首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasma membrane of cells contains enzymes whose active sites face the external medium rather than the cytoplasm. The activities of these enzymes, referred to as ectoenzymes, can be measured using living cells. In this work we describe the ability of living promastigotes of Leishmania amazonensis to hydrolyze extracellular ATP. In these intact parasites whose viability was assessed before and after the reactions by motility and by trypan blue dye exclusion, there was a low level of ATP hydrolysis in the absence of any divalent metal (5.39 +/- 0.71 nmol P(i)/h x 10(7) cells). The ATP hydrolysis was stimulated by MgCl(2) and the Mg-dependent ecto-ATPase activity was 30.75 +/- 2.64 nmol P(i)/h x 10(7) cells. The Mg-dependent ecto-ATPase activity was linear with cell density and with time for at least 60 min. The addition of MgCl(2) to extracellular medium increased the ecto-ATPase activity in a dose-dependent manner. At 5 mM ATP, half-maximal stimulation of ATP hydrolysis was obtained with 1.21 mM MgCl(2). This stimulatory activity was also observed when MgCl(2) was replaced by MnCl(2), but not by CaCl(2) or SrCl(2). The apparent K(m) for Mg-ATP(2-) was 0.98 mM and free Mg(2+) did not increase the ecto-ATPase activity. In the pH range from 6.8 to 8.4, in which the cells were viable, the acid phosphatase activity decreased, while the Mg(2+)-dependent ATPase activity increased. This ecto-ATPase activity was insensitive to inhibitors of other ATPase and phosphatase activities, such as oligomycin, sodium azide, bafilomycin A(1), ouabain, furosemide, vanadate, molybdate, sodium fluoride, tartrate, and levamizole. To confirm that this Mg-dependent ATPase was an ecto-ATPase, we used an impermeant inhibitor, 4,4'-diisothiocyanostylbene 2',2'-disulfonic acid as well as suramin, an antagonist of P(2) purinoreceptors and inhibitor of some ecto-ATPases. These two reagents inhibited the Mg(2+)-dependent ATPase activity in a dose-dependent manner. A comparison between the Mg(2+)-dependent ATPase activity of virulent and avirulent promastigotes showed that avirulent promastigotes were less efficient than the virulent promastigotes in hydrolyzing ATP.  相似文献   

2.
In this work we describe the ability of living cells of Trypanosoma brucei brucei to hydrolyze extracellular ATP. In these intact parasites there was a low level of ATP hydrolysis in the absence of any divalent metal (4.72+/-0.51 nmol Pi x 10(-7) cells x h(-1)). The ATP hydrolysis was stimulated by MgCl(2) and the Mg-dependent ecto-ATPase activity was 27.15+/-2.91 nmol Pi x 10(-7) cells x h(-1). This stimulatory activity was also observed when MgCl(2) was replaced by MnCl(2). CaCl(2) and ZnCl(2) were also able to stimulate the ATPase activity, although less than MgCl(2). The apparent K(m) for ATP was 0.61 mM. This ecto-ATPase activity was insensitive to inhibitors of other ATPase and phosphatase activities. To confirm that this Mg-dependent ATPase activity is an ecto-ATPase activity, we used an impermeable inhibitor, DIDS (4, 4'-diisothiocyanostylbene 2'-2'-disulfonic acid), as well as suramin, an antagonist of P(2) purinoreceptors and inhibitor of some ecto-ATPases. These two reagents inhibited the Mg(2+)-dependent ATPase activity in a dose-dependent manner. Living cells sequentially hydrolyzed the ATP molecule generating ADP, AMP and adenosine, and supplementation of the culture medium with ATP was able to sustain the proliferation of T. brucei brucei as well as adenosine supplementation. Furthermore, the E-NTPDase activity of T. brucei brucei is modulated by the availability of purines in the medium. These results indicate that this surface enzyme may play a role in the salvage of purines from the extracellular medium in T. brucei brucei.  相似文献   

