首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The autosomal dominant mutation in the human alphaB-crystallin gene inducing a R120G amino acid exchange causes a multisystem, protein aggregation disease including cardiomyopathy. The pathogenesis of cardiomyopathy in this mutant (hR120GCryAB) is poorly understood. Here, we show that transgenic mice overexpressing cardiac-specific hR120GCryAB recapitulate the cardiomyopathy in humans and find that the mice are under reductive stress. The myopathic hearts show an increased recycling of oxidized glutathione (GSSG) to reduced glutathione (GSH), which is due to the augmented expression and enzymatic activities of glucose-6-phosphate dehydrogenase (G6PD), glutathione reductase, and glutathione peroxidase. The intercross of hR120GCryAB cardiomyopathic animals with mice with reduced G6PD levels rescues the progeny from cardiac hypertrophy and protein aggregation. These findings demonstrate that dysregulation of G6PD activity is necessary and sufficient for maladaptive reductive stress and suggest a novel therapeutic target for abrogating R120GCryAB cardiomyopathy and heart failure in humans.  相似文献   

2.
Activity of erythrocyte glutathione peroxidase (GPx), glutathione reductase (GR), glutathione transferase (GT), glucose-6-phosphate dehydrogenase (G6PDH), catalase and superoxide dismutase (SOD), the level of erythrocyte malonic dialdehyde (MDA) and also total antioxidant activity of blood serum were studied in patients with different types of multiple sclerosis (MS). Investigation of peripherical blood was carried out on the first day of admission to the hospital and after the standard therapy with copaxone. During the whole period of observation all MS patients had a high level of MDA and activity of erythrocyte GP compared with a control group. Other erythrocyte antioxidant enzymes and total antioxidant activity of blood serum exhibited weak positive dynamics in patients with relapsing-remitting multiple sclerosis (RRMS). The pathological decrease of antioxidant system activity in patients with secondary progressive multiple sclerosis (SPMS) was more pronounced and remained unchanged after the treatment. This is consistent with a more severe clinical course of this disease.  相似文献   

3.
Blood glutathione redox status in gestational hypertension   总被引:4,自引:0,他引:4  
Gestational hypertension during the third trimester reflects an exaggerated maternal inflammatory response to pregnancy. We hypothesized that oxidative stress present even in normal pregnancy becomes uncompensated in hypertensive patients. A glucose-6-phosphate dehydrogenase (G6PD) activity sufficient to meet the increased reductive equivalent need of the cells is indispensable for defense against oxidative stress. The erythrocyte glutathione redox system was studied, where G6PD is the only NADPH source. The glutathione (GSH) redox status was measured both in vivo and after an in vitro oxidative challenge in pregnant women with gestational hypertension (n = 19) vs. normotensive pregnant subjects (n = 18) and controls (n = 20). An erythrocyte GSH depletion with an increase in the oxidized form (GSSG) resulted in an elevated ratio GSSG/GSH (0.305 +/- 0.057; mean +/- SD) in hypertensive pregnant women vs. normotensive pregnant or control subjects (0.154 +/- 0.025; 0.168 +/- 0.073; p <.001). In hypertensive pregnant patients, a "GSH stability" decrease after an in vitro oxidative challenge suggested a reduced GSH recycling capacity resulting from an insufficient NADPH supply. The erythrocyte GSSG/GSH ratio may serve as an early and sensitive parameter of the oxidative imbalance and a relevant target for future clinical trials to control the effects of antioxidant treatment in women at increased risk of the pre-eclampsia syndrome.  相似文献   

4.
Vascular smooth muscle cells (VSMC) may be subjected to mechanical forces, such as cyclic strain, that promote the formation of reactive oxygen species (ROS). We hypothesized that VSMC modulate this adverse milieu by increasing the expression of glucose-6-phosphate dehydrogenase (G6PDH) to maintain or restore intracellular glutathione (GSH) levels. Cyclic strain increased superoxide formation, which resulted in diminished GSH because of an increase in oxidized glutathione formation; there was also an increase in glutathione peroxidase and glutathione reductase activities. G6PDH activity and protein expression were enhanced concomitant with decreases in GSH levels and remained elevated until intracellular GSH levels were restored. To confirm the role of G6PDH in repleting GSH stores, we inhibited G6PDH activity with DHEA or inhibited enzyme expression with an antisense oligodeoxynucleotide. Diminished G6PDH activity or expression was associated with persistently depleted GSH levels and inhibition of the cyclic strain-mediated increase in glutathione reductase activity. These observations demonstrate that cyclic strain promotes oxidant stress in VSMC, which, in turn, induces G6PDH expression. When G6PDH is inhibited, GSH levels are not restored because of impaired glutathione reductase activity. These data suggest that G6PDH is a critical determinant of the response to oxidant stress in VSMC.  相似文献   

