首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The EcoRV restriction endonuclease recognises palindromic GATATC sequences and cuts between the central T and dA bases in a reaction that has an absolute requirement for a divalent metal ion, physiologically Mg(2+). Use has been made of base analogues, which delete hydrogen bonds between the protein and DNA (or hydrophobic interactions in the case of the 5-CH(3) group of thymine), to evaluate the roles of the outer two base-pairs (GATATC) in DNA recognition. Selectivity arises at both the binding steps leading to the formation of the enzyme-DNA-metal ion ternary complex (assayed by measuring the dissociation constant in the presence of the non-reactive metal Ca(2+)) and the catalytic step (evaluated using single-turnover hydrolysis in the presence of Mg(2+)), with each protein-DNA contact contributing to recognition. With the A:T base-pair, binding was reduced by the amount expected for the simple loss of a single contact; much more severe effects were observed with the G:C base-pair, suggesting additional conformational perturbation. Most of the modified bases lowered the rate of hydrolysis; furthermore, the presence of an analogue in one strand of the duplex diminished cutting at the second, unmodified strand, indicative of communication between DNA binding and the active site. The essential metal ion Mg(2+) plays a key role in mediating interactions between the DNA binding site and active centre and in many instances rescue of hydrolysis was seen with Mn(2+). It is suggested that contacts between the GATATC site are required for tight binding and for the correct assembly of metal ions and bound water at the catalytic site, functions important in providing acid/base catalysis and transition state stabilisation.  相似文献   

2.
It has been proposed that recognition of specific DNA sequences by proteins is accomplished by hydrogen bond formation between the protein and particular groups that are accessible in the major and minor grooves of the DNA. We have examined the DNA-protein interactions involved in the recognition of the hexameric DNA sequence, GAATTC, by the EcoRI restriction endonuclease by using derivatives of an oligodeoxyribonucleotide that contain a variety of base analogues. The base analogues hypoxanthine, 2-aminopurine, 2,6-diaminopurine, N6-methyladenine, 5-bromouracil, uracil, 5-bromocytosine, and 5-methylcytosine were incorporated as single substitutions into the octadeoxyribonucleotide d(pG-G-A-A-T-T-C-C). The effects of the substitutions on the interactions between the EcoRI endonuclease and its recognition sequence were monitored by determining the steady state kinetic values of the hydrolysis reaction. The substitutions resulted in effects that varied from complete inactivity to enhanced reactivity. The enzyme exhibited Michaelis-Menten kinetics with those substrates that were reactive, whereas octanucleotide analogues containing N6-methyladenine at either adenine position, uracil at the second thymine position, or 5-bromocytosine or 5-methylcytosine at the cytosine position were unreactive. The results are discussed in terms of possible effects on interactions between the enzyme and its recognition site during the reaction. An accompanying paper presents the results of a similar study using these oligonucleotides with the EcoRI modification methylase.  相似文献   

3.
EcoP15 is a restriction-modification enzyme coded by the P15 plasmid of Escherichia coli. We have determined the sites recognized by this enzyme on pBR322 and simian virus 40 DNA. The enzyme recognizes the sequence:
In restriction, the enzyme cleaves the DNA 25 to 26 base-pairs 3′ to this sequence to leave single-stranded 5′ protrusions two bases long.  相似文献   

4.
5.
The type IIs restriction endonuclease MboII recognizes nonsymmetrical GAAGA sites, cutting 8 (top strand) and 7 (bottom strand) bases to the right. Gel retardation showed that MboII bound specifically to GAAGA sequences, producing two distinct complexes each containing one MboII and one DNA molecule. Interference analysis indicated that the initial species formed, named complex 1, comprised an interaction between the enzyme and the GAAGA target. Complex 2 involved interaction of the protein with both the GAAGA and the cutting sites. Only in the presence of divalent metal ions such as Ca(2+) is the conversion of complex 1 to 2 rapid. Additionally, a very retarded complex was seen with Ca(2+), possibly a (MboII)(2)-(DNA)(2) complex. Plasmids containing a single GAAGA site were hydrolyzed slowly by MboII. Plasmids containing two sites were cut far more rapidly, suggesting that the enzyme requires two recognition sites in the same DNA molecule for efficient hydrolysis. MboII appears to have a mechanism similar to the best characterized type IIs enzyme, FokI. Both enzymes initially bind DNA as monomers, followed by dimerization to give an (enzyme)(2)-(DNA)(2) complex. Dimerization is efficient only when the two target sites are located in the same DNA molecule and requires divalent metal ions.  相似文献   

