首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Microtubules are key players in the biology of Trypanosomatid parasites, not only as classical components of the mitotic spindle, microtubule-organizing centres and flagellum but also as the essential constituent of the cytoskeleton. Their length dynamics are regulated by, among others, microtubule-severing proteins. Four and six genes encoding microtubule-severing proteins can be found bioinformatically in the Leishmania major and Trypanosoma brucei genome respectively. We investigated all these proteins in these organisms, which include the katanin, katanin-like, spastin and fidgetin, and looked at their subcellular localization as well as their putative function by examining 'loss-of-function' phenotypes. The katanin-like KAT60b was found implicated in flagellar length reduction, but not in its size increase, while the katanin p80 subunit appeared clearly involved in cytokinesis. Fidgetin and spastin homologues were both localized in the nucleus: the first as a discrete and variable number of dots during most of the cell cycle, redistributing to the spindle and midbody during mitosis; the second concentrated as ≤ 5 perinucleolar punctuations, similar to the electron-dense plaques identified in T. brucei , which were assimilated to kinetochores. This first study of microtubule-severing proteins in 'divergent' eukaryotes gives further insight into the multiple functions of these proteins identified in the hitherto studied models.  相似文献   

2.
Cell differentiation in Trypanosoma brucei involves highly regulated changes in morphology, proliferation and metabolism. However, the controls of these developmental processes are unknown. We have identified two novel proteins from the rare CCCH zinc finger family, each <140 amino acids in length and implicated in life cycle regulation. TbZFP1 is transiently enriched during differentiation from the bloodstream to procyclic form, whereas tbZFP2, when ablated in bloodstream forms by RNA interference, inhibits this developmental step. Moreover, expressing an ectopic copy of tbZFP2 results in a dramatic procyclic stage-specific remodelling of the trypanosome cytoskeleton similar to the morphogenic events of differentiation. This phenotype, we term 'nozzle', involves polar extension of microtubules at the posterior end of the cell and is dependent upon a motif hitherto restricted to E3 ubiquitin ligases. TbZFP1 and tbZFP2 represent the first molecules implicated in the control of trypanosome differentiation to the procyclic form.  相似文献   

3.
African trypanosomes have a tightly coordinated cell cycle to effect efficient segregation of their single organelles, the nucleus, flagellum, and kinetoplast. To investigate cell cycle control in trypanosomes, a mitotic cyclin gene (CYC6) has been identified in Trypanosoma brucei. We show that CYC6 forms an active kinase complex with CRK3, the trypanosome CDK1 homologue, in vivo. Using RNA interference, we demonstrate that absence of CYC6 mRNA results in a mitotic block and growth arrest in both the insect procyclic and mammalian bloodstream forms. In the procyclic form, CYC6 RNA interference generates anucleate cells with a single kinetoplast, whereas in bloodstream form trypanosomes, cells with one nucleus and multiple kinetoplasts are observed. Fluorescence-activated cell sorting analysis shows that bloodstream but not procyclic trypanosomes are able to reinitiate nuclear S phase in the absence of mitosis. Taken together, these data show that procyclic trypanosomes can undergo cytokinesis without completion of mitosis, whereas a mitotic block in bloodstream form trypanosomes inhibits cytokinesis but not kinetoplast replication and segregation nor an additional round of nuclear DNA synthesis. This indicates that there are fundamental differences in cell cycle controls between life cycle forms of T. brucei and that key cell cycle checkpoints present in higher eukaryotes are absent from trypanosomes.  相似文献   

4.
Li Z  Wang CC 《Eukaryotic cell》2006,5(7):1026-1035
Aurora-B kinase is a chromosomal passenger protein essential for chromosome segregation and cytokinesis. In the procyclic form of Trypanosoma brucei, depletion of an aurora-B kinase homologue TbAUK1 inhibited spindle formation, mitosis, cytokinesis, and organelle replication without altering cell morphology. In the present study, an RNA interference knockdown of TbAUK1 or overexpression of inactive mutant TbAUK1-K58R in the bloodstream form also resulted in defects in spindle formation, chromosome segregation, and cytokinesis but allowed multiple rounds of nuclear DNA synthesis, nucleolus multiplication, and continuous replication of kinetoplast, basal body, and flagellum. The typical trypanosome morphology was lost to an enlarged round shape filled with microtubules. It is thus apparent that there are distinctive mechanisms of action of TbAUK1 in regulating cell division between the two developmental stages of trypanosome. While it exerts a tight control on mitosis, organelle replication, and cytokinesis in the procyclic form, it regulates cytokinesis without rigid control over either nuclear DNA synthesis or organelle replication in the bloodstream form. The molecular basis underlining these discrepancies remains to be explored.  相似文献   

