首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In food science the Maillard reaction is well known to cause degradation of amino acids and an overall decrease in the nutritional value of foods that have been subjected to heat in processing. There has been evidence more recently of the endogenous formation of some Maillard reaction products (MRPs) in biological systems and their association with pathophysiological conditions including diabetes, renal disease and cardiovascular disease. Several studies have suggested that dietary MRPs increase the in vivo pool of MRPs after intestinal absorption and contribute to the development of diabetes and related complications. This review focuses on the animal and human studies which have assessed the eventual implications of dietary MRPs on human health, highlighting the different diets tested, the experimental designs and the biomarkers selected to estimate the health effects. The results of these studies are compared to those of the recently published ICARE study. In this latter study an accurate determination of the MRP content of the diets was achieved, allowing the calculation of the contribution of individual food groups to daily MRP intakes in a regular western diet.  相似文献   

2.
The formation mechanism of Maillard peptides was explored in Maillard reaction through diglycine/glutathione(GSH)/(Cys‐Glu‐Lys‐His‐Ile‐Met)–xlyose systems by heating at 120 °C for 30–120 min. Maximum fluorescence intensity of Maillard reaction products (MRPs) with an emission wavelength of 420~430 nm in all systems was observed, and the intensity values were proportional to the heating time. Taken diglycine/GSH–[13C5]xylose systems as a control, it was proposed that the compounds with high m/z values of 379 and 616 have the high molecular weight (HMW) products formed by cross‐linking of peptides and sugar. In (Cys‐Glu‐Lys‐His‐Ile‐Met)–xylose system, the m/z value of HMW MRPs was not observed, which might be due to the weak signals of these products. According to the results of gel permeation chromatography, HMW MRPs were formed by Maillard reaction, especially in (Cys‐Glu‐Lys‐His‐Ile‐Met)–xylose system, the percentage of Maillard peptides reached 52.90%. It was concluded that Maillard peptides can be prepared through the cross‐linking of sugar and small peptides with a certain MW range. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
Maillard reactions products (MRPs) are a major colorant of distillery effluent. It is major source of environmental pollution due to its complex structure and recalcitrant nature. This study has revealed that sucrose glutamic acid-Maillard reaction products (SGA-MRPs) showed many absorption peaks between 200 and 450 nm. The absorption maximum peak was noted at 250 nm in spectrophotometric detection. This indicated the formation of variable molecular weight Maillard products during the SGA-MRPs formation at high temperature. The identified aerobic bacterial consortium consisting Klebsiella pneumoniae (KU726953), Salmonella enterica (KU726954), Enterobacter aerogenes (KU726955), Enterobacter cloaceae (KU726957) showed optimum production of MnP and laccase at 120 and 144 h of growth, respectively. The potential bacterial consortium showed decolourisation of Maillard product up to 70% in presence of glucose (1%), peptone (0.1%) at optimum pH (8.1), temperature (37 °C) and shaking speed (180 rpm) within 192 h of incubation. The reduction of colour of Maillard product correlated with shifting of absorption peaks in UV–Vis spectrophotometry analysis. Further, the changing of functional group in FT-IR data showed appearance of new peaks and GC–MS analysis of degraded sample revealed the depolymerisation of complex MRPs. The toxicity evaluation using seed of Phaseolus mungo L. showed reduction of toxicity of MRPs after bacterial treatment. Hence, this study concluded that developed bacterial consortium have capability for decolourisation of MRPs due to high content of MnP and laccase.  相似文献   

4.
The aim of the present study was to verify the important role of Maillard reaction in the protective effect of heat-processed ginsenoside Re-serine mixture against oxidative stress-induced nephrotoxicity. The free radical-scavenging activity of ginsenoside Re-serine mixture was increased by heat-processing. Ginsenoside Re was transformed into less-polar ginsenosides such as Rg(2), Rg(6) and F(4) by heat-processing, and the glucose molecule at carbon-20 was separated. The improved-free radical-scavenging activity by heat-processing was mediated by the generation of antioxidant Maillard reaction products (MRPs) from the reaction of glucose with serine. Moreover, MRPs from ginsenoside Re-serine mixture showed protective effect against cisplatin-induced renal epithelial cell damage.  相似文献   

