首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yoshimura Y  Sogawa Y  Yamauchi T 《FEBS letters》1999,446(2-3):239-242
Autophosphorylation-dependent translocation of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) to postsynaptic densities (PSDs) from cytosol may be a physiologically important process during synaptic activation. We investigated a protein phosphatase responsible for dephosphorylation of the kinase. CaM kinase II was shown to be targeted to two sites using the gel overlay method in two-dimensional gel electrophoresis. Protein phosphatase 1 (PP1) was identified to dephosphorylate CaM kinase II from its complex with PSDs using phosphatase inhibitors and activators, and purified phosphatases. The kinase was released from PSDs after its dephosphorylation by PP1.  相似文献   

2.
Phosphoprotein phosphatase (phosphoprotein phosphohydrolase EC 3.1.3.16) activity for myelin basic protein was found to be present in the myelin fraction of rat brain. The enzyme activity was in a latent form and solubilized by 0.2% Triton X-100 treatment with about 50% increase of activity. The cytosol fraction from bovine brain also had phosphoprotein phosphatase activity for myelin basic protein, which was resolved into at least two peaks of activity on DEAE-cellulose column chromatography. Myelin basic protein was the best substrate for both the solubilized myelin fraction and the cytosol enzymes among the substrate proteins tested. The Km values of the solubilized myelin fraction were 4.2 muM for myelin basic protein, 7.4 muM for arginine-rich histone, 8.0 muM for histone mixture and 14.3 muM for protamine, respectively.  相似文献   

3.
Protein kinase, which phosphorylated phosvitin at the expense of ATP but did not phosphorylate casein, protamine, and histone mixture, was obtained by DEAE-cellulose column chromatography of the extract from the embryos of the sea urchin, Strongylocentrotus intermedius. This enzyme, partially purified by DEAE-cellulose column, reversibly catalyzed the reaction of phosvitin phosphorylation. This indicates that the sea urchin embryos contain phosvitin kinase. Phosvitin kinase in sea urchin embryos is somewhat different from that found in the other types of cells, which are able to phosphorylate casein as well as phosvitin. In unfertilized eggs, the activity of this enzyme was found only in the supernatant fraction obtained by centrifuging the homogenate at 10,000g for 20 min. The activity in the embryos at the swimming and the mesenchyme blastula stage was higher than in unfertilized eggs, and was localized in the sedimentable fraction obtained by centrifuging the homogenate of the embryos at 10,000g for 20 min. The highest activity of phosvitin kinase was observed in the embryos at the mesenchyme blastula stage, and the enzyme activity became quite low at the late gastrula stage. The activity and the intracellular distribution of phosvitin kinase changed during the development. The enzyme in this sedimentable fraction was not solubilized with 1% Triton X-100 but was extracted by 1 M NaCl.  相似文献   

4.
Two protein phosphatases (enzymes I and II) were extensively purified from wheat embryo by a procedure involving chromatography on DEAE-cellulose, phenyl-Sepharose CL-4B, DEAE-Sephacel and Ultrogel AcA 44. Preparations of enzyme I (Mr 197,000) are heterogeneous. Preparations of enzyme II (Mr 35,000) contain only one major polypeptide (Mr 17,500), which exactly co-purifies with protein phosphatase II on gel filtration and is not present in preparations of enzyme I. However, this major polypeptide has been identified as calmodulin. Calmodulin and protein phosphatase II can be separated by further chromatography on phenyl-Sepharose CL-4B. Protein phosphatases I and II do not require Mg2+ or Ca2+ for activity. Both enzymes catalyse the dephosphorylation of phosphohistone H1 (phosphorylated by wheat-germ Ca2+-dependent protein kinase) and of phosphocasein (phosphorylated by wheat-germ Ca2+-independent casein kinase), but neither enzyme dephosphorylates a range of non-protein phosphomonoesters tested. Both enzymes are inhibited by Zn2+, Hg2+, vanadate, molybdate, F-, pyrophosphate and ATP.  相似文献   