5.
Impaired antioxidant mechanisms are unable to inactivate free radicals that may induce a number of pathophysiological processes and result in cell injury. Thus, any abnormality in antioxidant defense systems could affect neurodevelopmental processes and could have an important role in the etiology of cerebral palsy (CP). The plasma levels of lipid peroxidation as plasma levels of malondialdehyde (MDA), activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) in plasma and erythrocytes were investigated in 34 CP children and compared with 61 normal controls. SOD, GPx and GR activities were spectrophotometrically assayed. Activities of SOD, GPx and GR in plasma did not differ significantly between CP children and the control group. Activities of erythrocyte GR in the CP patients were significantly lower compared with controls. MDA concentration did not differ statistically between the CP children and healthy subjects. In conclusion our results suggest that increased activities of erythrocyte GPx and decreased erythrocyte GR activities might be due to lesser physical activity of children with CP.  相似文献   

6.
Corticosteroids are anti-inflammatory drugs that are similar to the natural corticosteroid hormones produced by the cortex of the adrenal glands. The objective of this study was to scrutinize effects of some corticosteroids on glucose-6-phosphate dehydrogenase (G6PD) and some antioxidant enzymes. Initially, G6PD was purified from human erythrocytes by using ammonium sulphate precipitation and affinity chromatography. The two drugs, dexamethasone phosphate and prednisolone, investigated on the purified enzyme inhibited the enzyme activity. Comparative in vivo studies were performed to determine the effects of dexamethasone phosphate on the antioxidant enzyme activities using Spraque-Dawley rats. G6PD and catalase (CAT) activities were found significantly lower than in the control, whereas glutathione peroxidase (GP) activity was significantly increased in the erythrocytes of rats the receiving drug; glutathione reductase (GR) activity was unaffected. The results imply that dexamethasone phosphate may affect oxidative stress by changing antioxidant enzyme activities.  相似文献   

7.
Seasonal changes in antioxidant enzyme activities (superoxide dismutase, SOD, EC 1.15.1.1; catalase, CAT, EC 1.11.1.16; glutathione peroxidase, GPx, EC 1.11.1.9; glutathione reductase, GR, EC 1.6.4.2; glucose-6-phosphate dehydrogenase, G6PD, EC 1.1.1.49 and glutathione S -transferase, GST, EC 1.5.1.18) and lipid peroxidation (LPO) levels of livers and gills of female Caspian trout Salmo trutta caspius , Black Sea trout Salmo trutta labrax and mountain trout Salmo trutta macrostigma were investigated. SOD, CAT, GPx, G6PD and GST activities were higher in liver compared to gills of all sub-species; concomitantly, the GR activity was also higher in the livers of S. t. caspius and S. t. labrax , but the reverse was seen in S. t. macrostigma . LPO levels were higher in the gills compared to the liver of all sub-species. There was no general trend in the seasonal changes in the gill antioxidant enzyme (AE) activities or LPO levels. Higher AE activities, however, were found in the liver of each sub-species during autumn, and this coincided with an increase in the gonado-somatic index.  相似文献   

