首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phragmites australis (the common reed) was collected at six sites in southern Québec and Ontario, Canada, in order to study the accumulation of iron plaque on the roots. The deposition of iron oxides on roots ofP. australis did not correlate directly with soil measurements; however, the amounts of iron-bound-to-carbonates fraction of the soil/sediment, responsible for the iron plaque accumulation, correlated with the % of water, % of organic matter, % of clay and pH of the substrate. Plants located very near flowing water accumulated more iron plaque on the roots than plants in other habitats through the summer; it is hypothesized that carbonates associated with iron come from the flowing water. In wetlands or sites near flowing water, most root iron was found on the surface, as iron plaque, while there was more iron inside the root in dry environments. Radial oxygen loss from the roots is probably the most important source of oxygen for the oxidation of iron.  相似文献   

2.
Rengel  Z. 《Annals of botany》2000,86(6):1119-1126
Genotypes tolerant to zinc (Zn) toxicity, if they accumulateZn in their roots, may grow better than Zn-sensitive genotypes,even in Zn-deficient soil. In the present study, Holcus lanatusL. ecotypes differing in tolerance to Zn toxicity were grownin Zn-deficient Laffer soil which was amended with Zn to createa range of conditions from Zn deficiency to Zn toxicity. IncreasingZn additions to the soil, up to the sufficiency level, improvedgrowth of all ecotypes. At toxic levels of added Zn, the Zn-sensitiveecotype suffered a greater decrease in growth than the Zn-tolerantecotypes. All ecotypes accumulated more Zn in roots than inshoots, with root concentrations exceeding 8 g Zn kg-1dry weightin extreme cases. When grown in Zn-deficient or Zn-sufficientsoil (up to 0.5 mg Zn kg-1soil added), ecotypes tolerant toZn toxicity took up more Zn, grew better and had greater rootand shoot Zn concentration than the control (Zn-sensitive ecotype).Zn-tolerant ecotypes transported more Zn, copper (Cu) and iron(Fe) from roots to shoots in comparison with the Zn-sensitiveecotype. The average Zn uptake rate from Zn-deficient soil (noZn added) was greater in the Zn-tolerant ecotypes than in theZn-sensitive ecotype. In conclusion, ecotypes of H. lanatusthat are tolerant to Zn toxicity also tolerate Zn deficiencybetter than the Zn-sensitive ecotype because of their greatercapacity for taking up Zn from Zn-deficient soil. This is thefirst report of the coexistence of traits for tolerance to Zntoxicity and Zn deficiency in a single plant genotype. Copyright2000 Annals of Botany Company Copper, heavy metal, Holcus lanatus, iron, zinc deficiency, zinc toxicity  相似文献   

3.
A pot experiment was conducted to investigate the effect of iron plaque on Pb uptake by and translocation in Carex cinerascens Kukenth. grown under open-air conditions. Using Scanning Electron Microscopy and Energy Dispersive X-Ray Spectrometry, iron plaque was present as an amorphous coating on root surfaces with uneven distribution. The amount of iron plaque increased significantly with increasing Fe additions regardless of Pb additions. The presence of iron plaque on the root surface of Carex cinerascens Kukenth. increased the concentrations of Pb adsorbed by iron plaque. The Pb percentage in whole roots increased by 14.52% at 500 mg kg?1 Fe treatment than at 0 mg kg?1 Fe, and the distribution coefficient (DC) of Pb and translocation factor (TF) root increased with Fe additions, but translocation factor (TF) shoot decreased with Fe additions. The results suggested that iron plaque could promote the translocation of Pb from soil to roots to some extent, and it played a role to reduce heavy metals pollution of Poyang Lake wetland.  相似文献   

