首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Population density and individual dispersal behaviour affect species' distribution dynamics. Population densities vary over time, and some species occasionally increase to very high numbers, for example during outbreaks. In such situations, populations are expected to expand into new areas as a result of density-dependent dispersal which sometimes even results in range expansion. A local population of the northern pine processionary moth Thaumetopoea pinivora has recently reached outbreak densities at the edge of its northern range at the southern tip of Gotland Island in the Baltic Sea. We first investigated whether the outbreak had resulted in establishment of populations in suitable habitats on Gotland Island outside the outbreak area. Six small populations were found that could potentially have originated from the outbreak area. However, data from 12 microsatellite markers strongly suggest that these populations did not originate from the recent outbreak. Genetic variability was not reduced in these small, isolated populations, and there were several unique alleles, indicating instead a different population history and that there has been no recent range expansion. In addition, there was apparent genetic isolation by geographic distance, implying that despite the high density of the outbreak population, significant gene flow has not occurred.  相似文献   

2.
Crop protection against insect pests requires first a good knowledge of the biology and ecology of the different pest species and the associated beneficials, in particular the spatial distribution of the populations. But the movement of insect populations in the landscape remains often poorly known and in some cases does not make it possible to know the role of the various cultivated and wild habitats in the dynamics of pest and useful insects. Stable isotopes are a tool contributing to the knowledge of host plants (13carbon/12carbon) as well as geographical origin of insects (1hydrogen/2hydrogen). The analysis of stable isotopic ratios has been performed in south-western France on populations of the hoverfly Episyrphus balteatus, one of the most important predators of the cereal aphids in Europe and on West African populations of the bollworm Helicoverpa armigera, an important polyphagous pest attacking cotton and vegetables in the Old World. Methodology, preliminary results and perspectives given by stable isotopes are presented here.  相似文献   

3.
A distributed-parameter population dynamics model is developed specifically for use with variational optimization techniques. The objective is to develop a modeling/ optimization technique that will permit the development of optimal control policies which minimize combined costs of pest control and economic-yield loss. The model results and optimal control policies are continuous and distributed in time and in insect age. The technique is applied to a study of control by pesticide of the southern green stink bug, Nezara viridula (Linnaeus), a major pest of soybeans in the South. In this case study, the model results agree well with field-survey results, while the optimal control trajectories are reasonable and suggest several avenues for further study.  相似文献   

4.
农田生态系统植物多样性对害虫种群数量的影响   总被引:32,自引:5,他引:32  
着重分析植物多样性影响害虫发生为害及种群数量的生态学机制,综合评述了关于这种机制的两种主要假说,即天敌假说和资源集中假说.同时总结了植物多样性增大和减少对害虫控制的有利和不利因素.研究表明农田生态系统中植物多样性的增大在多数情况下能导致某些害虫种群数量的下降,但是目前很难就不同栖境中所有类型的害虫形成一般性的结论  相似文献   

5.
Native insects can become epidemic pests in agro-ecosystems. A population genetics approach was applied to analyze the emergence and spread of outbreak populations of native insect species. Outbreaks of the mirid bug, Stenotus rubrovittatus, have rapidly expanded over Japan within the last two decades. To characterize the outbreak dynamics of this species, the genetic structure of local populations was assessed using polymorphisms of the mtDNA COI gene and six microsatellite loci. Results of the population genetic analysis suggested that S. rubrovittatus populations throughout Japan were genetically isolated by geographic distance and separated into three genetic clusters occupying spatially segregated regions. Phylogeographic analysis indicated that the genetic structure of S. rubrovittatus reflected post-glacial colonization. Early outbreaks of S. rubrovittatus in the 1980s occurred independently of genetically isolated populations. The genetic structure of the populations did not fit the pattern of an outbreak expansion, and therefore the data did not support the hypothesis that extensive outbreaks were caused by the dispersal of specific pestiferous populations. Rather, the historical genetic structure prior to the outbreaks was maintained throughout the increase in abundance of the mirid bug. Our study indicated that changes in the agro-environment induced multiple outbreaks of native pest populations. This implies that, given suitable environmental conditions, local populations may have the potential to outbreak even without invasion of populations from other environmentally degraded areas.  相似文献   