5.
Phosphoprotein phosphatase activity in the calf thyroid was found in various subcellular fractions. The relative amount in each fraction varied according to the substrate used: The 500g fraction had the highest specific activity when protamine was used, while the 5000g fraction was highest when histone was used. Triton X-100 tended to increase activity in all the particulate fractions, the greatest change being found in the 105,000g pellet. DEAE chromatography of the 105,000 g supernatant resolved at least three peaks of phosphoprotein phosphatase activity.  相似文献   

6.
Mammalian brain phosphoproteins as substrates for calcineurin   总被引:16,自引:0,他引:16  
Calcineurin, a Ca2+/calmodulin-dependent phosphoprotein phosphatase found in several tissues, is highly concentrated in mammalian brain. In an attempt to identify endogenous brain substrates for calcineurin, kinetic analyses of the dephosphorylation of several well-characterized phosphoproteins purified from brain were performed. The proteins studied were: G-substrate, a substrate for cyclic GMP-dependent protein kinase; DARPP-32, a substrate for cyclic AMP-dependent protein kinase; Protein K.-F., a substrate for a cyclic nucleotide- and Ca2+-independent protein kinase; and synapsin I, a substrate for cyclic AMP-dependent (site I) and a Ca2+/calmodulin-dependent protein kinase (site II). Calcineurin dephosphorylated each of these proteins in a Ca2+/calmodulin-dependent manner. Similar Km values were obtained for each substrate: G-substrate, 3.8 microM; DARPP-32, 1.6 microM; Protein K.-F., approximately 3 microM (S0.5); synapsin I (site I), 7.0 microM; synapsin I (site II), 4.4 microM. However, significant differences were obtained for the maximal rates of dephosphorylation. The kcat values were: G-substrate, 0.41 s-1; DARPP-32, 0.20 s-1; Protein K.-F., 0.7 s-1; synapsin I (site I), 0.053 s-1; synapsin I (site II), 0.040 s-1. Comparisons of the catalytic efficiency (kcat/Km) for each substrate indicated that DARPP-32, G-substrate, and Protein K.-F. are all potential substrates for calcineurin in vivo.  相似文献   

7.
1. Phosphoprotein phosphatase (phosphoprotein phosphohydrolase EC 3.1.3.16) in the soluble fraction of rabbit liver which catalyzes the dephosphorylation of muscle phosphorylase a and phosphohistone (P-histone) was resolved into three active fractions by NaCl gradient elution from a DEAE-cellulose column (Fraction I, 11 and III in order of elution). They have different relative reaction rates for the two substrates and different degrees of stimulation by Mn-2+. Apparent Km values of Fraction I, II and III were 15, 20 and 16 muM for phosphorylase a, and 6.9, 5.3 and 4.4 muM for P-histone, respectively (with Mn-2+ in the assay mixture). 2. On sucrose density gradient centrifugation Fraction I and II were revealed to contain a major peak (7.0 S and 7.8 S, respectively) and a minor peak (4.0 S) of activity, while Fraction III contained only one peak (5.8 S). Freezing and thawing in the presence of 0.2 M mercaptoethanol dissociated all three fractions into subunits of similar molecular size (3.4 S), with concomitant enhancement of phosphorylase phosphatase activity. The Km values all became essentially the same (20 muM for phosphorylase a and 16 muM for P-histone). 3. The phosphorylase phosphatase and P-histone phosphatase activities could not be separated with any of the procedures described. Competition between the two phosphoprotein substrates was observed with some of the fractions.?  相似文献   