4.
  • Heavy metal allocation and the mechanism(s) of metal sequestration in different clonal organs, micro‐domains and subcellular structures has not been systematically studied for rhizomatous perennial plants. It is thus pertinent to investigate knowledge of the speciation and distribution characteristics of Cu in Phragmites australis to elucidating the mobility of metals in wetland plants after their uptake via root systems so as to facilitate development of strategies to enhance Cu tolerance.
  • This study investigated the distributions of Cu in P. australis root, stem and leaf using ICP‐MS, synchrotron‐based X‐ray micro‐fluorescence and X‐ray absorption spectroscopy, then evaluated the effects of Cu on cellular structure and ultrastructure via transmission electron microscopy.
  • The results indicate a clear preferential localisation of Cu in the roots as compared with the shoots (stems and leaves). The intensity of Cu in the vascular bundles was higher than that in the surrounding epidermis and the endodermis and parenchyma outside the medullary cavity. The dominant chemical form of Cu in P. australis was similar to Cu citrate.
  • The results suggest that although Cu can be easily transported into the vascular tissues in roots and stems via Cu citrate, most of the metal absorbed by plants is retained in the roots because if its high binding to the cell wall, thus preventing metal translocation to aerial parts of the plants. Therefore, P. australis showed a high capacity to accumulate Cu in roots, being therefore a suitable species for phytostabilisation interventions.
  相似文献   

5.
The biomass and metal concentrations of two populations ofPhragmitesaustraliswere studied by growth in a glasshouse in three amelioratedsubstrata [Mai Po (MP) sediment, fly ash (FA) and lead/zincmine tailings (TL)] under flooded and dry conditions for 90d. Plants were raised from seeds from ‘clean’ (MaiPo, Hong Kong) and metal-contaminated (Plombières, Belgium)sites. Seedling growth was best in fly ash, root dry weightsbeing higher in flooded than dry conditions, and growth poorestin tailings, in which shoot and root dry weights were higherunder dry conditions for both populations. However, in the MPsubstratum conditions did not significantly affect shoot androot dry weights of either population. In the fly ash and tailings,more metals were generally taken up in both roots and shootsin flooded than dry conditions, but there was little differencein the MP substratum. Metal uptake was mostly similar in bothpopulations in seedlings grown in the same substratum, therebeing no clear evidence of ecotypic differentiation.Copyright1998 Annals of Botany Company Biomass, flooded and dry conditions, metal uptake,Phragmites australis.  相似文献   

6.
 采用盆栽方法研究了两种生态型东南景天(Sedum alfredii)对土壤中不同含量Cd(即对照, 12.5, 25, 50, 100, 200, 300, 400 mg&;#8226;kg-1)的生 长反应、吸收和积累Cd的差异性。结果表明,土壤添加重金属Cd后,矿山生态型东南景天生长正常,地上部和根系Cd含量随着土壤中Cd含量的 增加而增加,在400 mg&;#8226;kg-1 Cd处理下含量分别高达2 900和500 mg&;#8226;kg-1,其地上部显著大于根部;然而,土壤添加Cd后,非矿山生态型东 南景天的生长受到抑制,地上部和根部的生物量显著降低。当土壤Cd含量为50~100 mg&;#8226;kg-1 时,非矿山生态型东南景天的地上部和根系Cd含 量随着土壤中Cd含量的增加而增加,而且根系Cd含量则大于地上部。当土壤Cd≤50 mg&;#8226;kg-1时,矿山生态型东南景天根系Cd含量比非矿山生态 型高 ,但当土壤Cd≥100 mg&;#8226;kg-1,两者之间无显著差异;然而,但在同一Cd处理水平下,矿山生态型东南景天地上部Cd含量总是高于非矿山 生态型。这些结果表明,矿山生态型东南景天有很强的忍耐和吸收土壤Cd的能力,再次证明其为一种Cd超积累植物。  相似文献   

7.
入侵植物假苍耳对土壤中铜、铅重金属污染的富集特征   总被引:1,自引:0,他引:1  
通过室内盆栽试验研究入侵植物假苍耳(Iva xanthifolia)在营养生长阶段对铜、铅的耐性及富集特征。实验结果表明,在1~16 mg·L-1的添加铜处理及0.5~14 mg·L-1的添加铅处理条件下,假苍耳对铜、铅两种单一金属均有很强的耐性及富集作用,重金属在植物体地上部和地下部的富集量分别为607.59、137.20,404.38、34.53 mg·kg-1,对应的富集系数为11.39、4.18,转运系数4.43、11.71,且重金属在植物体内的分布规律均表现为:茎部>叶片>根部,地上部分的积累量远大于地下部分。对叶色、株高及生物量等特征的观察表明假苍耳的生长未受到抑制,符合超富集植物的基本特征。与一般超富集植物相比,假苍耳作为一种外来入侵植物,具有生长迅速、植物材料易得,生物量大且分布范围广的优点。  相似文献   