3.
In this work, we describe the ability of living cells of Entamoeba histolytica to hydrolyze extracellular ATP. In these intact parasites, whose viability was determined by motility and by the eosin method, ATP hydrolysis was low in the absence of any divalent metal (78 nmol P(i)/h/10(5) cells). Interestingly, in the presence of 5 mM MgCl(2) an ecto-ATPase activity of 300 nmol P(i)/h/10(5) cells was observed. The addition of MgCl(2) to the extracellular medium increased the ecto-ATPase activity in a dose-dependent manner. At 5 mM ATP, half-maximal stimulation of ATP hydrolysis was obtained with 1.23 mM MgCl(2). Both activities were linear with cell density and with time for at least 1 h. The ecto-ATPase activity was also stimulated by MnCl(2) and CaCl(2) but not by SrCl(2), ZnCl(2), or FeCl(3). In fact, FeCl(3) inhibited both Mg(2+)-dependent and Mg(2+)-independent ecto-ATPase activities. The Mg(2+)-independent ATPase activity was unaffected by pH in the range between 6.4 and 8. 4, in which the cells were viable. However, the Mg(2+)-dependent ATPase activity was enhanced concomitantly with the increase in pH. In order to discard the possibility that the ATP hydrolysis observed was due to phosphatase or 5'-nucleotidase activities, several inhibitors for these enzymes were tested. Sodium orthovanadate, sodium fluoride, levamizole, and ammonium molybdate had no effect on the ATPase activities. In the absence of Mg(2+) (basal activity), the apparent K(m) for ATP(4-) was 0.053 +/- 0.008 mM, whereas at saturating MgCl(2) concentrations, the corresponding apparent K(m) for Mg-ATP(2-) for Mg(2+)-dependent ecto-ATPase activity (difference between total and basal ecto-ATPase activity) was 0.503 mM +/- 0.062. Both ecto-ATPase activities were highly specific for ATP and were also able to hydrolyze ADP less efficiently. To identify the observed hydrolytic activities as those of an ecto-ATPase, we used suramin, a competitive antagonist of P(2) purinoreceptors and an inhibitor of some ecto-ATPases, as well as the impermeant agent 4'-4'-diisothiocyanostylbenzene-2'-2'-disulfonic acid. These two reagents inhibited the Mg(2+)-independent and the Mg(2+)-dependent ATPase activities to different extents, and the inhibition by both agents was prevented by ATP. A comparison among the ecto-ATPase activities of three amoeba species showed that the noninvasive E. histolytica and the free-living E. moshkovskii were less efficient than the pathogenic E. histolytica in hydrolyzing ATP. As E. histolytica is known to have a galactose-specific lectin on its surface, which is related to the pathogenesis of amebiasis, galactose was tested for an effect on ecto-ATPase activities. It stimulated the Mg(2+)-dependent ecto-ATPase but not the Mg(2+)-independent ATPase activity.  相似文献   

4.
In this work, we describe the ability of living hemocytes from an insect (Manduca sexta, Lepidoptera) to hydrolyze extracellular ATP. In these intact cells, there was a low level of ATP hydrolysis in the absence of any divalent metal (8.24 +/- 0.94 nmol of Pi/h x 10(6) cells). The ATP hydrolysis was stimulated by MgCl2 and the Mg2+-dependent ecto-ATPase activity was 15.93 +/- 1.74 nmol of Pi/h x 10(6) cells. Both activities were linear with cell density and with time for at least 90 min. The addition of MgCl2 to extracellular medium increased the ecto-ATPase activity in a dose-dependent manner. At 5 mM ATP, half-maximal stimulation of ATP hydrolysis was obtained with 0.33 mM MgCl2. This stimulatory activity was not observed when Ca2+ replaced Mg2+. The apparent Km values for ATP-4 and Mg-ATP2- were 0.059 and 0.097 mM, respectively. The Mg2+-independent ATPase activity was unaffected by pH in the range between 6.6 and 7.4, in which the cells were viable. However, the Mg2+-dependent ATPase activity was enhanced by an increase of pH. These ecto-ATPase activities were insensitive to inhibitors of other ATPase and phosphatase activities, such as oligomycin, sodium azide, bafilomycin A1, ouabain, furosemide, vanadate, sodium fluoride, tartrate, and levamizole. To confirm the observed hydrolytic activities as those of an ecto-ATPase, we used an impermeant inhibitor, DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid), as well as suramin, an antagonist of P2-purinoreceptors and inhibitor of some ecto-ATPases. These two reagents inhibited the Mg2+-independent and the Mg2+-dependent ATPase activities to different extents. Interestingly, lipopolysaccharide, a component of cell walls of gram-negative bacteria that increase hemocyte aggregation and phagocytosis, increased the Mg2+-dependent ecto-ATPase activity in a dose-dependent manner but did not modify the Mg2+-independent ecto-ATPase activity.  相似文献   