8.
Treatment of rats with daily dosis of 20 mg of lindane/kg for 3 consecutive days led to the accumulation of the insecticide in several tissues, including erythrocytes and liver. Lindane did not alter the hematocrit and hemoglobin concentration but reduced methemogiobin levels by 17%. Red blood cells from controls and lindane-treated rats, exposed to t-butyl hydroperoxide, exhibited comparable rates of oxygen uptake and visible chemiluminescence, whereas the induction period that precedes oxygen uptake was significantly enhanced in the latter group. Lindane treatment did not modify the activity of erythrocyte glutathione peroxidase, glucose-6-phosphate dehydrogenase, catalase, and methemoglobin reductase, being the total content of glutathione and superoxide dismutase activity significantly increased. The liver from lindane-treated rats showed an enhanced microsomal pro-oxidant activity, evidenced by higher cytochrome P450 content and NADPH-cytochrome c reductase and NADPH oxidase activities. The higher enzyme activities led to an increased superoxide anion generation (adrenochrome formation) and lipid peroxidation (measured either by the production of thiobarbituric acid reactants and spontaneous visible chemiluminescence). Concomitantly, liver glutathione content and the activity of glutathione peroxidase-glutathione reductase couple were augmented by lindane treatment, without any change in superoxide dismutase activity, together with a reduction in that of catalase. Results suggest that lindane does not alter the prooxidant/antioxidant status of the erythrocyte in conditions of a significant cellular accumulation of the insecticide, which might exert direct action on enzymatic systems leading to enhanced superoxide dismutase activity and glutathione content. In the liver, lindane-induced pro-oxidant condition was not accompanied by cell injury, probably due to the adaptative increase in some antioxidant mechanisms of the hepatocyte.  相似文献   

9.
The protective activity of small stress proteins (sHsp) against H2O2-mediated cell death in the highly sensitive murine L929 fibroblast has been analyzed. We report here that the human Hsp27- and murine Hsp25-mediated rise in glutathione (GSH) levels as well as the maintenance of this redox modulator in its reduced form was directly responsible for the protection observed at the level of cell morphology and mitochondrial membrane potential. sHsp expression also buffered the increase in protein oxidation following H2O2 treatment and protected several key enzymes against inactivation. In this case, however, the protection necessitated both an increase in GSH and the presence of sHsp per se since the pattern of protection against protein oxidation mediated by a simple GSH increase was different from that induced by sHsp expression. Among the enzymes analyzed, we noticed that sHsp significantly increased glucose-6-phosphate dehydrogenase (G6PD) activity and to a lesser extent glutathione reductase and glutathione transferase activities. Moreover, an increased GSH level was observed in G6PD-overexpressing L929 cell clones. Taken together our results suggest that sHsp protect against oxidative stress through a G6PD-dependent ability to increase and uphold GSH in its reduced form and by using this redox modulator as an essential parameter of their in vivo chaperone activity against oxidized proteins.  相似文献   

10.
Riboflavin nutritional status was assessed on the basis of activity coefficients of glutathione reductase in erythrocyte hemolysates of normal and streptozotocin-diabetic rats. Activity coefficient values higher than 1.3 were regarded as evidence of riboflavin deficiency. All diabetic animals were found to be riboflavin-deficient, with activity coefficient values of 1.47–2.11. Treatment of diabetic rats with either insulin or riboflavin returned their activity coefficients to normal. Rats fed a restricted diet had normal activity coefficient values. The erythrocyte glutathione reductase activity was significantly lower in diabetic rats, and the augmentation of enzyme activity in the presence of flavin-adenine dinucleotide (FAD) was 72% compared to 16% in normal rats. Hepatic activities of glutathione reductase and succinate dehydrogenase, both FAD-containing enzymes, were significantly lower in diabetic than in normal rats. Like activity coefficient values, all enzyme activities were normalized after insulin or riboflavin treatments. These data suggest that insulin and riboflavin enhance the synthesis of erythrocyte and hepatic FAD. The results of the present study suggest that experimental diabetes causes riboflavin deficiency, which in turn decreases erythrocyte and hepatic flavoprotein enzyme activities. These changes can be corrected for by either insulin or riboflavin. The pathogenesis of riboflavin deficiency in diabetes mellitus is not clearly understood. The data of the present study provide evidence in addition to the previous findings of an increased prevalence of riboflavin deficiency in genetically diabetic KK mice.  相似文献   