8.
Cultivated Agave mapisaga and A. salmiana can have an extremelyhigh above-ground dry-weight productivity of 40 Mg ha–1yr–1. To help understand the below-ground capabilitiesthat support the high above-ground productivity of these Crassulaceanacid metabolism plants, roots were studied in the laboratoryand in plantations near Mexico City. For approximately 15-year-oldplants, the lateral spread of roots from the plant base averaged1.3 m and the maximal root depth was 0.8 m, both considerablygreater than for desert succulents of the same age. Root andshoot growth occurred all year, although the increase in shootgrowth at the beginning of the wet season preceded the increasein growth of main roots. New lateral roots branching from themain roots were more common at the beginning of the wet season,which favoured water uptake with a minimal biomass investment,whereas growth of new main roots occurred later in the growingseason. The root: shoot dry weight ratio was extremely low,less than 0.07 for 6-year-old plants of both species, and decreasedwith plant age. The elongation rates of main roots and lateralroots were 10 to 17 mm d–1, higher than for various desertsucculents but similar to elongation rates for roots of highlyproductive C3 and C4 agronomic species. The respiration rateof attached main roots was 32 µmol CO2 evolved kg–1dry weight s–1 at 4 weeks of age, that of lateral rootswas about 70% higher, and both rates decreased with root age.Such respiration rates are 4- to 5-fold higher than for Agavedeserti, but similar to rates for C3 and C4 agronomic species.The root hydraulic conductivity had a maximal value of 3 x 10–7ms–1 MPa–1 at 4 weeks of age, similar to A. deserti.The radial hydraulic conductivity from the root surface to thexylem decreased and the axial conductivity along the xylem increasedwith root age, again similar to A. deserti. Thus, although rootsof A. mapisaga and A. salmiana had hydraulic properties perunit length similar to those of a desert agave, their highergrowth rates, their higher respiration rates, and the greatersoil volume explored by their roots than for various desertsucculents apparently helped support their high above-groundbiomass productivity Key words: Crassulacean acid metabolism, productivity, root elongation rate, root system, water uptake  相似文献   

9.
湿地植物根表的铁锰氧化物膜   总被引:44,自引:0,他引:44  
刘文菊  朱永官 《生态学报》2005,25(2):358-363
湿地植物根系具有泌氧能力 ,使其根表及根际微环境呈氧化状态。因而 ,土壤溶液中一些还原性物质被氧化 ,如 Fe2 ,Mn2 ,形成的氧化物呈红色或红棕色胶膜状包裹在根表 ,称为铁锰氧化物膜。铁锰氧化物膜及其根际微环境是湿地植物根系吸收养分和污染物的门户 ,势必会影响这些物质的吸收。主要综述了铁锰氧化物膜的形成和组成 ,以及根表形成的氧化物膜的生态效应 ,也就是氧化物胶膜对植物根系吸收外部介质中的养分及污染物质——重金属离子的影响  相似文献   