5.
In this work we demonstrated that promastigotes of Leishmania amazonensis exhibit an Mg-dependent ecto-ATPase activity, which is stimulated by heat shock. The Mg-dependent ATPase activity of cells grown at 22 and 28 degrees C was 41.0+/-5.2 nmol Pi/h x 10(7)cells and 184.2+/-21.0 nmol Pi/h x 10(7)cells, respectively. When both promastigotes were pre-incubated at 37 degrees C for 2h, the ATPase activity of cells grown at 22 degrees C was increased to 136.4+/-10.6 nmol Pi/h x 10(7) whereas that the ATPase activity of cells grown at 28 degrees C was not modified by the heat shock (189.8+/-10.3 nmol Pi/h x 10(7)cells). It was observed that Km of the enzyme from cells grown at 22 degrees C (Km=980.2+/-88.6 microM) was the same to the enzyme from cells grown at 28 degrees C (Km=901.4+/-91.9 microM). In addition, DIDS (4,4'-diisothiocyanatostilbene 2,2'-disulfonic acid) and suramin, two inhibitors of ecto-ATPases, also inhibited similarly the ATPase activities from promastigotes grown at 22 and 28 degrees C. We also observed that cells grown at 22 degrees C exhibit the same ecto-phosphatase and ecto 3'- and 5'-nucleotidase activities than cells grown at 28 degrees C. Interestingly, cycloheximide, an inhibitor of protein synthesis, suppressed the heat-shock effect on ecto-ATPase activity of cells grown at 22 degrees C were exposed at 37 degrees C for 2h. A comparison between the stimulation of the Mg-dependent ecto-ATPase activity of virulent and avirulent promastigotes by the heat shock showed that avirulent promastigotes had a higher stimulation than virulent promastigotes after heat stress.  相似文献   

6.
This work describes the ability of living Trichomonas vaginalis to hydrolyze extracellular ATP (164.0 +/- 13.9 nmol Pi/h x 10(7) cells). This ecto-enzyme was stimulated by ZnCl2, CaCl2 and MgCl2, was insensitive to several ATPase and phosphatase inhibitors and was able to hydrolyze several nucleotides besides ATP. The activity was linear with cell density and with time for at least 60 min. The optimum pH for the T. vaginalis ecto-ATPase lies in the alkaline range. D-galactose, known to be involved in adhesion of T. vaginalis to host cells, stimulated this enzyme by more than 90%. A comparison between two strains of T. vaginalis showed that the ecto-ATPase activity of a fresh isolate was twice as much as that of a strain axenically maintained in culture, through daily passages, for several years. The results suggest a possible role for this ecto-ATPase in adhesion of T. vaginalis to host cells and in its pathogenicity.  相似文献   

7.
In the present work we characterized the ecto-ATP diphosphohydrolase activity of the trypanosomatid parasite Herpetomonas muscarum muscarum. This parasite hydrolyzed ATP at a rate of 15.52 nmol Pi/mg protein/min and this activity reached a maximum at pH 7.5. Classical inhibitors of acid phosphatases, such as sodium orthovanadate (NaVO3), sodium fluoride (NaF), and ammonium molybdate presented no effect on this activity. MgCl2, ZnCl2, and MnCl2 stimulated the ATP hydrolysis by H. m. muscarum. The ecto-ATPase activity was insensitive to oligomycin and sodium azide, two inhibitors of mitochondrial Mg-ATPase, bafilomycin A1, a V-ATPase inhibitor, ouabain, a Na(+)+K+-ATPase inhibitor and to levamizole, an inhibitor of alkaline phosphatase. An extracellular impermeant inhibitor 4,4'-diisothiocyanostylbene 2',2'-disulfonic acid (DIDS) and a inhibitor of some ecto-ATPases, suramin, which is also a competitive antagonist of P2-purinergic receptors, promoted a great inhibition on the ATP hydrolysis. This enzyme is able to hydrolysis ATP, ADP, UTP, and UDP, but not GTP, GDP, CTP, or CDP. ADP inhibited the enzymatic activity in a concentration dependent manner, reaching 70% inhibition.  相似文献   