11.
Glucose-6-phosphate dehydrogenase (G6PD), the rate limiting enzyme that channels glucose catabolism from glycolysis into the pentose phosphate pathway (PPP), is vital for the production of reduced nicotinamide adenine dinucleotide phosphate (NADPH) in cells. NADPH is in turn a substrate for glutathione reductase, which reduces oxidized glutathione disulfide to sulfhydryl glutathione. Best known for inherited deficiencies underlying acute hemolytic anemia due to elevated oxidative stress by food or medication, G6PD, and PPP activation have been associated with neuroprotection. Recent works have now provided more definitive evidence for G6PD's protective role in ischemic brain injury and strengthened its links to neurodegeneration. In Drosophila models, improved proteostasis and lifespan extension result from an increased PPP flux due to G6PD induction, which is phenocopied by transgenic overexpression of G6PD in neurons. Moderate transgenic expression of G6PD was also shown to improve healthspan in mouse. Here, the deciphered and implicated roles of G6PD and PPP in protection against brain injury, neurodegenerative diseases, and in healthspan/lifespan extensions are discussed together with an important caveat, namely NADPH oxidase (NOX) activity and the oxidative stress generated by the latter. Activation of G6PD with selective inhibition of NOX activity could be a viable neuroprotective strategy for brain injury, disease, and aging.  相似文献   

12.
The aim of this study was to determine the changes of the basic parameters of the erythrocyte system and the activity of some red blood cell (RBC) enzymes prior to and after a single physical effort leading to exhaustion. The study was carried out on male Wistar rats subjected to running on an electric rotating drum at a speed of 25 m/min. A single exercise caused a decrease in the RBC count, haemoglobin concentration (Hb) and haematocrit (Hct) by 21.9, 16.7 and 16.1%, respectively, and an increase in the reticulocyte count (Ret) by 661.5%. The exercise triggered also changes in the activities of some erythrocytic enzymes: pyruvate kinase (PK) activity increased by 12.4%, glucose-6-phosphate dehydrogenase (G6PD) by 37.8%, glutathione reductase (GR) by 30.8% and acetylcholinesterase (AChE) by 248.7%. These increases in the activities of RBC enzymes can be explained by an increase in the red cells turn-over.  相似文献   

13.
The Mediterranean variant of glucose-6-phosphate dehydrogenase (G6PD) is functionally deficient and found in a variety of cell types of affected individuals, including both erythocytes and neutrophils. To determine if the presence of this sex-linked gene is associated to any degree with the occurrence of severe bacterial infection, a study of hospitalized male patients in Iran was undertaken. As determined by erythrocyte assay, allele prevalence in male patients with infection was 22% vs. 12% in a patient group matched for the absence of other risk factors for infection and 6% in a second group who had additional risk factors for infection. When the control and patient groups were considered together the difference between the frequency of G6PD deficiency (10.2%) was significantly different from that found in the infected patients (p less than .05). Furthermore, the mean age of infected patients with G6PD deficiency was significantly less than that of infected patients without G6PD deficiency or non-infected control groups. These data suggest that host defenses may be altered in G6PD deficiency so that bacterial infections are more severe. Alternatively, G6PD deficiency and infection might represent concomittant risk factors which lead to hospitalization during bacterial infection. Potential mechanisms by which host defenses might be altered in G6PD deficiency are discussed.  相似文献   