6.
杨德卫  李生平  崔海涛  邹声浩  王伟 《遗传》2020,(3):278-286,I0002-I0009
近年来,大量的植物抗病基因和病原菌无毒基因被克隆,抗病基因和无毒基因的结构、功能及其互作关系的研究也取得重大进展。在植物中,由病原菌模式分子(pathogen-associated molecular patterns, PAMPs)引发的免疫反应(PAMP-triggered immunity, PTI)和由效应因子引发的免疫反应(effector-triggered immunity, ETI)是植物在长期进化过程中形成的两类抵抗病原物的机制。PTI反应主要通过细胞表面受体(patternrecognition receptors, PRRs)识别并结合PAMPs从而激活下游免疫反应,而在ETI反应中,则通过植物R基因(resistance gene,R)与病原菌无毒基因(avirulence gene, Avr)产物间的直接或间接相互作用来完成免疫反应。本文对植物PTI反应和ETI反应分别进行了概述,重点探讨了植物R基因与病原菌Avr基因之间的互作遗传机理,并对目前植物抗性分子遗传机制研究和抗病育种中的问题进行了探讨和展望。  相似文献   

7.
外来害虫蔗扁蛾的寄主范围   总被引:15,自引:0,他引:15  
综述了我国近年传入的害虫蔗扁蛾的寄主植物范围 :到目前为止 ,蔗扁蛾Opogonasacchari(Bo jer)的寄主植物已达 2 8科 87种 8变种 ;其中国外已报导的为 2 4科 4 6种 4变种 ,中国已查到 1 4科 5 5种 2变种 ,且不断发现新的寄主植物 ,有蔓延到多种行道绿化树木和园林花卉植物上的趋势 ,须引起充分关注。  相似文献   

8.
Aminopeptidase-I, the enzymatic product of the Lap locus, liberates N-terminal neutral and aromatic amino acids from oligopeptides. The enzyme is associated with the brush border of the intestine and the extensive lysosomal system in the digestive tubule cells; the enzyme functions in oligopeptide degradation and possibly amino acid transport. The Lap locus is genetically polymorphic and allele frequencies differ between populations according to environmental salinities.
Using cell-free lysosomes, we show salinity related differences in both lysosomal membrane latency and lysosomal and cytosolic free-amino acid concentrations. Differences in the response of the lysosomal aminopeptidase-I enzyme to differences or changes in salinity are discussed.
Antibodies against aminopeptidase-I enzyme were used to demonstrate that alleles of the Lap locus exhibit different specific activities per unit enzyme concentration. In oceanic populations, the concentrations of aminopeptidase-I enzyme of individual phenorypes are equal, suggesting that variation of specific activity among phenorypes is due to allele specific differences in catalytic efficiency. In estuarine populations, total enzyme activity is lower, which is partially due to a significantly lower concentration of aminopeptidase-I enzyme of one homozygote genotype.
The consequences of a change in environmental salinity can be measured on the biochemical, physiological, and population genetic levels. We discuss the possible mechanisms by which salinity variations are responsible for the genetic polymorphism of aminopeptidase-I.  相似文献   

9.
The role of an entomopathogen in evolution of herbivore adaptation to partially resistant host plants was examined using a tritrophic system in the laboratory. We hypothesized that a pathogen should interact with herbivore behavior to accelerate herbivore adaptation to toxic plants: individuals not adapted to toxin tend to move more on toxic plants, and therefore are more likely to encounter a lethal dose of pathogen, further increasing the probability that they will be eliminated by selection. Heliothis virescens (F.) (Noctuidae) was selected for adaptation to transgenic tobacco containing a sublethal concentration of Bacillus thuringiensis Berliner toxin under two treatment regimes: larvae placed on plants treated with infective conidia of the entomopathogenic fungus, Nomuraea rileyi (Farlow) Samson, and larvae placed on plants without fungus.Selection was initiated with a genetically heterogeneous strain created by crossing two laboratory strains of H. virescens, one not adapted to B. thuringiensis toxin, and one highly adapted (>1000-fold) to toxin. This cross was performed four times to create four independent populations. Selection was initiated with F2 offspring from each cross and continued for 8–10 consecutive generations. Adaptation to toxin within each treatment population was quantified every generation by measuring survival and growth of larvae on artificial diet containing a low concentration of B. thuringiensis toxin.In three of four replicates, H. virescens populations exposed to N. rileyi adapted to B. thuringiensis toxin more quickly than populations not exposed. These results supported our hypothesis that the pathogen should accelerate adaptation to toxic plants. However, this hypothesis was contradicted by the result in one replicate, in which the population not exposed to fungus adapted to toxic plants faster. This opposite result could not be explained, but it suggests that there may be substantial variation in herbivore evolution in tritrophic systems.H. virescens populations selected in the presence of fungus and in the absence of fungus did not differ in feeding or in mortality when placed on leaf disks treated with conidia. Thus, populations exposed to N. rileyi on plants for 7–8 generations displayed neither physiological nor behavioral adaptation to N. rileyi.  相似文献   