8.
Low concentrations of free Ca2+ stimulated the hydrolysis of ATP by plasma membrane vesicles purified from guinea pig neutrophils and incubated in 100 mM HEPES/triethanolamine, pH 7.25. In the absence of exogenous magnesium, apparent values obtained were 320 nM (EC50 for free Ca2+), 17.7 nmol of Pi/mg X min (Vmax), and 26 microM (Km for total ATP). Studies using trans- 1,2-diaminocyclohexane- N,N,N',N',-tetraacetic acid as a chelator showed this activity was dependent on 13 microM magnesium, endogenous to the medium plus membranes. Without added Mg2+, Ca2+ stimulated the hydrolysis of several other nucleotides: ATP congruent to GTP congruent to CTP congruent to ITP greater than UTP, but Ca2+-stimulated ATPase was not coupled to uptake of Ca2+, even in the presence of 5 mM oxalate. When 1 mM MgCl2 was added, the vesicles demonstrated oxalate and ATP-dependent calcium uptake at approximately 8 nmol of Ca2+/mg X min (based on total membrane protein). Ca2+ uptake increased to a maximum of approximately 17-20 nmol of Ca2+/mg X min when KCl replaced HEPES/triethanolamine in the buffer. In the presence of both KCl and MgCl2, Ca2+ stimulated the hydrolysis of ATP selectively over other nucleotides. Apparent values obtained for the Ca2+-stimulated ATPase were 440 nM (EC50 for free Ca2+), 17.5 nmol Pi/mg X min (Vmax) and 100 microM (Km for total ATP). Similar values were found for Ca2+ uptake which was coupled efficiently to Ca2+-stimulated ATPase with a molar ratio of 2.1 +/- 0.1. Exogenous calmodulin had no effect on the Vmax or EC50 for free Ca2+ of the Ca2+-stimulated ATPase, either in the presence or absence of added Mg2+, with or without an ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N',-tetraacetic acid pretreatment of the vesicles. The data demonstrate that calcium stimulates ATP hydrolysis by neutrophil plasma membranes that is coupled optimally to transport of Ca2+ in the presence of concentrations of K+ and Mg2+ that appear to mimic intracellular levels.  相似文献   

9.
In this study, we describe the ability of intact fat body of an insect, Rhodnius prolixus, to hydrolyze extracellular ATP. In these fat bodies, the ATP hydrolysis was low in the absence of any divalent metal, and was stimulated by MgCl(2). Both activities (in the absence or presence of MgCl(2)) were linear with time for at least 30 min. In order to confirm the observed nucleotidase activities as ecto-nucleotidases, we used an impermeant inhibitor, DIDS (4, 4'-diisothiocyanostylbene 2'-2'-disulfonic acid). This reagent inhibited both nucleotidase activities and its inhibitory effect was suppressed by ATP. Both ecto-nucleotidase activities were insensitive to inhibitors of other ATPase and phosphatase activities, such as oligomycin, sodium azide, bafilomycin, ouabain, vanadate, molybdate, sodium fluoride, levamizole, tartrate, p-NPP, sodium phosphate, and suramin. Concanavalin A, activator of some ecto-ATPases, was able to stimulate the Mg(2+)-independent nucleotidase activity, but not the Mg(2+)-dependent one. The Mg(2+)-independent nucleotidase activity was enhanced with increases in the pH in the range between 6.4-8.0, but the Mg(2+)-dependent nucleotidase activity was not affected. Besides MgCl(2) , the ecto-ATPase activity was also stimulated by CaCl(2),() MnCl(2), and SrCl(2), but not by ZnCl(2). ATP, ADP, and AMP were the best substrates for the Mg(2+)-dependent ecto-nucleotidase activity, and CTP, GTP, and UTP produced very low reaction rates. However, the Mg(2+)-independent nucleotidase activity recognized all these nucleotides producing similar reaction rates, but GTP was a less efficient substrate. The possible role of the two ecto-nucleotidase activities present on the cell surface of fat body of Rhodnius prolixus, which are distinguished by their substrate specificity and their response to Mg(2+), is discussed.  相似文献   