8.
Plasma membrane fractions I and II isolated from bovine corpus luteum contain phosphoprotein phosphatases. Enzyme activities associated with both membrane fractions showed pH optima in the neutral range and were most active with phosphoprotamine as the exogenous substrate. The enzyme activity was partially inhibited by Co2+, Zn2+ and Fe2+. Dithioerythritol, glutathione (reduced) and 2-mercaptoethanol stimulated the enzyme activity, whereas N-ethylmaleimide and N-phenylmaleimide were inhibitory. Similarly, various cyclic nucleotides and nuclsoside triphosphates also inhibited phosphoprotein phosphatase activities. The phosphatase activity was also observed with endogenous phosphorylated membrane proteins as substrate. The endogenous phosphorylation of membranes was rapid and attained a maximal level after 15--20 min of incubation. Initially endogenous dephosphorylation was also very rapid, but did not reach completion. In addition to phosphoprotein phosphatase, membrane preparations also possessed very active cyclic-AMP-dependent protein kinase activity. Phosphoprotein phosphatase activity from plasma membranes was solubilized by ionic and nonionic detergents. Optimal solubilization was achieved with 0.1% sodium deoxycholate. Sucrose density gradient centrifugation of deoxycholate-solubilized fraction I and fraction II membranes resolved phosphoprotein phosphatase activity into two species with apparent sedimentation coefficients of 6.7 S (Mr 130000) and 4.8 S (Mr 90000). Cyclic-AMPstimulated protein kinase activity sedimented as a broad peak with a sedimentation coefficient of 5.5 S (Mr 110000).  相似文献   

9.
Canine cardiac sarcoplasmic reticulum vesicles contain intrinsic phospholamban protein phosphatase activity, which is also effective in dephosphorylating phosphorylase a. The phosphatase associated with sarcoplasmic reticulum membranes was solubilized with Triton X-100 and subjected to chromatography on Mono Q HR 5/5 and polylysine-agarose. A single peak of phosphatase activity was eluted from each column and it was coincident for both phospholamban and phosphorylase a, used as substrates. Thermal denaturation of the enzyme resulted in progressive and coincident loss of both phospholamban and phosphorylase a phosphatase activities. Enzymic activity was partially inhibited by protein phosphatase inhibitor 1. Migration of the enzyme during sucrose density gradient ultracentrifugation corresponded to a globular protein with an apparent Mr of 46,000. This enzyme preparation could dephosphorylate both the calcium-calmodulin-dependent as well as the cAMP-dependent sites on phospholamban. Thus, dephosphorylation of phospholamban by this sarcoplasmic reticulum-associated phosphatase may participate in modulating sarcoplasmic reticulum function in cardiac muscle.  相似文献   

10.
Four phosphoprotein phosphatases, with the ability to act upon hydroxymethylglutaryl (HMG)-CoA reductase, phosphorylase, and glycogen synthase have been purified from rat liver cytosol through a process that involves DEAE-cellulose, aminohexyl-Sepharose-4B, and Bio-Gel A 1.5 m chromatographies. Protein phosphatase II (Mr 180,000) was the major enzyme (68%) with a very broad substrate specificity, showing similar activity toward the three substrates. Phosphatases I1 (Mr 180,000) and I3 (Mr 250,000) accounted for only 12 and 15% of the total activity, respectively, and they were also able to dephosphorylate the three substrates. In contrast, phosphatase I2 (Mr 200,000) showed only phosphorylase phosphatase activity with insignificant dephosphorylating capacity toward HMG-CoA reductase and glycogen synthase. Upon ethanol treatment at room temperature, the Mr of all phosphatases changed; protein phosphatases I2, I3, and II were brought to an Mr of 35,000, while phosphatase I1 was reduced to an Mr of 69,000. Glycogen synthase phosphatase activity was decreased in all four phosphatases. There was also a decrease in phosphatase I1 activity toward HMG-CoA reductase and phosphorylase as substrates. The HMG-CoA reductase phosphatase and phosphorylase phosphatase activities of phosphatases I2, I3, and II were increased after ethanol treatment. Each protein phosphatase showed a different optimum pH, which changed depending on the substrate. The four phosphatases increased their activity in the presence of Mn2+ and Mg2+. In general, Mn2+ was a better activator than Mg2+, and phosphatase I1 showed a stronger dependency on these cations than any other phosphatase. Phosphorylase was a competitive substrate in the HMG-CoA reductase phosphatase and glycogen synthase phosphatase reactions of protein phosphatases I1, I3, and II. HMG-CoA reductase was also able to compete with phosphorylase and glycogen synthase for phosphatase activity. Glycogen synthase phosphatase activity presented less inhibition in the low-Mr forms. A comparison has been made with other protein phosphatases previously reported in the literature.  相似文献   