6.
An in vitro method of altering the apparent cleavage specificities of restriction endonucleases was developed using DNA modification methylases. This method was used to reduce the number of cleavage sites for 34 restriction endonucleases. In particular, single-site cleavages were achieved for Nhe I in Adeno-2 DNA and for Acc I and Hinc II in pBR322 DNA by specifically methylating all but one recognition sequence.  相似文献   

7.
A genetic system was constructed for the mutagenesis of the EcoRV restriction endonuclease and for the overproduction of mutant proteins. The system was used to make two mutants of EcoRV, with Ala in place of either Asn185 or Asn188. In the crystal structure of the EcoRV-DNA complex, both Asn185 and Asn188 contact the DNA within the EcoRV recognition sequence. But neither mutation affected the ability of the protein to bind to DNA. In the absence of metal ion cofactors, the mutants bound DNA with almost the same affinity as that of the wild-type enzyme. In the presence of Mg2+, both mutants retained the ability to cleave DNA specifically at the EcoRV recognition sequence, but their activities were severely depressed relative to that of the wild-type. In contrast, with Mn2+ as the cofactor, the mutant enzymes cleaved the EcoRV recognition site with activities that were close to that of the wild-type. When bound to DNA at the EcoRV recognition site, the mutant proteins bound Mn2+ ions readily, but they had much lower affinities for Mg2+ ions than the wild-type enzyme. This was the reason for their low activities with Mg2+ as the cofactor. The arrangement of the DNA recognition functions, at one location in the EcoRV restriction enzyme, are therefore responsible for organizing the catalytic functions at a separate location in the protein.  相似文献   

8.
F Barany 《Gene》1988,65(2):167-177
Under phoA promoter control, TaqI endonuclease was overproduced to 5% of Escherichia coli cellular proteins. This was achieved by fusing the endonuclease gene to the first four codons of the alkaline phosphatase signal sequence. For maximal overproduction (30% of cellular proteins), a putative 14-bp hairpin within the endonuclease coding sequence was replaced with degenerate codons. In addition, TaqI methylase was required to protect host DNA. The endonuclease was purified in sufficient amounts for crystallization.  相似文献   

9.
Zahran M  Berezniak T  Imhof P  Smith JC 《FEBS letters》2011,585(17):2739-2743
The restriction endonuclease EcoRV binds two magnesium ions. One of these ions, Mg(A)(2+), binds to the phosphate group where the cleavage occurs and is required for catalysis, but the role of the other ion, Mg(B)(2+) is debated. Here, multiple independent molecular dynamics simulations suggest that Mg(B)(2+) is crucial for achieving a tightly bound protein-DNA complex and stabilizing a conformation that allows cleavage. In the absence of Mg(B)(2+) in all simulations the protein-DNA hydrogen bond network is significantly disrupted and the sharp kink at the central base pair step of the DNA, which is observed in the two-metal complex, is not present. Also, the active site residues rearrange in such a way that the formation of a nucleophile, required for DNA hydrolysis, is unlikely.  相似文献   

10.
The production and high level secretion of TaqI restriction endonuclease using bacterial secretion signal within the malE gene was achieved by cloning the PCR-amplified gene from Thermus aquaticus into E. coli. The maltose binding protein (MBP) part of the MBP-TaqI fusion protein expressed by this construct did not interfere with the biological activity of the TaqI restriction endonuclease. E. coli XL1 carrying pH185 produced 332 U ml–1 TaqI endonuclease 81% of which was secreted into the medium without apparent cell lysis. Optimization of culture conditions and selection of the host strain were found to be important for the efficient extracellular production of this protein.  相似文献   

11.
To investigate the effect of pH on sequence-specific binding, a thermodynamic characterization of the interaction of the protein MunI with a specific, and a nonspecific, oligonucleotide was performed. MunI is a type II restriction endonuclease which is able to bind specifically, but loses its enzymatic activity in the absence of magnesium ions. Comparison of the specific and nonspecific interactions at 10 and 25 degrees C shows that the latter is accompanied by a small change in enthalpy, and a negligible change in constant pressure heat capacity. On going through the pH range 5.75-9.0 at 25 degrees C, the affinity of specific complex formation is reduced by 20-fold. The interaction is accompanied by the protonation of groups assumed to be on the protein. Based on the simplest model that will fit the data, two distinct protonation events are observed. At low pH, two groups per protein molecule undergo protonation with a pK(a) of 6.0 and 6.9 in the free and bound forms, respectively. At high pH, a further independent protonation occurs involving two groups with pK(a) values of 8.9 and approximately 10.7 in the free and bound forms, respectively. The change in heat capacity ranges from -2.7 to -1.7 kJ mol(-1) K(-1) in going from pH 6.5 to 8.5. This range of variation of change in heat capacity can be accounted for by the effects of protonation of the interacting molecules. The change in heat capacity, calculated from surface area burial using a previously established relationship (1.15 kJ mol(-1) K(-1)), does not correlate well with the experimentally determined values.  相似文献   