10.
In this work, we describe the ability of living trophozoites of Giardia lamblia to hydrolyze extracellular ATP. In the absence of any divalent cations, a low level of ATP hydrolysis was observed (0.78 ± 0.08 nmol Pi × h−1 × 10−6 cells). The ATP hydrolysis was stimulated by MgCl2 in a dose-dependent manner. Half maximum stimulation of ATP hydrolysis was obtained with 0.53 ± 0.07 mM. ATP was the best substrate for this enzyme. The apparent Km for ATP was 0.21 ± 0.04 mM. In the pH range from 5.6 to 8.4, in which cells were viable, this activity was not modified. The Mg2+-stimulated ATPase activity was insensitive to inhibitors of intracellular ATPases such as vanadate (P-ATPases), bafilomycin A1 (V-ATPases), and oligomycin (F-ATPases). Inhibitors of acid phosphatases (molybdate, vanadate and fluoride) or alkaline phosphatases (levamizole) had no effect on the ecto-ATPase activity. The impermeant agent DIDS and suramin, an antagonist of P2 purinoreceptors and inhibitor of some ecto-ATPases, decreased the enzymatic activity in a dose-dependent manner, confirming the external localization of this enzyme. Besides ATP, trophozoites were also able to hydrolyse ADP and 5´ AMP, but the hydrolysis of these nucleotides was not stimulated by MgCl2. Our results are indicative of the occurrence of a G. lamblia ecto-ATPase activity that may have a role in parasite physiology.  相似文献   

11.
Cryptococcus neoformans is the causative agent of pulmonary cryptococcosis and cryptococcal meningoencephalitis, which are major clinical manifestations in immunosuppressed patients. In the present study, a surface ATPase (ecto-ATPase) was identified in C. neoformans yeast cells. Intact yeasts hydrolyzed adenosine-5'-triphosphate (ATP) at a rate of 29.36+/-3.36nmol Pi/hx10(8) cells. In the presence of 5 mM MgCl(2), this activity was enhanced around 70 times, and an apparent K(m) for Mg-ATP corresponding to 0.61mM was determined. Inhibitors of phosphatases, mitochondrial Mg(2+)-ATPases, V-ATPases, Na(+)-ATPases or P-ATPases had no effect on the cryptococcal ATPase, but extracellular impermeant compounds reduced enzyme activity in living cells. ATP was the best substrate for the cryptococcal ecto-enzyme, but it also efficiently hydrolyzed inosine 5'-triphosphate (ITP), cytidine 5'-triphosphate (CTP), guanosine 5'-triphosphate (GTP) and uridine-5'-triphosphate (UTP). In the presence of ATP, C. neoformans became less susceptible to the antifungal action of fluconazole. Our results are indicative of the occurrence of a C. neoformans ecto-ATPase that may have a role in fungal physiology.  相似文献   

12.
Live Trypanosoma cruzi amastigotes hydrolyzed p-nitrophenylphosphate (PNPP), phospho-amino-acids and 32P-casein under physiologically appropriate conditions. PNPP was hydrolysed at a rate of 80 nmol.mg-1.h-1 in the presence of 5 mM MgCl2, pH 7.2 at 30 degrees C. In the absence of Mg2+ the activity was reduced 40% and we call this basal activity. At saturating concentration of PNPP, half-maximal PNPP hydrolysis was obtained with 0.22 mM MgCl2. Ca2+ had no effect on the basal activity, could not substitute Mg2+ as an activator and in contrast inhibited the PNPP hydrolysis stimulated by Mg2+ (I50 = 0.43 mM). In the absence of Mg2+ (basal activity) the stimulating half concentration (S0.5) for PNPP was 1.57 mM, while at saturating MgCl2 concentrations the corresponding S0.5 for PNPP for Mg(2+)-stimulated phosphatase activity (difference between total minus basal phosphatase activity) was 0.99 mM. The Mg-dependent PNPP hydrolysis was strongly inhibited by sodium fluoride (NaF), vanadate and Zn2+ but not by tartrate and levamizole. The Mg-independent basal phosphatase activity was insensitive to tartrate, levamizole as well NaF and less inhibited by vanadate and Zn2+. Intact amastigotes were also able to hydrolyse phosphoserine, phosphothreonine and phosphotyrosine but only the phosphotyrosine hydrolysis was stimulated by MgCl2 and inhibited by CaCl2 and phosphotyrosine was a competitive inhibitor of the PNPP hydrolysis stimulated by Mg2+. The cells were also able to hydrolyse 32P-casein phosphorylated on serine and threonine residues but only in the presence of MgCl2. These results indicate that in the amastigote form of T. cruzi there are at least two ectophosphatase activities, one of which is Mg2+ dependent and can dephosphorylate phospho-amino acids and phosphoproteins under physiological conditions.  相似文献   