5.
After incubation of Maillard reaction polymers (MRPs) with rumen fluid from wethers neither volatile fatty acids nor lactate were produced. Soluble polymeric products of the Maillard reaction were nonmetabolizable by a mixed culture of rumen microorganisms. MRPs added at 0.5 and 2 g/L inhibited the growth of seven ruminal Gram-negative bacteria by 20 and 30%, respectively. In four strains of Gram-positive bacteria, MRPs lowered the cell concentration by 11% (0.5 g/L) and 25% (2 g/L). The rumen fungusOrpinomyces jojonii also did not metabolize soluble MRPs.  相似文献   

6.
Direct interaction between Maillard reaction products (MRPs) and nitric oxide (NO) has been suggested as a pathophysiological mechanism involved in enhanced diabetic arteriosclerosis. Only MRPs without structural characterization have been studied to date. Using chemically synthesized and analytically well defined individual MRPs, we investigated whether the native nitric oxide concentration is directly affected by the Amadori compound N-epsilon-fructosyllysine or the advanced glycation end product N-epsilon-carboxymethyllysine. MRPs were incubated with nitric oxide solution or NO donors (SNAP, spermine-NONOate). Changes in the nitrite (oxidative metabolite of NO) concentration served as indicator of NO availability. MRPs, either as free amino acids or covalently bound to bovine serum albumin (BSA), had no influence on nitrite concentration when using NO solution. In contrast, incubation of the respective NO donors with several covalently protein-bound MRPs as well as native BSA significantly reduced nitrite concentration. If SNAP was co-incubated with EDTA or with Fe (2+) ions, nitrite concentration was decreased or increased, respectively, suggesting a metal ion-dependent alteration of the NO liberation rate. Native NO concentration was not affected by the MRPs tested. Substitution of native NO by NO-releasing substances may be inadequate as a model of NO-MRP interaction, as metal ions or chelators present in compound preparations may affect the NO-liberating mechanism of the donor.  相似文献   

7.
Nonenzymatic glycation between ovalbumin (OVA) and seven D-aldohexoses was carried out to study the chemical and antioxidant characteristics of sugar-protein complexes formed in the dry state at 55 degrees C and 65% relative humidity for 2 d through the Maillard reaction (MR). The effects of Maillard reaction products (MRPs) modified with different aldohexoses on radical scavenging, lipid oxidation, and tetrazolium salt (XTT) reducibility were investigated. The results showed that the degree of browning and aggregation and the tryptophan-related fluorescent intensity of glycated proteins displayed a noticeable difference that depended on the sugars used for modification. All the glycated proteins exhibited higher antioxidant activity as compared to a heated control and native OVA, and the antioxidant activity was well correlated with browning development. Furthermore, the order of antioxidant activities for the seven complexes was as follows: altrose/allose-OVAs > talose/galactose-OVAs > glucose-OVA > mannose/glucose-OVAs. This implies that sugar-protein complexes with two sugars known as epimers about C-2 showed a similar antioxidant capacity. From these results, the configuration of a hydroxyl (OH) group about position C-2 did not influence the advanced cross-linking reaction, but the configuration of OH groups about C-3 and C-4 might be very important for formation of MRPs and their antioxidant behaviors.  相似文献   

8.
H Einarsson  T Eklund  I F Nes 《Microbios》1988,53(214):27-36
In order to determine the inhibitory mechanism of antibacterial Maillard reaction products (MRP), heated mixtures containing arginine and xylose (AX) or histidine and glucose (HG) were studied for their mutagenic effect, using the Salmonella mutagenic test system ('Ames test'), with regard to their effect on the uptake of serine, glucose and oxygen and for their effect on iron solubility. It was found that the MRPs tested had little or no mutagenic effect, while an inhibitory effect on the uptake of serine, glucose and oxygen was observed. The MRPs also had an effect on the solubility of iron in nutrient broth and in phosphate buffer. While the AX mixture reduced the solubility of iron it was increased by the HG mixture. The reduction of iron solubility in the presence of the AX mixture was much greater at pH 8 than at pH 5. The present data suggest that the antibacterial effect of the MRPs tested is primarily due to the interaction between MRPs and iron, resulting in reduced oxygen uptake.  相似文献   