12.
EcoRII is unusual among type II restriction enzymes in that, while it cleaves substrates such as pBR322 and bacteriophage lambda that contain several recognition sites for the enzyme efficiently, substrates such as the genomes of bacteriophages T3 and T7 which contain a small number of recognition sites are cut poorly by it. Interestingly, pBR322, or a short DNA duplex containing a single site for the enzyme, can activate the enzyme to cleave resistant substrates. We show here that, at low concentrations, activator short duplexes are themselves cleaved poorly by the enzyme. Further, the reaction shows substrate cooperativity, and at high concentrations, the duplexes are both activators and good substrates for the enzyme. This supports the model that the activation of EcoRII involves binding of more than one DNA molecule and provides a simple system to study the mechanism of activation. Using a gel mobility shift assay, we show that the enzyme forms sequence-specific, methylation-sensitive complexes with the duplexes in the absence of activating DNA. Therefore, resistance of the short duplexes to the enzyme at low concentrations cannot be due to an inability of the enzyme to bind the duplexes. Interestingly, these complexes are stable in the presence of Mg2+, the cofactor for the enzyme, and the complexes obtained in the presence of Mg2+ do not contain DNA that is cleaved by the enzyme. The inefficient step in the action of EcoRII on resistant substrates must occur subsequent to initial substrate binding and it is this step that the activating DNA must regulate.  相似文献   

13.
As shown by a nitrocellulose filter binding assay, in the absence of Mg2+ EcoRII restriction endonuclease binds specifically to a set of synthetic concatemer DNA duplexes of varying chain length, containing natural and modified recognition sites of this enzyme. The binding of the substrates with the central AT, TT or AA-pair in the recognition site decreases at AT greater than TT much greater than AA. Substitution of the pyrophosphate bond at the cleavage site for the phosphodiester or phosphoramide bond produces little influence on the stability of the complexes. The affinity of the enzyme for nonspecific sites is two orders of magnitude less than that for the specific EcoRII sequences. Equilibrium association constant for a substrate with one recognition site is 3.9 X 10(8) M-1. Addition of Mg2+ leads to the destabilization of the EcoRII endonuclease complex with DNA duplex, containing pyrophosphate bonds. The dissociation rate constants and the lifetime of the EcoRII endonuclease--synthetic substrates complexes have been determined.  相似文献   

14.
C L Vermote  S E Halford 《Biochemistry》1992,31(26):6082-6089
In the absence of magnesium ions, the EcoRV restriction endonuclease binds all DNA sequences with equal affinity but cannot cleave DNA. In the presence of Mg2+, the EcoRV endonuclease cleaves DNA at one particular sequence, GATATC, at least a million times more readily than any other sequence. To elucidate the role of the metal ion, the reactions of the EcoRV restriction enzyme were studied in the presence of MnCl2 instead of MgCl2. The reaction at the EcoRV recognition site was slower with Mn2+. This was caused partly by reduced rates for phosphodiester hydrolysis but also by the translocation of the enzyme along the DNA after cleaving it in one strand. In contrast, alternative sites that differ from the recognition site by one base pair were cleaved faster in the presence of Mn2+ relative to Mg2+. When located at an alternative site on the DNA, the EcoRV enzyme bound Mn2+ ions readily but had a very low affinity for Mg2+. The EcoRV nuclease is thus restrained from cleaving DNA at alternate sites in the presence of Mg2+, but the restraint fails to operate with Mn2+. A discrimination factor, which measures the ratio of the activity of the EcoRV nuclease at its recognition site over that at an alternative site, had values of 3 x 10(5) in MgCl2 and 6 in MnCl2.  相似文献   