10.
全球气候变化是近来人类关注的焦点问题,其最显著的特征是气候变暖.因为昆虫具有生活周期短、繁殖率高等特点,所以,气候变暖对昆虫的发育、繁殖和存活会产生强烈的直接影响.气候变暖促使一些昆虫提前春天的物候现象,向高纬度或高海拔地区迁移.然而,昆虫在自然界并非孤立地存在,它们与寄主植物和自然天敌相互联系、相互作用,并在长期的进化过程中逐渐适应特定区域的气候条件.因此,全球气候变暖对“植物-害虫-天敌”的种间关系必然产生直接或间接的影响,导致不同昆虫之间以及昆虫与其相关营养层的物种之间的相互关系在气候变化下呈现出时间上的异步性和空间上的错位,从而影响植物的适应性和抗虫性、害虫的发生规律和危害程度以及天敌的种群消长和控害效能.昆虫除了可以通过休眠或滞育的方式在时间上避开高温的影响外,还可以通过迁飞或移动的方式在空间上避开高温的影响,在这种迁移和扩散不同步的情况下可能使害虫食性和取食植物的害虫及其天敌的种类发生变化,从而改变生物群落的组成与结构,影响生态系统的服务和功能.  相似文献   

11.
Conventional soybean weed management and transgenic herbicide-tolerant management were examined to assess their effects on soybean insect pest populations in south Georgia in 1997 and 1998. Soybean variety had very little impact on the insect species observed, except that maturity group effects were observed for stink bug, primarily Nezara viridula (L.), population densities on some sampling dates. Stink bugs were more abundant on the early maturing varieties in mid-season. Velvetbean caterpillar, Anticarsia gemmatalis Hübner, potato leafhopper, Empoasca fabae (Harris), and grasshoppers Melanoplus spp. were more numerous on either conventional or herbicide-tolerant varieties on certain dates, although these differences were not consistent throughout the season. Soybean looper, Pseudoplusia includens (Walker), threecornered alfalfa hopper, Spissistilus festinus (Say), and whitefringed beetles, Graphognathus spp , demonstrated no varietal preference in this study. Few weed treatment differences were observed, but if present on certain sampling dates, then pest numbers were higher in plots where weeds were reduced (either postemergence herbicides or preplant herbicide plus postemergence herbicide). The exception to this weed treatment effect was grasshoppers, which were more numerous in weedy plots when differences were present. In post emergence herbicide plots, there were no differences in insect pest densities between the conventional herbicides (e.g., Classic, Select, Cobra, and Storm) compared with specific gene-inserted herbicide-tolerant materials (i.e., Roundup and Liberty). Defoliation, primarily by velvetbean caterpillar, was different between soybean varieties at some test sites but not different between herbicide treatments. We did not observe differences in seasonal abundance of arthropod pests between conventional and transgenic herbicide-tolerant soybean.  相似文献   

12.
The success of invasive species is often thought to be due to release from natural enemies. This hypothesis assumes that species are regulated by top-down forces in their native range and are likely to be regulated by bottom-up forces in the invasive range. Neither of these assumptions has been consistently supported with insects, a group which includes many destructive invasive species. Winter moth (Operophtera brumata) is an invasive defoliator in North America that appears to be regulated by larval mortality. To assess whether regulation was caused by top-down or bottom-up forces, we sought to identify the main causes of larval mortality. We used observational and manipulative field and laboratory studies to demonstrate that larval mortality due to predation, parasitism, and disease were minimal. We measured the response of larval dispersal in the field to multiple aspects of foliar quality, including total phenolics, pH 10 oxidized phenolics, trichome density, total nitrogen, total carbon, and carbon–nitrogen ratio. Tree-level declines in density were driven by density-dependent dispersal of early instars. Late instar larvae dispersed at increased rates from previously damaged as compared to undamaged foliage, and in 2015 field larval dispersal rates were related to proportion of oxidative phenolics. We conclude that larval dispersal is the dominant source of density-dependent larval mortality, may be mediated by induced changes in foliar quality, and likely regulates population densities in New England. These findings suggest that winter moth population densities in New England are regulated by bottom-up forces, aligning with the natural enemy release hypothesis.  相似文献   