9.
The amino-carbonyl (Maillard) reaction of amino acids with sugars is a nonenzymatic browning reaction that takes place during the processing, cooking, and storage of foods. Maillard reaction products (MRPs) have been shown to possess interesting chemical and biological properties including antimutagenic and antioxidant activity. In this study, we determined the antioxidant effects of fructosyl arginine (Fru-Arg), a MRP in aged garlic extract. Low density lipoprotein (LDL) was incubated with Cu(2+) at 37 degrees C and 5% CO(2) for 24 hours, which resulted in an increase of thiobarbituric acid reactive substances (TBARS) indicating lipid peroxidation. Coincubation of Cu(2+) with Fru-Arg and LDL resulted in a significant inhibition of TBARS formation. Pulmonary artery endothelial cells (PAEC) were exposed to 0.1 mg/mL oxidized LDL (Ox-LDL) at 37 degrees C and 5% CO(2) for 24 hours. Lactate dehydrogenase (LDH) release, as an index of cell membrane damage, and TBARS were measured. Ox-LDL caused an increase of LDH release and TBARS formation. Pretreatment of PAEC with Fru-Arg inhibited these changes. Murine macrophages were incubated with Ox-LDL, and the release of peroxides was measured using a fluorometric assay. Ox-LDL caused an increased release of peroxides. Coincubation of macrophages with Fru-Arg and Ox-LDL inhibited the release of peroxides dose-dependently. In a cell free system, Fru-Arg was shown to scavenge hydrogen peroxide. These data suggest that Fru-Arg is a potent antioxidant, and thus may be useful for the prevention of atherosclerosis and other disorders associated with oxidative stress.  相似文献   

10.
Klein M  Burla B  Martinoia E 《FEBS letters》2006,580(4):1112-1122
In many different plant species, genes belonging to the multidrug resistance-associated protein (MRP, ABCC) subfamily of ABC transporters have been identified. Following the discovery of vacuolar transport systems for xenobiotic or plant-produced conjugated organic anions, plant MRPs were originally proposed to be primarily involved in the vacuolar sequestration of potentially toxic metabolites. Indeed, heterologous expression of different Arabidopsis MRPs in yeast demonstrates their activity as ATP-driven pumps for structurally diverse substrates. Recent analysis of protein-protein interactions and the characterization of knockout mutants in Arabidopsis suggests that apart from transport functions plant MRPs play additional roles including the control of plant transpiration through the stomata. Here, we review and discuss the diverse functions of plant MRP-type ABC transporters and present an organ-related and developmental analysis of the expression of Arabidopsis MRPs using the publicly available full-genome chip data.  相似文献   

11.
Research on the impact of Maillard reaction products (MRPs) on microorganisms has been reported in the literature for the last 60 years. In the current study, the impact of an MRP-rich medium on the growth of three strains of Escherichia coli was measured by comparing two classic methods for studying the growth of bacteria (plate counting and optical density at 600 nm) and by tracing MRP utilisation. Early stage and advanced MRPs in the culture media were assessed by quantifying furosine and N ε -carboxymethyllysine (CML) levels, respectively, using chromatographic methods. These measures were performed prior to and during bacterial growth to estimate the potential use of these MRPs by Escherichia coli CIP 54.8. Glucose and lysine, the two MRP precursors used in the MRP-rich medium, were also quantified by chromatographic means. Compared to control media, increased lag phases and decreased growth rates were observed in the MRP-rich medium for two out of the three Escherichia coli strains tested. In contrast, one strain isolated from the faeces of a piglet fed on a MRP-rich diet was not influenced by the presence of MRPs in the medium. Overall, CML as well as the products obtained by the thermal degradation of glucose and lysine, regardless of the Maillard reaction, did not affect the growth of the three strains tested. In addition, no degradation of fructoselysine or CML was found in the presence of Escherichia coli CIP 54.8.  相似文献   

12.
The activity of the Maillard reaction products (MRP) prepared by heating (15 h at 90°C) a solution of 1·71 mol/l glucose and 2·05 mol/l glycine at pH values 6·0 and 8·8, against food-poisoning micro-organisms, including Staphylococcus aureus, Listeria monocytogenes, Salmonella typhimurium, Salmonella enteritidis and Aeromonas hydrophila , was investigated. High and low pH MRPs strongly inhibited A. hydrophila , whereas Staph. aureus and L. monocytogenes were slightly inhibited by the high pH MRPs only and Salmonella strains were resistant to both.  相似文献   