13.
Intact synaptosomes isolated from mammalian brain tissues (rat, mouse, gerbil, and human) have an ATP hydrolyzing enzyme activity on their external surface. The synaptosomal ecto-ATPase(s) possesses characteristics consistent with those that have been described for ecto-ATPases of various other cell types. The enzyme has a high affinity for ATP (the apparent Km values are in the range of 2-5 X 10(-5) M), and is apparently stimulated equally well by either Mg2+ or Ca2+ in the absence of any other cations. The apparent activation constant for both divalent cations is approximately 4 X 10(-4) M in all mammalian brain tissues studied. The involvement of a non-specific phosphatase in the hydrolysis of externally added ATP is excluded. ATP hydrolysis is maximal in the pH range 7.4-7.8 for both divalent cation-dependent ATPase activities. Dicyclohexylcarbodiimide, 2,4-dinitrophenol, trifluoperazine, chlorpromazine, and p-chloromercuribenzoate (50 microM) inhibit the ecto-ATPase, whereas ouabain (1 mM) and oligomycin (3.5 micrograms X mg-1 protein) show little or no inhibition of this enzyme activity. Inhibitor data suggest that the Mg2+- and Ca2+-dependent ecto-ATPase may represent two different enzymes on the surface of synaptosomes.  相似文献   

14.
In the present report the enzymatic properties of an ATP diphosphohydrolase (apyrase, EC 3.6.1.5) in Trichomonas vaginalis were determined. The enzyme hydrolyses purine and pyrimidine nucleoside 5'-di- and 5'-triphosphates in an optimum pH range of 6.0--8.0. It is Ca(2+)-dependent and is insensitive to classical ATPase inhibitors, such as ouabain (1 mM), N-ethylmaleimide (0.1 mM), orthovanadate (0.1 mM) and sodium azide (5 mM). A significant inhibition of ADP hydrolysis (37%) was observed in the presence of 20 mM sodium azide, an inhibitor of ATP diphosphohydrolase. Levamisole, a specific inhibitor of alkaline phosphatase, and P(1), P(5)-di (adenosine 5'-) pentaphosphate, a specific inhibitor of adenylate kinase, did not inhibit the enzyme activity. The enzyme has apparent K(m) (Michaelis Constant) values of 49.2+/-2.8 and 49.9+/-10.4 microM and V(max) (maximum velocity) values of 49.4+/-7.1 and 48.3+/-6.9 nmol of inorganic phosphate x min(-1) x mg of protein(-1) for ATP and ADP, respectively. The parallel behaviour of ATPase and ADPase activities and the competition plot suggest that ATP and ADP hydrolysis occur at the same active site. The presence of an ATP diphosphohydrolase activity in T. vaginalis may be important for the modulation of nucleotide concentration in the extracellular space, protecting the parasite from the cytolytic effects of the nucleotides, mainly ATP.  相似文献   

15.
K Kurihara  K Hosoi  T Ueha 《Enzyme》1992,46(4-5):213-220
Hydrolysis of extracellular ATP and other nucleoside phosphates by A-431 human epidermoidal carcinoma cells was studied. The hydrolysis of extracellular ATP by these cells required either Mg2+ or Ca2+, and either cation could be replaced by Co2+, Fe2+, or Mn2+. Nucleoside triphosphates (ATP, GTP, CTP, UTP, and dTTP), but not nucleoside diphosphates, were hydrolyzed by the cells with Km and Vmax values similar to those for ATP (0.9-1.1 mmol/l and 6-10 nmol Pi formed/10(6) cells, respectively). The hydrolysis of ATP was inhibited strongly by ATP-gamma S and AMPPNP, and weakly by AMPCPP and ADP-beta S, but not by AMPCPP or AMPCP. Since the hydrolysis of [gamma-32P]ATP was inhibited by all these nucleoside triphosphates, the binding site for ATP is presumed to be the same as that for the other nucleoside triphosphates. All these results indicate that ecto-ATPase activity associated with A-431 cells is due to ecto-nucleoside triphosphatase. The nucleotide specificity shown in the present study indicates that ecto-nucleoside triphosphatase associated with A-431 cells is a molecule different from P2-purinergic receptors which can be stimulated specifically with nucleoside phosphates like ATP, ADP, UTP, UDP, and GTP, but not by other nucleotides.  相似文献   

