar expression pattern in mouse embryos and the malformations observed in Zic5-deficient mutant mice, human ZIC5 might be involved in the deletion syndrome.  相似文献   

3.
4.
5.
The Zic genes are the vertebrate homologues of the Drosophila pair rule gene odd-paired. It has been proposed that Zic genes play several roles during neural development including mediolateral segmentation of the neural plate, neural crest induction, and inhibition of neurogenesis. Initially during mouse neural development Zic2 is expressed throughout the neural plate while later on expression in the neurectoderm becomes restricted to the lateral region of the neural plate. A hypomorphic allele of Zic2 has demonstrated that in the mouse Zic2 is required for the timing of neurulation. We have isolated a new allele of Zic2 that behaves as a loss of function allele. Analysis of this mutant reveals two further functions for Zic2 during early neural development. Mutation of Zic2 results in a delay of neural crest production and a decrease in the number of neural crest cells that are produced. These defects are independent of mediolateral segmentation of the neurectoderm and of dorsal neurectoderm proliferation, both of which occur normally in the mutant embryos. Additionally Zic2 is required during hindbrain patterning for the normal development of rhombomeres 3 and 5. This work provides the first genetic evidence that the Zic genes are involved in neural crest production and the first demonstration that Zic2 functions during hindbrain patterning.  相似文献   

6.
7.
8.
9.
A novel gene, Xenopus Polycomblike 2 (XPcl2), which encodes a protein similar to Drosophila Polycomblike was cloned and characterized. Polycomblike belongs to the Polycomb group proteins, which maintain stable expression patterns for the clustered homeotic genes in the Drosophila embryo by forming multimeric complexes on chromatin. XPcl2 shows greater amino acid sequence homology to human and mouse M96 (hPcl2, mPcl2) than Xenopus Pcl1 (XPcl1), mouse Tctex3 (mPcl1) and human PHF1 (hPcl1), indicating that at least two types of Polycomblike genes are conserved between amphibians and mammals. XPcl2 mRNA is present both maternally and zygotically, and the temporal expression profile is distinct from XPcl1, another member of the Polycomblike family in Xenopus. XPcl2 is highly expressed in the anterior-dorsal region of Xenopus following the neurula stage in a manner similar to XPcl1. Overexpression of XPcl2 disturbs the development of the anterior central nervous system, eye and cement gland. In the XPcl2-overexpressing embryo, a hindbrain marker, Krox20, and a spinal cord marker, HoxB9, are expressed more posteriorly, suggesting an alteration in the anterior-posterior patterning of the neural tissue. In addition, XPcl2 represses Zic3- and noggin-induced anterior neural markers, but not neural crest markers in animal cap explants. These results indicate that XPcl2 regulates anterior neural tissue development and the anterior-posterior patterning of the neural tissue.  相似文献   

10.
11.
During development, the lumen of the neural tube develops into a system of brain cavities or ventricles, which play important roles in normal CNS function. We have established that the formation of the hindbrain (4th) ventricle in zebrafish is dependent upon the pleiotropic functions of the genes implicated in human Dandy Walker Malformation, Zic1 and Zic4. Using morpholino knockdown we show that zebrafish Zic1 and Zic4 are required for normal morphogenesis of the 4th ventricle. In Zic1 and/or Zic4 morphants the ventricle does not open properly, but remains completely or partially fused from the level of rhombomere (r) 2 towards the posterior. In the absence of Zic function early hindbrain regionalization and neural crest development remain unaffected, but dorsal hindbrain progenitor cell proliferation is significantly reduced. Importantly, we find that Zic1 and Zic4 are required for development of the dorsal roof plate. In Zic morphants expression of roof plate markers, including lmx1b.1 and lmx1b.2, is disrupted. We further demonstrate that zebrafish Lmx1b function is required for both hindbrain roof plate development and 4th ventricle morphogenesis, confirming that roof plate formation is a critical component of ventricle development. Finally, we show that dorsal rhombomere boundary signaling centers depend on Zic1 and Zic4 function and on roof plate signals, and provide evidence that these boundary signals are also required for ventricle morphogenesis. In summary, we conclude that Zic1 and Zic4 control zebrafish 4th ventricle morphogenesis by regulating multiple mechanisms including cell proliferation and fate specification in the dorsal hindbrain.  相似文献   