13.
Some blue pigments were formed in the D-xylose (1 M)-glycine (0.1 M) reaction system. A novel blue pigment, designated as Blue-M2 (blue Maillard intermediate-2), was identified as 5-[1,4-dicarboxymethyl-5-(2,3-dihydroxypropyl)-1,4-dihydropyrrolo[3,2-b]pyrrole-2-ylmethylene]-1,4-dicarboxymethyl-2-{5-[N-carboxymethyl(2,3,4-trihydroxytetrahydrofuran-2-yl)methylamino]-2-hydroxymethyl-4-(1,2,3-trihydroxypropyl)tetrahydrofuran-3-yl}-4,5-dihydropyrrolo-[3,2-b]pyrrole-1-ium. Blue-M2 is presumed to have been generated by the reaction between Blue-M1, which was identified as the major blue pigment in a previous paper (Hayase et al., Biosci. Biotechnol. Biochem., 63, 1512-1514 (1999)), and di-D-xyluloseglycine. Blue pigments are important Maillard reaction intermediates through the formation of melanoidins.  相似文献   

14.
Formation of flavour compounds in the Maillard reaction   总被引:6,自引:0,他引:6  
This paper discusses the importance of the Maillard reaction for food quality and focuses on flavour compound formation. The most important classes of Maillard flavour compounds are indicated and it is shown where they are formed in the Maillard reaction. Some emphasis is given on the kinetics of formation of flavour compounds. It is concluded that the essential elements for predicting the formation of flavour compounds in the Maillard reaction are now established but much more work needs to be done on specific effects such as the amino acid type, the pH, water content and interactions in the food matrix. It is also concluded that most work is done on free amino acids but hardly anything on peptides and proteins, which could generate peptide- or protein-specific flavour compounds.  相似文献   

15.
Reducing sugars and reactive aldehydes, such as glyceraldehyde, non-enzymatically react with amino or guanidino groups of proteins to form advanced glycation end-products (AGEs) by the Maillard reaction that involves Schiff base formation followed by Amadori rearrangement. AGEs are found relatively in abundance in the human eye and to accumulate at a higher rate in diseases that impair vision such as cataract, diabetic retinopathy or age-related macular degeneration. We identified two novel AGEs of pyrrolopyridinium lysine dimer derived from glyceraldehyde, PPG1 and PPG2, in the Maillard reaction of Nα-acetyl-l-lysine with glyceraldehyde under physiological conditions. Having fluorophores similar to that of vesperlysine A, which was isolated from the human lens, PPGs were found to act as photosensitizers producing singlet oxygen in response to blue light irradiation. Moreover, PPG2 interacts with receptor for AGE (RAGE) in vitro with a higher binding affinity than GLAP, a well-known ligand of the receptor. We also proposed a pathway to form PPGs and discussed how they would be formed in vitro. As glyceraldehyde-derived AGEs have been studied extensively in connection with various hyperglycemia-related diseases, further studies will be required to find PPGs in vivo such as in the lens or other tissues.  相似文献   

16.
Advanced glycation end products (AGEs) from the Maillard reaction contribute to protein aging and the pathogenesis of age- and diabetes-associated complications. The alpha-dicarbonyl compound methylglyoxal (MG) is an important intermediate in AGE synthesis. Recent studies suggest that pyridoxamine inhibits formation of advanced glycation and lipoxidation products. We wanted to determine if pyridoxamine could inhibit MG-mediated Maillard reactions and thereby prevent AGE formation. When lens proteins were incubated with MG at 37 degrees C, pH 7.4, we found that pyridoxamine inhibits formation of methylglyoxal-derived AGEs concentration dependently. Pyridoxamine reduces MG levels in red blood cells and plasma and blocks formation of methylglyoxal-lysine dimer in plasma proteins from diabetic rats and it prevents pentosidine (an AGE derived from sugars) from forming in plasma proteins. Pyridoxamine also decreases formation of protein carbonyls and thiobarbituric-acid-reactive substances in plasma proteins from diabetic rats. Pyridoxamine treatment did not restore erythrocyte glutathione (which was reduced by almost half) in diabetic animals, but it enhanced erythrocyte glyoxalase I activity. We isolated a major product of the reaction between MG and pyridoxamine and identified it as methylglyoxal-pyridoxamine dimer. Our studies show that pyridoxamine reduces oxidative stress and AGE formation. We suspect that a direct interaction of pyridoxamine with MG partly accounts for AGE inhibition.  相似文献   