16.
The effect of NH4+ ions on (Na+,K+)-ATPase hydrolytic activity was examined in a gill microsomal fraction from M. olfersii. In the absence of NH4+ ions, K+ ions stimulated ATP hydrolysis, exhibiting cooperative kinetics (nH=0.8), to a maximal specific activity of V=556.1+/-22.2 nmol.min(-1).mg(-1) with K(0.5)=2.4+/-0.1 mmol.L(-1). No further stimulation by K+ ions was observed in the presence of 50 mmol.L(-1) NH4+ ions. ATP hydrolysis was also stimulated by NH4+ ions obeying Michaelian kinetics to a maximal specific activity of V=744.8+/-22.3 nmol.min(-1).mg(-1) and KM=8.4+/-0.2 mmol.L(-1). In the presence of 10 mmol.L(-1) K+ ions, ATP hydrolysis was synergistically stimulated by NH4+ ions to V=689.8+/-13.8 nmol.min(-1).mg(-1) and K(0.5)=6.6+/-0.1 mmol.L(-1), suggesting that NH4+ ions bind to different sites than K+ ions. PNPP hydrolysis was also stimulated cooperatively by K+ or NH4+ ions to maximal values of V= 235.5+/-11.8 nmol.min(-1).mg(-1) and V=234.8+/-7.0 nmol.min(-1).mg(-1), respectively. In contrast to ATP hydrolysis, K(+)-phosphatase activity was not synergistically stimulated by NH4+ and K+ ions. These data suggest that at high NH4+ ion concentrations, the (Na+, K+)-ATPase exposes a new site; the subsequent binding of NH4+ ions stimulates ATP hydrolysis to rates higher than those for K+ ions alone. This is the first demonstration that (Na+, K+)-ATPase activity in a freshwater shrimp gill is modulated by ammonium ions, independently of K+ ions, an effect that may constitute a fine-tuning mechanism of physiological relevance to osmoregulatory and excretory processes in palaemonid shrimps.  相似文献   

17.
The gastric [H,K]ATPase:H+/ATP stoichiometry   总被引:2,自引:0,他引:2  
An H+/ATP ratio of 2 for H+ transport was determined from initial rate measurements at pH 6.1 in a purified gastric microsomal fraction containing the [H,K]ATPase. This ratio was independent of external KCl, though the apparent K0.5 for ATP was increased from 10.78 +/- 0.51 (n = 3) to 64.6 +/- 11.9 (n = 3) microM ATP and from 5.13 +/- 0.64 (n = 3) to 65.2 +/- 0.64 (n = 3) microM ATP for H+ transport and the K+-stimulated ATPase, respectively, as K+external was increased from 12 to 150 mM. The H+/ATP ratio was also relatively independent of ATP concentration. Maximum initial rates obtained in KCl-equilibrated vesicles were independent of added valinomycin, though net H+ transport was increased 29.3 +/- 1.03% (n = 6) by the addition of ionophore. Maximum net H+ transport in this vesicle preparation was 185 +/- 2.1 (n = 14) nmol mg-1 of protein. Initial rate measurements of ATPase represent a burst of K+-dependent activity of approximately 10-15 s duration. The H+/ATP stoichiometry was calculated based on the K+-stimulated component of hydrolysis. Under most conditions, the Mg2+-dependent component of hydrolysis was less than 10% of the (Mg2+ + K+) component of hydrolysis.  相似文献   

18.
A Mg-dependent adenosine triphosphatase (ATPase) activated by submicromolar free Ca2+ was identified in detergent-dispersed rat liver plasma membranes after fractionation by concanavalin A-Ultrogel chromatography. Further resolution by DE-52 chromatography resulted in the separation of an activator from the enzyme. The activator, although sensitive to trypsin hydrolysis, was distinct from calmodulin for it was degraded by boiling for 2 min, and its action was not sensitive to trifluoperazine; in addition, calmodulin at concentrations ranging from 0.25 ng-25 micrograms/assay had no effect on enzyme activity. Ca2+ activation followed a cooperative mechanism (nH = 1.4), half-maximal activation occurring at 13 +/- 5 nM free Ca2+. ATP, ITP, GTP, CTP, UPT, and ADP displayed similar affinities for the enzyme; K0.5 for ATP was 21+/- 9 microM. However, the highest hydrolysis rate (20 mumol of Pi/mg of protein/10 min) was observed at 0.25 mM ATP. For all the substrates tested kinetic studies indicated that two interacting catalytic sites were involved. Half-maximal activity of the enzyme required less than 12 microM total Mg2+. This low requirement for Mg2+ of the high affinity (Ca2+-Mg2+)ATPase was probably the major kinetic difference between this activity and the nonspecific (Ca2+ or Mg2+)ATPase. In fact, definition of new assay conditions, i.e. a low ATP concentration (0.25 mM) and the absence of added Mg2+, allowed us to reveal the (Ca2+-Mg2+)ATPase activity in native rat liver plasma membranes. This enzyme belongs to the class of plasma membrane (Ca2+-Mg2+)ATPases dependent on submicromolar free Ca2+ probably responsible for extrusion of intracellular Ca2+.  相似文献   