12.
In Xenopus embryos, XMeis3 protein activity is required for normal hindbrain formation. Our results show that XMeis3 protein knock down also causes a loss of primary neuron and neural crest cell lineages, without altering expression of Zic, Sox or Pax3 genes. Knock down or inhibition of the Pax3, Zic1 or Zic5 protein activities extinguishes embryonic expression of the XMeis3 gene, as well as triggering the loss of hindbrain, neural crest and primary neuron cell fates. Ectopic XMeis3 expression can rescue the Zic knock down phenotype. HoxD1 is an XMeis3 direct-target gene, and ectopic HoxD1 expression rescues cell fate losses in either XMeis3 or Zic protein knock down embryos. FGF3 and FGF8 are direct target genes of XMeis3 protein and their expression is lost in XMeis3 morphant embryos. In the genetic cascade controlling embryonic neural cell specification, XMeis3 lies below general-neuralizing, but upstream of FGF and regional-specific genes. Thus, XMeis3 protein is positioned at a key regulatory point, simultaneously regulating multiple neural cell fates during early vertebrate nervous system development.  相似文献   

13.
14.
The neural crest is a unique cell population induced at the lateral border of the neural plate. Neural crest is not produced at the anterior border of the neural plate, which is fated to become forebrain. Here, the roles of BMPs, FGFs, Wnts, and retinoic acid signaling in neural crest induction were analyzed by using an assay developed for investigating the posteriorization of the neural plate. Using specific markers for the anterior neural plate border and the neural crest, the posterior end of early neurula embryos was shown to be able to transform the anterior neural plate border into neural crest cells. In addition, tissue expressing anterior neural plate markers, induced by an intermediate level of BMP activity, was transformed into neural crest by posteriorizing signals. This transformation was mimicked by bFGF, Wnt-8, or retinoic acid treatment and was also inhibited by expression of the dominant negative forms of the FGF receptor, the retinoic acid receptor, and Wnt signaling molecules. The transformation of the anterior neural plate border into neural crest cells was also achieved in whole embryos, by retinoic acid treatment or by use of a constitutively active form of the retinoic acid receptor. By analyzing the expression of mesodermal markers and various graft experiments, the expression of the mutant retinoic acid receptor was shown to directly affect the ectoderm. We thereby propose a two-step model for neural crest induction. Initially, BMP levels intermediate to those required for neural plate and epidermal specification induce neural folds with an anterior character along the entire neural plate border. Subsequently, the most posterior region of this anterior neural plate border is transformed into the neural crest by the posteriorizing activity of FGFs, Wnts, and retinoic acid signals. We discuss a unifying model where lateralizing and posteriorizing signals are presented as two stages of the same inductive process required for neural crest induction.  相似文献   