17.
Formation of heterocyclic amines using model systems   总被引:3,自引:0,他引:3  
Initially, modeling was used to identify the mutagenic heterocyclic amines and their precursors. Major precursors have been shown to be single amino acids or amino acids together with creatine or creatinine. There is also evidence that Maillard reactions are involved since heating sugar and amino acids together with creatine or creatinine has been shown to produce several of the mutagenic heterocyclic amines, especially the aminoimidazoazaarenes (AIA compounds), e.g., IQ, MeIQ, MeIQx, DiMeIQx and PhIP. Due to a low yield in the model systems, the mechanisms behind the formation of the mutagenic heterocyclic amines are still unclear and need further substantiation. The fact that some AIA compounds are also produced in the absence of sugar casts some doubts on an obligatory participation of the Maillard reaction; alternative routes might exist. Further work using isotopically labeled precursors needs to be done and so far such work has only been performed for PhiP. The formation of mutagenic heterocyclic amines is dependent on time, temperature, pH, concentration of the precursors, type of amino acid, and the presence of certain divalent ions. Water may have an impact both as a temperature regulator and as a solvent medium for the reactants.  相似文献   

18.
Maillard reacted peptides (MRPs) were synthesized by conjugating a peptide fraction (1000-5000 Da) purified from soy protein hydrolyzate with galacturonic acid, glucosamine, xylose, fructose, or glucose. The effect of MRPs was investigated on human salt taste and on the chorda tympani (CT) taste nerve responses to NaCl in Sprague-Dawley rats, wild-type, and transient receptor potential vanilloid 1 (TRPV1) knockout mice. MRPs produced a biphasic effect on human salt taste perception and on the CT responses in rats and wild-type mice in the presence of NaCl + benzamil (Bz, a blocker of epithelial Na+ channels), enhancing the NaCl response at low concentrations and suppressing it at high concentrations. The effectiveness of MRPs as salt taste enhancers varied with the conjugated sugar moiety: galacturonic acid = glucosamine > xylose > fructose > glucose. The concentrations at which MRPs enhanced human salt taste were significantly lower than the concentrations of MRPs that produced increase in the NaCl CT response. Elevated temperature, resiniferatoxin, capsaicin, and ethanol produced additive effects on the NaCl CT responses in the presence of MRPs. Elevated temperature and ethanol also enhanced human salt taste perception. N-(3-methoxyphenyl)-4-chlorocinnamid (a blocker of TRPV1t) inhibited the Bz-insensitive NaCl CT responses in the absence and presence of MRPs. TRPV1 knockout mice demonstrated no Bz-insensitive NaCl CT response in the absence or presence of MRPs. The results suggest that MRPs modulate human salt taste and the NaCl + Bz CT responses by interacting with TRPV1t.  相似文献   

19.
Egg white solids freeze-dried with or without the addition of glucose were stored at 50°C under 65 % relative humidity to study the effect of the Maillard reaction on the solubility and heat stability and the formation of aggregates. A stimulative effect on the former properties was observed on the sample with glucose in the initial stage of the Maillard reaction. By comparing the SDS-polyacrylamide gel electrophoretic patterns, solubilities in SDS and SDS/2-mercaptoethanol and the s20,w values, it was found that glucose, in addition to the effect due to the changes of charged groups in glucose-protein complex occurring in the course of the Maillard reaction, might have a protective effect against aggregate formation through a stable cross-linking, which was not dependent on the SS bond, and through a stable non-covalent bond.  相似文献   

20.
Asparagine in plants   总被引:7,自引:0,他引:7  
Interest in plant asparagine has rapidly taken off over the past 5 years following the report that acrylamide, a neurotoxin and potential carcinogen, is present in cooked foods, particularly carbohydrate‐rich foods such as wheat and potatoes which are subjected to roasting, baking or frying at high temperatures. Subsequent studies showed that acrylamide could be formed in foods by the thermal degradation of free asparagine in the presence of sugars in the Maillard reaction. In this article, our current knowledge of asparagine in plants and in particular its occurrence in cereal seeds and potatoes is reviewed and discussed in relation to acrylamide formation. There is now clear evidence that soluble asparagine accumulates in most if not all plant organs during periods of low rates of protein synthesis and a plentiful supply of reduced nitrogen. The accumulation of asparagine occurs during normal physiological processes such as seed germination and nitrogen transport. However, in addition, stress‐induced asparagine accumulation can be caused by mineral deficiencies, drought, salt, toxic metals and pathogen attack. The properties and gene regulation of the enzymes involved in asparagine synthesis and breakdown in plants are discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号