11.
The protein phosphatases of Drosophila melanogaster and their inhibitors   总被引:2,自引:0,他引:2  
Protein phosphatases-1, 2A and 2B have been identified in membrane and soluble fractions of Drosophila melanogaster heads. Similarities between Drosophila and mammalian protein phosphatase-1 included specificity for the beta subunit of phosphorylase kinase, sensitivity to inhibitor-1 and inhibitor-2, inhibition by protamine, retention by heparin-Sepharose and selective interaction with membranes. In addition, an inactive form of protein phosphatase-1, termed protein phosphatase-1I, was detected in the soluble fraction that could be activated by preincubation with MgATP and mammalian glycogen synthase kinase-3. Inhibitor-2 partially purified from Drosophila had an identical molecular mass to its mammalian counterpart, and recombined with mammalian protein phosphatase-1 to form a hybrid protein phosphatase-1I. Similarities between Drosophila and mammalian protein phosphatase-2A included preferential dephosphorylation of the alpha subunit of phosphorylase kinase, insensitivity to inhibitors-1 and -2, activation by protamine, exclusion from heparin-Sepharose and apparent molecular mass. A Ca2+-dependent calmodulin-stimulated protein phosphatase (protein phosphatase-2B) that was inhibited by trifluoperazine was identified in the soluble fraction. The remarkable similarities between Drosophila protein phosphatases and their mammalian counterparts are indicative of strict phylogenetic conservation and demonstrate that the procedures used to classify mammalian protein phosphatases have a wider application. Characterisation of the Drosophila phosphatases will facilitate genetic analysis of dephosphorylation systems and their possible roles in neuronal and behavioural plasticity in Drosophila.  相似文献   

12.
About an eightfold increase in protamine kinase activity was detected following extraction of highly purified microsomes from bovine kidney with 1% Triton X-100. Relative to the soluble fraction, the microsomes contained about 30% protamine kinase activity. The microsomal protamine kinase was purified to apparent homogeneity. The purified enzyme exhibited an apparent M(r) approximately 45,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by gel permeation chromatography on Sephacryl S-200. Relative to protamine, the purified kinase exhibited about 100% activity with the synthetic peptide RRLSSLRA and about 5, 8, and less than 0.1% activity with casein, histone H2B, and histone H1, respectively. The purified kinase phosphorylated several 40 S ribosome polypeptides. One of these polypeptides was identified as ribosomal protein S6 by N-terminal sequencing. About 2.5 mol of phosphoryl groups was incorporated per mole of ribosomal protein S6 following incubation of the 40 S ribosomes with the purified kinase. Following incubation with protein phosphatase 2A2, purified preparations of the protamine kinase were inactivated. These properties were identical to those of purified preparations of a protamine kinase from extracts of bovine kidney cytosol (Z. Damuni, G.D. Amick, and T.R. Sneed, 1989, J. Biol. Chem. 264, 6412-6418). Near identical peptide patterns were obtained following incubation of purified preparations of the microsomal and cytosolic protamine kinases with Staphylococcus aureus V8 proteinase. The results indicate that a form of the cytosolic protamine kinase is present in microsomes.  相似文献   