13.
姚凤銮  尤民生 《昆虫知识》2012,49(3):563-572
全球气候变化是近来人类关注的焦点问题,其最显著的特征是气候变暖。因为昆虫具有生活周期短、繁殖率高等特点,所以,气候变暖对昆虫的发育、繁殖和存活会产生强烈的直接影响。气候变暖促使一些昆虫提前春天的物候现象,向高纬度或高海拔地区迁移。然而,昆虫在自然界并非孤立地存在,它们与寄主植物和自然天敌相互联系、相互作用,并在长期的进化过程中逐渐适应特定区域的气候条件。因此,全球气候变暖对"植物-害虫-天敌"的种间关系必然产生直接或间接的影响,导致不同昆虫之间以及昆虫与其相关营养层的物种之间的相互关系在气候变化下呈现出时间上的异步性和空间上的错位,从而影响植物的适应性和抗虫性、害虫的发生规律和危害程度以及天敌的种群消长和控害效能。昆虫除了可以通过休眠或滞育的方式在时间上避开高温的影响外,还可以通过迁飞或移动的方式在空间上避开高温的影响,在这种迁移和扩散不同步的情况下可能使害虫食性和取食植物的害虫及其天敌的种类发生变化,从而改变生物群落的组成与结构,影响生态系统的服务和功能。  相似文献   

14.
Many plant-feeding insect species considered to be polyphagous are in fact composed of genetically differentiated sympatric populations that use different hosts and between which gene flow still exists. We studied the population genetic structure of the cotton-melon aphid Aphis gossypii that is considered as one of the most polyphagous aphid species. We used eight microsatellites to analyse the genetic diversity of numerous samples of A. gossypii collected over several years at a large geographical scale on annual crops from different plant families. The number of multilocus genotypes detected was extremely low and the genotypes were found to be associated with host plants. Five host races were unambiguously identified (Cucurbitaceae, cotton, eggplant, potato and chili- or sweet pepper). These host races were dominated by asexual clones. Plant transfer experiments using several specialized clones further confirmed the existence of host-associated trade-offs. Finally, both genetic and experimental data suggested that plants of the genus Hibiscus may be used as refuge for the specialized clones. Resource abundance is discussed as a key factor involved in the process of ecological specialization in A. gossypii.  相似文献   

15.
Rising atmospheric carbon dioxide concentration is expected to increase plant productivity, but little evidence is available regarding effects on insect feeding or growth. Larvae of the soybean looper, a noctuid moth, were fed leaves of soybean plants grown under three carbon dioxide regimes (350, 500 and 650 l·l-1). Larvae fed at increasingly higher rates on plants from elevated carbon dioxide atmospheres: 30% greater on leaves from the 650 l·l-1 treatment than on leaves from the 350 l·l-1 treatment. When variation in larval feeding was related to the leaf content of nitrogen and water, there was no significant remaining effect of carbon dioxide treatment. The principal effect on herbivores of increasing the carbon supply of leaves appeared to be reduction of leaf nutrient concentration. This study suggests that feeding by herbivores on the leaves of C3 plants may increase as the level of atmospheric carbon dioxide rises.  相似文献   

16.
本文对西方花蓟马在我国适生性进行了简要的分析,概述了当前国内外西方花蓟马综合防治的研究进展,并提出了在我国控制该虫扩散蔓延的对策.  相似文献   

17.
The bioacoustic attributes of vocalisations made by birds in urban environments often differ markedly from those of rural conspecifics. Whether such differences are result from genetic divergence between urban and rural populations, or from plasticity or cultural evolution of song remains poorly understood. Silvereyes (Zosterops lateralis) show evidence of acoustic adaptation to urban noise, modifying both their songs and calls in cities when compared to rural areas. We investigated whether these differences were associated with corresponding morphological and neutral genetic differences. Across six pairs of geographically separate urban and rural populations, all morphological traits measured were similar. Furthermore, genetic analyses of variation at nine microsatellite loci revealed high levels of genetic connectivity between populations, and similar levels of heterozygosity in both habitat types. Consistent directional shifts in song attributes of city birds across large geographic areas thus do not appear to be accompanied by associated morphological or neutral genetic divergence.  相似文献   