10.
11.
We have investigated the extent of iron oxyhydroxide deposition on the roots of two common freshwater species, Vallisneria americana Michx. and Heteranthera dubia (Jacq.) MacM., collected from different sites in the St. Lawrence River, Québec, Canada, and have related metal concentrations in the root plaques both to the geochemical conditions prevailing in the host sediments (pH; metal partitioning) and to the metal concentrations within the plant root tissue. Possible effects of root plaque on sediment geochemistry are also discussed.At those sites where the two submerged plants co-existed, the amounts of Fe deposited on their respective root surfaces were positively correlated, indicating that sediment geochemistry (pH; concentration of labile metal) exerted a more important influence on plaque formation than did inter-species differences (root physiology, morphology). Iron and Mn concentrations in the root plaque were positively correlated with each other, and with the readily extractable fractions (F1, 172) of these metals in the adjacent sediments. In contrast, Zn concentrations in the root plaque of V. americana were not related to Zn concentrations in the sediments — the dominant geochemical process at the root surface is Fe deposition, such that the quantities of Zn deposited on the roots are determined not by Zn geochemistry per se but rather by the amount of Fe deposition. Indeed the Zn/Fe ratios in the root plaque were related to the Zn/Fe ratios in the surrounding sediments (NH2OHHCl extract).On a concentration basis (g/g), more Fe, Mn and Zn was found outside the root, in the iron plaque, than inside the root tissues. For all 3 metals, significant relationships were observed between the metal concentrations in the plaque and those inside the roots. For Zn, however, the best statistical relationship was not with [Zn]plaque, but rather with the [Zn]/[Fe] ratio in the plaque. It is hypothesized that the Zn/Fe ratio in the root plaque reflects the free Zn2+ concentration adjacent to the root surface, and that this in turn affects Zn uptake by the plant root. For a given value of Zn in the sediments or in the root plaque, the Zn content of the root is inversely related to the concentration of Fe oxyhydroxides, implying that Fe plays a protective role in regulating Zn bioavailability.  相似文献   

12.
Phosphate uptake by excised roots of sunflower (Helianthus annuus)was determined by the disappearance of phosphate from the externalsolution and by the accumulation of phosphate labelled with32P. Over a 24 h period it was observed that net phosphate uptakedeclined to zero whilst uptake of 32P continued unabated. Theelectrical PD of the cortical cell membranes declined in parallelwith net phosphate uptake and it was found that both could berestored by creating a pH gradient across the plasmalemma. Itwas concluded that net phosphate uptake was responsible fora component of the membrane PD of the root cortical cells. Key words: Roots, Phosphate, Membranes  相似文献   

13.
We present the results of our attempt to determine the metabolicstatus of excised maize roots (Zea mays L. cv. ZP SC704) andits effect on the trans-root electrical potential difference(TRP). Besides the electrical potential difference, we measuredoxygen consumption, sugar content and 14C-sucrose uptake anddistribution by supplying the cut end of root with sucrose.Our experiments show that sucrose added to the cut end of excisedroots was taken up by them, increasing the sugar content andmetabolic activity of such roots. These sugar-supplemented rootsexhibited approximately 60% higher internal sugar content andrespiratory rates, and 30% higher magnitudes of TRP, comparedto sugar-depleted roots. By optimizing the ionic composition(pH, K+, Ca2+) and sucrose concentration of the upper solutionfor sucrose uptake and translocation, maintenance of energeticstatus and transport functions of the excised root, closer tothat existing in situ, was ensured. (Received July 4, 1994; Accepted October 17, 1994)  相似文献   

14.
The uptake and compartmentation of manganese by maize roots,from solutions containing between 1 µM and 1 mM Mn2+,was monitored in vivo by 31P nuclear magnetic resonance (NMR)spectroscopy. Qualitatively, NMR provided a convenient methodfor observing the effects of pH, anoxia, metabolic inhibitors,and competition with magnesium on the uptake of manganese andthe resultshighlighted the role of the vacuole as a sink forMn2+. Quantitatively, it was established thatroot tissues couldmaintain a low concentration of free Mn2+ in the cytoplasm duringmanganese uptake and that there is a non-equilibrium distributionof Mn2+ between the cytoplasm and the vacuole. Typically exposureto Mn2+ in the range 10–100 µM resulted in a submicromolarpool of Mn2+ in the cytoplasm and a vacuolar pool of 10 µMand it was concluded that the movement of Mn2+ out of the cytoplasmmust be energy consuming. Overall the results draw attentionto the similarity between the subcellular distribution of manganeseand calcium and provide some support for the suggestion thatmanganese, like calcium, might have a control function in normalcells. Key words: Cytoplasm, intracellular compartmentation, manganese, 31P-NMR, vacuole  相似文献   