13.
The phosphoprotein phosphatase(s) acting on muscle phosphorylase a was purified from rabbit liver by acid precipitation, high speed centrifugation, chromatography on DEAE-Sephadex A-50, Sephadex G-75, and Sepharose-histone. Enzyme activity was recovered in the final step as two distinct peaks tentatively referred to as phosphoprotein phosphatases I and II. Each phosphatase showed a single broad band when examined by sodium dodecyl sulfate gel electrophoresis; the molecular weights derived by this method were approximately 30,500 for phosphoprotein phosphatase I and 34,000 for phosphoprotein phosphatase II. The s20, w value for each enzyme was 3.40. Using this value and values for the Stokes radii, the molecular weight for each enzyme was calculated to be 34,500. Both phosphatases, in addition to catalyzing the conversion of phosphorylase a to b, also catalyzed the dephosphorylation of glycogen synthase D, activated phosphorylase kinase, phosphorylated histone, phosphorylated casein, and the phosphorylated inhibitory component of troponin (TN-I). The relative activities of the phosphatases with respect to phosphorylase a, glycogen synthase D, histone, and casein remained essentially constant throughout the purification. The activities of both phosphatases with different substrates decreased in parallel when they were denatured by incubation at 55 degrees and 65 degrees. The Km values of phosphoprotein phosphatase I for phosphorylase a, histone, and casein were lower than the values obtained for phosphoprotein phosphatase II. With glycogen synthase D as substrate, each enzyme gave essentially the same Km value. Utilizing either enzyme, it was found that activity toward a given substrate was inhibited competitively by each of the alternative substrates. The results suggest that phosphoprotein phosphatases I and II are each active toward all of the substrates tested.  相似文献   

14.
Cyclic AMP-dependent protein kinase from human erythrocyte plasma membranes was solubilized with Triton X-100, partially purified, and systematically characterized by a series of physicochemical studies. Sedimentation and gel filtration experiments showed that the 6.6 S holoenzyme had a Stokes radius (a) of 5.7 nm and was dissociated into native 4.8 S cAMP-binding (a = 4.5 nm) and 3.2 S catalytic (a = 2.6 nm) subunits. A minimum subunit molecular weight of 48,000 was established for the regulatory subunit by photoaffinity labeling with 8-azido[32P]cAMP, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and autoradiography. These data suggest an asymmetric tetrameric (R2C2) structure (Mr approximately equal to 160,000) for the membrane-derived enzyme. Membrane-derived protein kinase was characterized as a type I enzyme on the basis of its R subunit molecular weight, pI values (R, 4.9; holoenzyme, 5.75 and 5.95), dissociation by 0.5 M NaCl and 50 microgram/ml of protamine, 20-fold reduced affinity for cAMP in the presence of 0.3 mM MgATP, elution from DEAE-cellulose at low ionic strength, and kinetic and cAMP-binding properties. The physicochemical properties of the membrane protein kinase closely parallel the characteristics of erythrocyte cytosolic protein kinase I but are clearly dissimilar from those of the soluble type II enzyme. Moreover, regulatory subunits of the membrane-associated and cytosolic type I kinases were indistinguishable in size, shape, subunit molecular weight, charge, binding and reassociation properties, and peptide maps of the photoaffinity-labeled cAMP-binding site, suggesting a high degree of structural and functional homology in this pair of enzymes. In view of the predominant occurrence of particulate type II protein kinases in rabbit heart and bovine cerebral cortex, the present results suggest that the distribution of membrane-associated protein kinases may be tissue- or species-specific, but not isoenzyme-specific.  相似文献   