18.
Symbioses between the root nodule-forming, nitrogen-fixing actinomycete Frankia and its angiospermous host plants are important in the nitrogen economies of numerous terrestrial ecosystems. Molecular characterization of Frankia strains using polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) analyses of the 16S rRNA-ITS gene and of the nifD-nifK spacer was conducted directly on root nodules collected worldwide from Casuarina and Allocasuarina trees. In their native habitats in Australia, host species contained seven distinctive sets of Frankia in seven different molecular phylogenetic groups. Where Casuarina and Allocasuarina trees are newly planted outside Australia, they do not normally nodulate unless Frankia is introduced with the host seedling. Nodules from Casuarina trees introduced outside Australia over the last two centuries were found to contain Frankia from only one of the seven phylogenetic groups associated with the host genus Casuarina in Australia. The phylogenetic group of Frankia found in Casuarina and Allocasuarina trees introduced outside Australia is the only group that has yielded isolates in pure culture, suggesting a greater ability to survive independently of a host. Furthermore, the Frankia species in this group are able to nodulate a wider range of host species than those in the other six groups. In baiting studies, Casuarina spp. are compatible with more Frankia microsymbiont groups than Allocasuarina host spp. adapted to drier soil conditions, and C. equisetifolia has broader microsymbiont compatibility than other Casuarina spp. Some Frankia associated with the nodular rhizosphere and rhizoplan, but not with the nodular tissue, of Australian hosts were able to nodulate cosmopolitan Myrica plants that have broad microsymbiont compatibility and, hence, are a potential host of Casuarinaceae-infective Frankia outside the hosts' native range. The results are consistent with the idea that Frankia symbiotic promiscuity and ease of isolation on organic substrates, suggesting saprophytic potential, are associated with increased microsymbiont ability to disperse and adapt to diverse new environments, and that both genetics and environment determine a host's nodular microsymbiont.  相似文献   

19.
Phytoplasmas are bacterial plant pathogens that have devastating effects on the yields of crops and plants worldwide. They are intracellular parasites of both plants and insects, and are spread among plants by insects. How phytoplasmas can adapt to two diverse environments is of considerable interest; however, the mechanisms enabling the "host switching" between plant and insect hosts are poorly understood. Here, we report that phytoplasmas dramatically alter their gene expression in response to "host switching" between plant and insect. We performed a detailed characterization of the dramatic change that occurs in the gene expression profile of Candidatus Phytoplasma asteris OY-M strain (approximately 33% of the genes change) upon host switching between plant and insect. The phytoplasma may use transporters, secreted proteins, and metabolic enzymes in a host-specific manner. As phytoplasmas reside within the host cell, the proteins secreted from phytoplasmas are thought to play crucial roles in the interplay between phytoplasmas and host cells. Our microarray analysis revealed that the expression of the gene encoding the secreted protein PAM486 was highly upregulated in the plant host, which is also observed by immunohistochemical analysis, suggesting that this protein functions mainly when the phytoplasma grows in the plant host. Additionally, phytoplasma growth in planta was partially suppressed by an inhibitor of the MscL osmotic channel that is highly expressed in the plant host, suggesting that the osmotic channel might play an important role in survival in the plant host. These results also suggest that the elucidation of "host switching" mechanism may contribute to the development of novel pest controls.  相似文献   

20.
Moshe Coll 《Oecologia》1996,105(2):214-220
Omnivory (i.e., feeding at more than one trophic level) is common in many ecological communities. To date, most studies of omnivory have focused on systems that include omnivores that feed on several prey items, primarily in aquatic systems. Yet, many terrestrial insect predators feed not only on prey but also on plants. The difference between systems with plant-feeding omnivores and those with exclusively prey-feeding omnivores calls for special attention. The first step towards understanding the interactions between plant-feeding omnivores and their prey is to determine how omnivores respond to variations in plant properties. In this study, I investigated two major aspects of the interactions between the plant-feeding predatory bug Orius insidiosus and four host plants of its prey; the behavioral aspect, in which plants are selected for oviposition and the physiological aspect, in which plants differ in their suitability for the insect's growth, survival, and reproduction. No prey was offered to the omnivore during any of the experiments, but older nymphs and adults were fed prey eggs prior to their use in the experiments. Data show that O. insidiosus females almost completely rejected corn leaves for oviposition; nymph and adult survival was highest on bean; and female fecundity was higher on bean than tomato, pepper or corn foliage. the significance of the apparent ability of O. insidiosus to discriminate among plants and the observed correlation between oviposition preference and offspring performance in bean and in corn is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号