15.
The uptake of manganese by maize roots was monitored in vivoby 31P nuclear magnetic resonance (NMR) spectroscopy and a quantitativeanalysis was developed on the basis of the line broadening ofthe vacuolar orthophosphate (P1) signal. The line broadening,which was followed indirectly by measuring changes in the reciprocalpeak height of the P1 signalin fully relaxed spectra, was foundto depend on pH and P1 concentration, as well ason the presenceof organic acids, but for P1 concentrations in the millimolarrange the method was sensitive to Mn2+ concentrations as lowas 0·1–1 µM. A linear relation was establishedbetween the reciprocal peak height of the vacuolar P1 signalobserved in vivo and the total manganese content of the tissuedetermined subsequently by atomicabsorption. However, the paramagneticcontribution to the line widthobserved in vivo was much smallerthan expected from measurements on simple solutions and freeze-thawextracts and it was concluded that less than 5% of the manganesetaken up by the root tissue was present in the vacuoles as solubleMn2+. The ability to detect the free pool of divalent manganeseis one of several advantages of the 31P-NMR method relativeto the analogous1H-NMR method based on the interaction betweenmanganese and water; and the non-invasive nature ofthe method,coupled with the potential to distinguish the cytoplasmic andvacuolar manganese fractions, allows the NMR method to complementthe information obtained by atomic absorption. Key words: Cytoplasm, intracellular compartmentation, manganese, 31P-NMR, vacuole  相似文献   

16.
Heavy metals are known to induce Fe chlorosis in different plantspecies. Heavy-metal-induced chlorosis is generally correlatedwith low plant Fe contents, suggesting effects of heavy metalson Fe mobilization and uptake. Under Fe-deficient conditions,dicotyledonous plants enhance root Fe(lll) reductase activity,thus increasing the capacity to reduce Fe(MI) to Fe(ll), theform in which roots absorb Fe. We studied the effect of severalheavy metals (Mn, Pb, Zn, Mo, Ni, Cu, and Cd) on the inductionof enhanced root Fe(lll) reductase by 11-d-old Fe-deficientcucumber [Cucumis sativus L. cv. Ashley). The effect of theseheavy metals on the function of the induced Fe(lll) reductasewas also investigated. Results showed that some heavy metalscan inhibit both the induction and function of root Fe(lll)reductase. Ni, at 20//M, and Cu and Cd, at 5 fiM concentrationor higher, severely inhibited the induction of root Fe(lll)reductase while Mn, Pb, Zn, and Mo had little effect, even atconcentrations higher than 20 //M. Function of the induced rootFe(lll) reductase only was negatively affected by Cu and Ni. Key words: Cucumis sativus, iron deficiency, iron reduction, heavy metals  相似文献   

17.
Zinc (Zn), lead (Pb) and cadmium (Cd) tolerance in populationsof seedlings ofPhragmites australisraised from seeds collectedfrom a mine site (Plombières, Belgium) contaminated withZn, Pb and Cd and three ‘clean’ sites (Felixstowe,UK; Wisbech, UK; and Mai Po, Hong Kong) were studied under glasshouseconditions. Small differences were found between the metal-contaminatedpopulation and the three ‘clean’ populations whenseedlings were grown in 1.0 µg  ml-1Zn and 10.0 µgml-1Pb treatment solutions. In general, however, different populationsof seedlings showed similar growth responses, metal uptake andindices of Zn, Pb and Cd tolerance when cultured in the samemetal-contaminated media for 89 d or in the same metal treatmentsolutions (ZnSO4:1.0 and 4.0 µg ml-1Zn; Pb(NO3)2: 10.0and 25.0 µg ml-1Pb; CdSO4: 0.5 and 1.0 µg ml-1Cd)for 3 weeks. There was insufficient evidence to support thehypothesis that the metal-contaminated population has evolvedto a Zn-, Pb- or Cd-tolerant ecotype but the results indicatedsome differentiation between the populations with that fromHong Kong being the least productive under the experimentalconditions used. The implications of the findings on selectionof provenances for use in constructed wetlands for wastewatertreatment are discussed. Metal accumulation; heavy metal tolerance; Phragmites australis; population differentiation  相似文献   