15.
S6 kinases I and II have been purified previously from Xenopus eggs and shown to be activated by phosphorylation on serine and threonine residues. An S6 kinase clone, closely related to S6 kinase II, was subsequently identified and the protein product was expressed in a baculovirus system. Using this protein, termed "rsk" for Ribosomal Protein S6 Kinase, as a substrate, we have purified to homogeneity from unfertilized Xenopus eggs a 41-kDa serine/threonine kinase termed rsk kinase. Both microtubule-associated protein-2 and myelin basic protein are good substrates for rsk kinase, whereas alpha-casein, histone H1, protamine, and phosvitin are not. rsk kinase is inhibited by low concentrations of heparin as well as by beta-glycerophosphate and calcium. Activation of rsk kinase during Xenopus oocyte maturation is correlated with phosphorylation on threonine and tyrosine residues. However, in vitro, rsk kinase undergoes autophosphorylation on serine, threonine, and tyrosine residues, identifying it as a "dual specificity" enzyme. Purified rsk kinase can be inactivated in vitro by either a 37-kDa T-cell protein-tyrosine phosphatase or the serine/threonine protein phosphatase 2A. Phosphatase-treated S6KII can be reactivated by rsk kinase, and S6 kinase activity in resting oocyte extracts increases significantly when purified rsk kinase is added. The availability of purified rsk kinase will enhance study of the signal transduction pathway(s) regulating phosphorylation of ribosomal protein S6 in Xenopus oocytes.  相似文献   

16.
We have examined endogenous cyclic AMP-stimulated phosphorylation of subcellular fractions of rat brain enriched in synaptic plasma membranes (SPM), purified synaptic junctions (SJ), and postsynaptic densities (PSD). The analyses of these fractions are essential to provide direct evidence for cyclic AMP-dependent endogenous phosphorylation at discrete synaptic junctional loci. Protein kinase activity was measured in subcellular fractions using both endogenous and exogenous (histones) proteins as substrates. The SJ fraction possessed the highest kinase activity toward endogenous protein substrates, 5-fold greater than SPM and approximately 120-fold greater than PSD fractions. Although the kinase activity as measured with histones as substrates was only slightly higher in SJ than SPM fractions, there was a marked preference of kinase activity toward endogenous compared to exogenous substrates in SJ fractions but in SPM fractions. Although overall phosphorylation in SJ fractions was increased only 36% by 5 micron cyclic AMP, there were discrete proteins of Mr = 85,000, 82,000, 78,000, and 55,000 which incorporated 2- to 3-fold more radioactive phosphate in the presence of cyclic AMP. Most, if not all, of the cyclic AMP-independent kinase activity is probably catalyzed by catalytic subunit derived from cyclic AMP-dependent kinase, since the phosphorylation of both exogenous and endogenous proteins was greatly decreased in the presence of a heat-stable inhibitor protein prepared from the soluble fraction of rat brain. The specific retention of SJ protein kinase(s) activity during purification and their resistance to detergent solubilization was achieved by chemical treatments which produce interprotein cross-linking via disulfide bridges. Two SJ polypeptides of Mr = 55,000 and 49,000 were photoaffinity-labeled with [32P]8-N3-cyclic AMP and probably represent the regulatory subunits of the type I and II cyclic AMP-dependent protein kinases. The protein of Mr = 55,000 was phosphorylated in a cyclic AMP-stimulated manner suggesting autophosphorylation as previously observed in other systems.  相似文献   

17.
After human platelets were lysed by freezing and thawing in the presence of EDTA, about 35% of the total cyclic AMP-dependent protein kinase activity was specifically associated with the particulate fraction. In contrast, Ca2+-activated phospholipid-dependent protein kinase was found exclusively in the soluble fraction. Photoaffinity labelling of the regulatory subunits of cyclic AMP-dependent protein kinase with 8-azido-cyclic [32P]AMP indicated that platelet lysate contained a 4-fold excess of 49 000-Da RI subunits over 55 000-Da RII subunits. The RI and RII subunits were found almost entirely in the particulate and soluble fractions respectively. Chromatography of the soluble fraction on DEAE-cellulose demonstrated a single peak of cyclic AMP-dependent activity with the elution characteristics and regulatory subunits characteristic of the type-II enzyme. A major enzyme peak containing Ca2+-activated phospholipid-dependent protein kinase was eluted before the type-II enzyme, but no type-I cyclic AMP-dependent activity was normally observed in the soluble fraction. The particulate cyclic AMP-dependent protein kinase and associated RI subunits were solubilized by buffers containing 0.1 or 0.5% (w/v) Triton X-100, but not by extraction with 0.5 M-NaCl, indicating that this enzyme is firmly membrane-bound, either as an integral membrane protein or via an anchor protein. DEAE-cellulose chromatography of the Triton X-100 extracts demonstrated the presence of both type-I cyclic AMP-dependent holoenzyme and free RI subunits. These results show that platelets contain three main protein kinase activities detectable with histone substrates, namely a membrane-bound type-I cyclic AMP-dependent enzyme, a soluble type-II cyclic AMP-dependent enzyme and Ca2+-activated phospholipid-dependent protein kinase, which was soluble in lysates containing EDTA.  相似文献   