19.
To define the mechanism responsible for the slow rate of calcium transport by cardiac sarcoplasmic reticulum, the kinetic properties of the Ca2+-dependent ATPase of canine cardiac microsomes were characterized and compared with those of a comparable preparation from rabbit fast skeletal muscle. A phosphoprotein intermediate (E approximately P), which has the stability characteristics of an acyl phosphate, is formed during ATP hydrolysis by cardiac microsomes. Ca2+ is required for the E approximately P formation, and Mg2+ accelerates its decomposition. The Ca2+ concentration required for half-maximal activation of the ATPase is 4.7 +/- 0.2 muM for cardiac microsomes and 1.3 +/- 0.1 muM for skeletal microsomes at pH 6.8 and 0 degrees. The ATPase activities at saturating concentrations of ionized Ca2+ and pH 6.8, expressed as ATP hydrolysis per mg of protein, are 3 to 6 times lower for cardiac microsomes than for skeletal microsomes under a variety of conditions tested. The apparent Km value for MgATP at high concentrations in the presence of saturating concentrations of ionized Ca2+ is 0.18 +/- 0.03 ms at pH 6.8 and 25 degrees. The maximum velocity of ATPase activity under these conditions is 0.45 +/- 0.05 mumol per mg per min for cardiac microsomes and 1.60 +/- 0.05 mumol per mg per min for skeletal microsomes. The maximum steady state level of E approximately P for cardiac microsomes, 1.3 +/- 0.1 nmol per mg, is significantly less than the value of 4.9 +/- 0.2 nmol per mg for skeletal microsomes, so that the turnover number of the Ca2+-dependent ATPase of cardiac microsomes, calculated as the ratio of ATPase activity to the E approximately P level is similar to that of the skeletal ATPase. These findings indicate that the relatively slow rate of calcium transport by cardiac microsomes, whem compared to that of skeletal microsomes, reflects a lower density of calcium pumping sites and lower Ca2+ affinity for these sites, rather than a lower turnover rate.  相似文献   

20.
Inhibitory effects of various purinergic compounds on the Mg(2+)-dependent enzymatic hydrolysis of [(3)H]ATP in rat liver plasma membranes were evaluated. Rat liver enzyme ecto-ATPase has a broad nucleotide-hydrolyzing activity, displays Michaelis-Menten kinetics with K(m) for ATP of 368+/-56 microM and is not sensitive to classical inhibitors of the ion-exchange and intracellular ATPases. P2-antagonists and diadenosine tetraphosphate (Ap(4)A) progressively and non-competitively inhibited ecto-ATPase activity with the following rank order of inhibitory potency: suramin (pIC(50), 4.570)>Reactive blue 2 (4.297)&z.Gt;Ap(4)A (3. 268)>pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) (2. 930). Slowly hydrolyzable P2 agonists ATPgammaS, ADPbetaS, alpha, beta-methylene ATP and beta,gamma-methylene ATP as well as the diadenosine polyphosphates Ap(3)A and Ap(5)A did not exert any inhibitory effects on the enzyme activity at concentration ranges of 10(-4)-10(-3) M. Thin-layer chromatography analysis of the formation of [(3)H]ATP metabolites indicated the presence of other enzyme activities on liver surface (ecto-ADPase and 5'-nucleotidase), participating in concert with ecto-ATPase in the nucleotide hydrolysis through the stepwise reactions ATP-->ADP-->AMP-->adenosine. A similar pattern of sequential [(3)H]ATP dephosphorylation still occurs in the presence of ecto-ATPase inhibitors suramin, Ap(4)A and PPADS, but the appearance of the ultimate reaction product, adenosine, was significantly delayed. In contrast, hydrolysis of [(3)H]ATP in the presence of Reactive blue 2 only followed the pattern ATP-->ADP, with formation of the subsequent metabolites AMP and adenosine being virtually eliminated. These data suggest that although nucleotide-binding sites of ecto-ATPase are distinct from those of P2 receptors, some purinergic agonists and antagonists can potentiate cellular responses to extracellular ATP through non-specific inhibition of the ensuing pathways of purine catabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号