14.
Fetal rat coronal sutures in culture undergo fusion in the absence of their dura mater. Coinciding with the period of fusion are marked cellular enzymatic changes. Alkaline phosphatase, a marker of osteoblastic activity, and tartrate-resistant acid phosphatase (TRAP), a marker of osteoclastic activity, both increase significantly within fusing sutures and indicate changes in the control of bone synthesis and breakdown. Other enzymes not specifically related to bone formation or degradation also show activation within these fusing sutures. These enzymes include tartrate-sensitive acid phosphatase (TSAP), a marker of lysosomal activity; hexokinase, a glycolytic enzyme; glucose 6-phosphate dehydrogenase (G6PD), an enzyme of the pentose monophosphate shunt; and glutathione reductase, an enzyme of the antioxidant pathway.In the present study, we compared the enzymatic changes previously seen ex vivo with those occurring in vivo during the programmed closure of the posterior interfrontal suture of the rat. This suture fuses between postnatal days 10 and 30 in the rat. The sagittal suture, which remains patent during this period, was used to establish baseline enzymatic activities in a comparable midline suture. Neonatal rats were killed at postnatal days 2, 4, 5, 8, 10, 12, 15, 20, and 30, and posterior interfrontal and sagittal sutures with bone plates on either side were removed. The suture regions of the samples were isolated, dura mater was removed, and suture regions were assayed by microanalytical techniques. Activities of alkaline phosphatase, TRAP, TSAP, hexokinase, G6PD, and glutathione reductase were measured. DNA content was also assayed, and enzyme activities were expressed per amount of DNA. Three pups were killed at each time point, and three to five assays were performed per suture (posterior interfrontal or sagittal) for each time point assayed.Alkaline phosphatase and TRAP activities showed marked increases in fusing sutures compared with nonfusing controls, similar to the increases demonstrated ex vivo. TSAP and hexokinase also showed elevations in the fusing posterior interfrontal sutures, with the greatest differences predominantly during the period of fusion, comparable to the changes seen ex vivo. However, G6PD and glutathione reductase, enzymes of the antioxidant pathway, did not demonstrate the same degree of activation seen ex vivo in fusing sutures. In fact, the levels were actually higher in the patent sagittal samples for the majority of time points examined.Alkaline phosphatase and TRAP activity elevations indicated both osteoblastic and osteoclastic activation during fusion, as seen in the ex vivo phenomenon. TSAP and hexokinase increases also reflected activation in lysosomes and in cellular metabolism during fusion, paralleling the ex vivo situation. However, a less clear pattern of activation in the antioxidant pathway, in contrast to the pattern seen ex vivo, was present. These differences may reflect the different environments of sutures in vivo and ex vivo. Alternatively, oxidative stress may play a more central role in the pathologic process of induced suture fusion ex vivo than in programmed suture fusion in vivo.  相似文献   

15.
In order to determine whether the biological age of a mouse influences erythrocyte metabolism and erythrocyte aging in vivo, blood samples were collected from male C57/BL6J mice of different biological ages ranging from mature (10 months) to "very old" (37 months). In the very old mouse, compared with the mature mouse, the erythrocyte survival time was decreased, erythrocyte densities were increased, the concentrations of total free thiol and reduced glutathione, and glutathione reductase activity were decreased. Erythrocytes were separated into different density (age) groups by phthalate ester two-phase centrifugation or by albumin density-gradient centrifugation. The density-age relationship of erythrocytes was established by pulse-labelling with 59Fe in vivo and by subsequent determinations of specific radioactivity of erythrocyte fractions of different densities prepared during a chase period of 60 days. The age of erythrocytes in mice of all ages was directly related to density. Also, in older erythrocytes compared with younger erythrocytes, decreased concentrations of total free thiol and reduced glutathione, and decreased glutathione reductase activity were observed. These were the lowest in the old erythrocytes of very old mice. These results in aging erythrocytes from aging mice suggest that the glutathione status the erythrocyte may be an index of aging, not only of the cell but also of the organism.  相似文献   

16.
The activity of glucose-6-phosphate dehydrogenase (G6PD) was studied in five brain areas of rats aged 5 to 90 days. The areas studied were: the olfactory bulb (OB), cortex, hippocampus, striatum and septum. The G6PD activity increased more than 2-fold from 5 to 90 days in the OB, while it was almost constant in the other areas. At every stage of development, the G6PD activity was significantly higher in the OB than in the other areas. The G6PD pattern was compared with 6-phosphogluconate dehydrogenase (6PGD), glutathione reductase (GR); glutathione peroxidase (GPX), catalase (CAT) and superoxide dismutase (SOD) in order to find synergistic interactions among activities of these enzymes during development. Over the considered period, the activity of 6PGD increased significantly in the OB, while no significant difference in activity was detected in the other areas. GR increased significantly and progressively at each developmental stage in all areas. GPX showed a progressive increase in the OB, while in other areas a significant increase was detected at 90 days only. CAT and SOD showed a different and independent pattern which differred from the G6PD pattern. CAT showed the highest level of activity at 5 days then progressively decreased or was constant until 90 days; SOD had the highest value at 5 days, than it decreased at 10 days and increased from 10 to 90 days. In all areas, G6PD activity showed three electrophoretic bands, whose relative activity changed with development. At histochemical level, we found a marked G6PD activity in the periglomerular zone of the OB, which increased with age, while other areas showed a homogeneous staining. The present results demonstrate that G6PD activity increases in the OB during the developmental stages and there is a coordinated simultaneous activation of 6PGD, GPX and GR. It is likely that this enzyme induction increases the antioxidant defense of periglomerular cells that are subject to a rapid renewal and thus much more exposed to oxidant stress.  相似文献   