15.
16.
17.
At the border of the neural plate, the induction of the neural crest can be achieved by interactions with the epidermis, or with the underlying mesoderm. Wnt signals are required for the inducing activity of the epidermis in chick and amphibian embryos. Here, we analyze the molecular mechanisms of neural crest induction by the mesoderm in Xenopus embryos. Using a recombination assay, we show that prospective paraxial mesoderm induces a panel of neural crest markers (Slug, FoxD3, Zic5 and Sox9), whereas the future axial mesoderm only induces a subset of these genes. This induction is blocked by a dominant negative (dn) form of FGFR1. However, neither dnFGFR4a nor inhibition of Wnt signaling prevents neural crest induction in this system. Among the FGFs, FGF8 is strongly expressed by the paraxial mesoderm. FGF8 is sufficient to induce the neural crest markers FoxD3, Sox9 and Zic5 transiently in the animal cap assay. In vivo, FGF8 injections also expand the Slug expression domain. This suggests that FGF8 can initiate neural crest formation and cooperates with other DLMZ-derived factors to maintain and complete neural crest induction. In contrast to Wnts, eFGF or bFGF, FGF8 elicits neural crest induction in the absence of mesoderm induction and without a requirement for BMP antagonists. In vivo, it is difficult to dissociate the roles of FGF and WNT factors in mesoderm induction and neural patterning. We show that, in most cases, effects on neural crest formation were parallel to altered mesoderm or neural development. However, neural and neural crest patterning can be dissociated experimentally using different dominant-negative manipulations: while Nfz8 blocks both posterior neural plate formation and neural crest formation, dnFGFR4a blocks neural patterning without blocking neural crest formation. These results suggest that different signal transduction mechanisms may be used in neural crest induction, and anteroposterior neural patterning.  相似文献   

18.
Zic family zinc-finger proteins play various roles in animal development. In mice, five Zic genes (Zic1-5) have been reported. Despite the partly overlapping expression profiles of these genes, mouse mutants for each Zic show distinct phenotypes. To uncover possible redundant roles, we characterized Zic2/Zic3 compound mutant mice. Zic2 and Zic3 are both expressed in presomitic mesoderm, forming and newly generated somites with differential spatiotemporal accentuation. Mice heterozygous for the hypomorphic Zic2 allele together with null Zic3 allele generally showed severe malformations of the axial skeleton, including asymmetric or rostro-caudally bridged vertebrae, and reduction of the number of caudal vertebral bones, that are not obvious in single mutants. These defects were preceded by perturbed somitic marker expression, and reduced paraxial mesoderm progenitors in the primitive streak. These results suggest that Zic2 and Zic3 cooperatively control the segmentation of paraxial mesoderm at multiple stages. In addition to the segmentation abnormality, the compound mutant also showed neural tube defects that ran the entire rostro-caudal extent (craniorachischisis), suggesting that neurulation is another developmental process where Zic2 and Zic3 have redundant functions.  相似文献   

19.
Wu MY  Ramel MC  Howell M  Hill CS 《PLoS biology》2011,9(2):e1000593
Bone morphogenetic protein (BMP) gradients provide positional information to direct cell fate specification, such as patterning of the vertebrate ectoderm into neural, neural crest, and epidermal tissues, with precise borders segregating these domains. However, little is known about how BMP activity is regulated spatially and temporally during vertebrate development to contribute to embryonic patterning, and more specifically to neural crest formation. Through a large-scale in vivo functional screen in Xenopus for neural crest fate, we identified an essential regulator of BMP activity, SNW1. SNW1 is a nuclear protein known to regulate gene expression. Using antisense morpholinos to deplete SNW1 protein in both Xenopus and zebrafish embryos, we demonstrate that dorsally expressed SNW1 is required for neural crest specification, and this is independent of mesoderm formation and gastrulation morphogenetic movements. By exploiting a combination of immunostaining for phosphorylated Smad1 in Xenopus embryos and a BMP-dependent reporter transgenic zebrafish line, we show that SNW1 regulates a specific domain of BMP activity in the dorsal ectoderm at the neural plate border at post-gastrula stages. We use double in situ hybridizations and immunofluorescence to show how this domain of BMP activity is spatially positioned relative to the neural crest domain and that of SNW1 expression. Further in vivo and in vitro assays using cell culture and tissue explants allow us to conclude that SNW1 acts upstream of the BMP receptors. Finally, we show that the requirement of SNW1 for neural crest specification is through its ability to regulate BMP activity, as we demonstrate that targeted overexpression of BMP to the neural plate border is sufficient to restore neural crest formation in Xenopus SNW1 morphants. We conclude that through its ability to regulate a specific domain of BMP activity in the vertebrate embryo, SNW1 is a critical regulator of neural plate border formation and thus neural crest specification.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号