15.
16.
The kinetic constants of the site-specific endonuclease, ScaI, for various substrates were determined. We estimated Vmax and Km for octa-, deca-, dodeca-, and hexadecanucleotides and for plasmid pBR322 DNA. Vmax for these substrates were close, but Km were quite different (in decreasing order, octa- greater than deca-, dodeca-, hexadeca- greater than pBR322). The results were discussed with respect to the tertiary structure of substrate.  相似文献   

17.
18.
The EcoRII homodimer engages two of its recognition sequences (5'-CCWGG) simultaneously and is therefore a type IIE restriction endonuclease. To identify the amino acids of EcoRII that interact specifically with the recognition sequence, we photocross-linked EcoRII with oligonucleotide substrates that contained only one recognition sequence for EcoRII. In this recognition sequence, we substituted either 5-iododeoxycytidine for each C or 5-iododeoxyuridine for A, G, or T. These iodo-pyrimidine bases were excited using a UV laser to result in covalent cross-linking products. The yield of EcoRII photocross-linked to the 5'-C of the 5'-CCAGG strand of the recognition sequence was 45%. However, we could not photocross-link EcoRII to the 5'-C of the 5'-CCTGG strand. Thus, the contact of EcoRII to the bases of the recognition sequence appears to be asymmetric, unlike that expected for most type II restriction endonucleases. Tryptic digestion of free and of cross-linked EcoRII, followed by high performance liquid chromatography (HPLC) separation of the individual peptides and Edman degradation, identified amino acids 25-49 of EcoRII as the cross-linking peptide. Mutational analysis of the electron-rich amino acids His(36) and Tyr(41) of this peptide indicates that Tyr(41) is the amino acid involved in the cross-link and that it therefore contributes to specific DNA recognition by EcoRII.  相似文献   

19.
The TaqI restriction endonuclease recognizes and cleaves the duplex DNA sequence T decreases CGA. Steady state kinetic analysis with a small oligodeoxyribonucleotide substrate showed that the enzyme obeyed Michaelis-Menten kinetics (Km = 53 nM, kcat = 1.3 min-1 at 50 degrees C and Km = 0.5 nM, kcat = 2.9 min-1 at 60 degrees C). At 0 degree C, the enzyme was completely inactive, while at 15 degrees C, turnover produced nicked substrate as the major product in excess of enzyme indicating dissociation between nicking events. Above 37 degrees C, both strands in the duplex were cleaved prior to dissociation. In contrast to the tight, temperature-dependent binding of substrate, binding of the Mg2+ cofactor was weak (Kd = 2.5 mM) and the same at either 50 degrees C or 60 degrees C. Single-turnover experiments using oligonucleotide substrate showed that hydrolysis of duplex DNA occurred via two independent nicking events, each with a first order rate constant (kst) of 5.8 min-1 at 60 degrees C and 3.5 min-1 at 50 degrees C. The pH dependence of Km (pKa = 9) and kst (pKa = 7) suggests Lys/Arg and His, respectively, as possible amino acids influencing these constants. Moreover, although kst increased significantly with pH, kcat did not, indicating that at least two steps can be rate-controlling in the reaction pathway. Binding of protein to canonical DNA in the presence of Mg2+ at 0 degree C or in the absence of Mg2+ at 50 degrees C was weak (Kd = 2.5 microM or 5,000-fold weaker than the optimal measured Km) and equal to the binding of noncanonical DNA as judged by retention on nitrocellulose. Similar results were seen in gel retardation assays. These results suggest that both Mg2+ and high temperature are required to attain the correct protein conformation to form the tight complex seen in the steady state analysis. In the accompanying paper (Zebala, J. A., Choi, J., Trainor, G. L., and Barany, F. (1992) J. Biol. Chem. 267, 8106-8116), we report how these kinetic constants are altered using substrate analogues and propose a model of functional groups involved in TaqI endonuclease recognition.  相似文献   

20.
F Barany 《Gene》1987,56(1):13-27
The gene encoding TaqI restriction endonuclease has been subcloned downstream from an inducible phoA promoter. Certain strains of Escherichia coli remain viable when endonuclease is expressed, even in the absence of (protective) methylation. Infecting lambda phage DNA is not restricted in vivo. One E. coli strain, MM294, exhibited a temperature-sensitive phenotype when TaqI endonuclease was induced. This allowed for design of an in vivo plate assay for identification of specially constructed two-codon insertion mutants in the endonuclease gene. These mutants exhibited a wide range of in vitro activities, including wild-type activity, greater activity in low-salt buffer, and sequence-specific nicking activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号