18.
Protein kinase activity of rat testis homogenate was separated into five fractions by means of pH 4.8 acidification and DEAE-cellulose chromatography. The five fractions showed a peculiar pattern of activity and cAMP dependency with the substrates used: casein, protamine, histone mixture, arginine-rich histone, lysine-rich histone, and phosvitin. The casein-sepharose substrate affinity column separated two fractions from the pH 4.8 precipitate. Peak number one phosphorylates histone preferently and is cAMP-dependent, while peak number tow has a strong affinity toward casein as substrate and is non cAMP-dependent.  相似文献   

19.
The phosphoprotein phosphatase (phosphoprotein phosphohydrolase, EC 3.1.3.16) solubilized from human central nervous system myelin has been shown to possess a comparatively high degree of specificity towards myelin basic protein, a constituent of the membrane and most likely its natural substrate, rather than the mixed histones. The enzyme has a pH optimum of 7.5. Hydrolysis of both the substrates is stimulated by dithiothreitol and is almost completely dependent upon the presence of divalent metal ions. The maximum rate of dephosphorylation of basic protein is attained in the presence of 125 micrometer Mn2+ whereas a much higher concentration of Mg2+ (50--100 mM) is required for the optimal dephosphorylation of histones. The dephosphorylation of basic protein was also stimulated by Triton X-100 (0.15%, v/v) and was shown to result from a 3-fold increase in the V of the reaction catalyzed by the phosphatase. The apparent Km values for basic protein and histones were unaffected by the presence of Triton X-100 and were found to be approx. 1 and approx. 160 micrometer, respectively. Under optimal conditions of assay, the phosphatase cleaved approx. 32 and approx. 0.7 nmol of orthophosphate.min-1.mg-1 of protein from basic protein and histones, respectively.  相似文献   

20.
Alkaline phosphatase in uterine homogenates from day 7 pregnant mice was solubilized using 0.2% (v/v) Triton X-100 and extracted wtih 20% (v/v) n-butanol. The procedure, which resulted in 182-fold purification, included ammonium sulfate precipitation, DEAE-cellulose anion exchange chromatography and Sephadex G200 gel filtration. Solubilization with Triton X-100 was an important step in the procedure since extraction with n-butanol alone only partially solubilized the enzyme and gave low extraction yields, much of the enzyme activity remaining in association with negatively charged residues. However, butanol extraction of Triton X-100-treated homogenates gave high yields of enzyme and eliminated p-nitrophenyl phosphatases which displayed activity in the pH range 3.0--7.5, together with a large proportion of inactive protein. The activity of the purified enzyme preparations was electrophoretically homogeneous on cellulose acetate membranes, suggesting that the alkaline phosphatase in the mouse uterus exists in a single isozymic form. Polyacrylamide-gel electrophoresis revealed that the purified preparations contained at least one protein as an impurity. Attempts to further purify the alkaline phosphatase by isoelectric focusing were unsuccessful since the enzyme was found to have an isoelectric point of about 5.0 and at this pH it was rapidly inactivated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号