18.
After growing barley (Hordeum vulgare L.) in nutrient solutionscontaining EDTA, uptake of the nutrient metals was determinedat three harvests and concentrations of the various chemicalspecies of each metal in the growth solutions was modelled bycomputer simulation. Complexation with EDTA had different effectson the uptake of the ions Fe3+, Mn2+, Cu2+, and Zn2+. At thehighest EDTA level (EDTA/Fe=2/l) the plants were chlorotic andgrowth was inhibited. This is attributed to a deficiency inZn rather than in Fe. The critical level of free Zn2+ requiredin nutrient solutions for healthy growth was found to be approximately10–1010–10 mol dm–3, which is consistent withthat found by earlier workers for other plant species. Barleytolerated much lower levels of the free ions of copper and ironwithout exhibiting any obvious adverse effects. Key words: EDTA, micronutrients, trace metals, computer simulation, deficiencies, absorption, iron, manganese, copper, zinc  相似文献   

19.
The influence of the endogenous micronutrient chelator, nicotianamine(NA), and of Cu nutrition on the distribution of Cu, Fe, Mn,Zn, and NA was investigated in eight different shoot organs,roots, and in xylem exudates of the NA-containing tomato wildtype Lycopersicon esculentum Mill. cv. Bonner Beste and itsNA-less mutant chloronerva. Contrary to the other heavy metals, copper transport in thexylem was inefficient in the mutant and was enhanced by an applicationof NA to the roots or leaves in proportion to the applied NAconcentration. Also, with NA application, the Cu concentrationin mutant roots decreased significantly, and increased in theshoot. Fe and Mn transport in the xylem was greater in the mutantthan in the wild type, and was decreased in the mutant by theapplication of NA to the leaves. Zn transport in the xylem wasthe same in both genotypes and was unaffected by NA application.After application of NA to leaves and roots of the mutant itwas possible to detect NA in the xylem exudate (up to 2nmolNA(g–1 root FWh–1). High Cu supply (3 µM) resulted in higher Cu and Mn concentrationsin all organs of the wild type as compared to mutant organs,but Fe concentrations were not influenced. Under high Cu supply(3µM) the NA concentrations of roots and the three youngestleaves of the wild type were higher than under normal Cu supply(0.3 µM). The highest concentrations were found in theshoot apex under both Cu conditions (up to 361 nmol NAg–1FW). It is concluded from our experiments and from the high stabilityconstant of the NA-Cu-complex (log K= 18.6) that NA is involvedin Cu translocation whereas for the translocation of Fe, Mn,and Zn, NA is not essential. Key words: Copper transport, micronutrients, mobilization, nicotianamine, xylem  相似文献   

20.
Root morphology, shoot morphology, and water uptake for Agavedeserti and Ferocactus acanthodes of various sizes were studiedusing allometric relationships (y = axb) and a previously developedwater uptake model. Shoot surface area increased with shootvolume with an exponent b of 0.75 for both species. Root lengthand the ground area explored by the roots increased with shootsurface area with b's of 0.72 for A. deserti and 0.92 for F.acanthodes. Various sized individuals had about the same ratioof root length to explored ground area, with higher values occurringfor A. deserti. Predicted water uptake averaged over the exploredground area was approximately constant over a 104-fold rangein shoot surface area, suggesting that shoot size confers nointraspecific competitive advantage for water uptake. For theroot lengths per explored ground area observed in the field,water uptake was predicted to be 85 per cent of maximal; wateruptake could be increased by the production of more rain roots.When differences in shoot volume were accounted for by allometry,small plants had relatively less shoot surface area and relativelymore root length per shoot volume than did large plants, whichmay be important for the water relations of seedling establishment. Agave deserti, Ferocactus acanthodes, allometry, desert succulents, root distribution, root length, seedling growth, seedling establishment, shoot surface area, shoot volume, water uptake  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号