17.
The activities of antioxidant enzymes, and the expression of p21(WAF1) and p53 proteins were studied at different times after subculture during proliferation and differentiation phases. Two human melanoma cell lines were used: IPC182, which is a non-differentiating cell line, and IGR221, which spontaneously differentiates at the end of the exponential growth phase, as evidenced by a marked increase of melanin content and tyrosinase activity. In the two cell lines, the slowing of proliferation coincided with an increase in the activity and amount of immunoreactive superoxide dismutases (SOD1 and SOD2), and a decrease of catalase and glutathione peroxidase activities, and of the glutathione content. The levels of p21WAF1 and p53 proteins were found to be lower in confluent than in proliferative cells. Several parameters were modified only during the differentiation phase of IGR221 cells; in these cells the increase of tyrosinase activity was highly correlated with the increase in SOD2, GST, glutathione reductase, and G6PD activities. The level of glutathione was found to be lower in differentiated IGR221 than in non-differentiated IPC182 cells. These results suggest that p21WAF1 and p53 proteins are not involved in the spontaneous differentiation process of melanoma cells, and that abnormal regulation of the cell cycle inhibition pathway occurred in these cells. The results sustain the hypothesis that alterations of antioxidant enzyme expression are involved in the control of proliferation and differentiation of melanoma cells. Alterations of SOD2 activity may be of particular importance, since variations are observed with both cell growth and cell differentiation.  相似文献   

18.
19.
This study aims to investigate the effects of the herbicide 2,4-D and the insecticide azinphosmethyl on hepatic antioxidant enzyme activities and lipid peroxidation in tilapia. Fish were exposed to 27 ppm 2,4-D, 0.03 ppm azinphosmethyl and to a mixture of both for 24, 48, 72 and 96 h. Activities of catalase (EC 1.11.1.6), glutathione-S-transferase (GST, EC 2.5.1.18) and the level of malondialdehyde (MDA) in the liver of Oreochromis niloticus exposed to 2,4-D and azinphosmethyl, both individually and in combination, were not affected by the pesticide exposures. However, glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) and glutathione reductase (GR, EC 1.6.4.2) activities in individual and combined treatments, increased significantly compared to controls. Furthermore, glutathione peroxidase (GPx, EC 1.11.1.9) activity increased in individual treatment, while the same enzyme activity decreased in combination. 2,4-D did not affect the activity of superoxide dismutase (SOD, EC 1.15.1.1), but the activity of this enzyme in azinphosmethyl treatment decreased, while its activity increased in combination. Combined treatment of the pesticides exerted synergistic effects in the activity of SOD, while antagonistic effects were found in the activities of G6PD, GPx, GR. The results indicate that O. niloticus resisted oxidative stress by antioxidant mechanisms and prevented increases in lipid peroxidation.  相似文献   

20.
NADPH is an important cofactor in many biosynthesis pathways and the regeneration of reduced glutathione, critically important in cellular defense against oxidative damage. It is mainly produced by glucose 6-phosphate dehydrogenase (G6PD), malic enzyme, and the cytosolic form of NADP(+)-dependent isocitrate dehydrogenase (IDPc). Little information is available about the role of IDPc in antioxidant defense. In this study we investigated the role of IDPc against cytotoxicity induced by oxidative stress by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 3-4-fold higher and 35% lower, respectively, than that in the parental cells carrying the vector alone. Although the activities of other antioxidant enzymes, such as superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and G6PD, were comparable in all transformed cells, the ratio of GSSG to total glutathione was significantly higher in the cells expressing the lower level of IDPc. This finding indicates that IDPc is essential for the efficient glutathione recycling. Upon transient exposure to increasing concentrations of H(2)O(2) or menadione, an intracellular source of free radicals and reactive oxygen species, the cells with low levels of IDPc became more sensitive to oxidative damage by H(2)O(2) or menadione. Lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against oxidative stress, compared to the control cells. This study provides direct evidence correlating the activities of IDPc and the maintenance of the cellular redox state, suggesting that IDPc plays an important role in cellular defense against oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号