5.
6.
The life cycle of the African trypanosome Trypanosoma brucei, is characterised by a transition between insect and mammalian hosts representing very different environments that present the parasite with very different challenges. These challenges are met by the expression of life-cycle stage-specific cohorts of proteins, which function in systems such as metabolism and immune evasion. These life-cycle transitions are also accompanied by morphological rearrangements orchestrated by microtubule dynamics and associated proteins of the subpellicular microtubule array. Here we employed a gel-based comparative proteomic technique, Difference Gel Electrophoresis, to identify cytoskeletal proteins that are expressed differentially in mammalian infective and insect form trypanosomes. From this analysis we identified a pair of novel, paralogous proteins, one of which is expressed in the procyclic form and the other in the bloodstream form. We show that these proteins, CAP51 and CAP51V, localise to the subpellicular corset of microtubules and are essential for correct organisation of the cytoskeleton and successful cytokinesis in their respective life cycle stages. We demonstrate for the first time redundancy of function between life-cycle stage specific paralogous sets in the cytoskeleton and reveal modification of cytoskeletal components in situ prior to their removal during differentiation from the bloodstream form to the insect form. These specific results emphasise a more generic concept that the trypanosome genome encodes a cohort of cytoskeletal components that are present in at least two forms with life-cycle stage-specific expression.  相似文献   

7.
In 1999, mutations in the gene encoding the microtubule severing AAA ATPase spastin were identified as a major cause of a genetic neurodegenerative condition termed hereditary spastic paraplegia (HSP). This finding stimulated intense study of the spastin protein and over the last decade, a combination of cell biological, in vivo, in vitro and structural studies have provided important mechanistic insights into the cellular functions of the protein, as well as elucidating cell biological pathways that might be involved in axonal maintenance and degeneration. Roles for spastin have emerged in shaping the endoplasmic reticulum and the abscission stage of cytokinesis, in which spastin appears to couple membrane modelling to microtubule regulation by severing.  相似文献   

8.
Hu L  Hu H  Li Z 《Molecular microbiology》2012,83(3):565-578
Kinesins are motor‐based transport proteins that play diverse roles in various cellular processes. The trypanosome genome lacks the homologues of many conserved mitotic kinesins, but encodes a number of trypanosome‐specific kinesins with unknown function. Here, we report the biochemical and functional characterization of TbKIN‐C, a trypanosome‐specific kinesin, which was initially identified through an RNAi screen for cytokinesis genes in T. brucei. TbKIN‐C possesses in vitro ATPase activity and associates with cytoskeletal tubulin microtubules in vivo. It is distributed throughout the cytoskeleton with a focal enrichment at the posterior end of the cell during early cell cycle stages. RNAi of TbKIN‐C resulted in distorted cell shape with an elongated posterior filled with tyrosinated tubulin microtubules. Silencing of TbKIN‐C impaired the segregation of organelles and cytoskeletal structures and led to detachment of the new flagellum and a small portion of the cytoplasm. We also show that RNAi of TbKIN‐C compromised cytokinesis and abolished the trans‐localization of TbCPC1, a subunit of the chromosomal passenger complex, from the central spindle to the initiation site of cytokinesis. Our results suggest an essential role of TbKIN‐C in maintaining cell morphology, likely through regulating microtubule dynamics at the posterior end of the cell.  相似文献   

9.
Cyclins bind and activate cyclin-dependent kinases that regulate cell cycle progression in eukaryotes. Cell cycle control in Trypanosoma brucei was analyzed in the present study. Genes encoding four PHO80 cyclin homologues and three B-type cyclin homologues but no G1 cyclin homologues were identified in this organism. Through knocking down expression of the seven cyclin genes with the RNA interference technique in the procyclic form of T. brucei, we demonstrated that one PHO80 homologue (CycE1/CYC2) and a B-type cyclin homologue (CycB2) are the essential cyclins regulating G1/S and G2/M transitions, respectively. This lack of overlapping cyclin function differs significantly from that observed in the other eukaryotes. Also, PHO80 cyclin is known for its involvement only in phosphate signaling in yeast with no known function in cell cycle control. Both observations thus suggest the presence of simple and novel cell cycle regulators in trypanosomes. T. brucei cells deficient in CycE1/CYC2 displayed a long slender morphology, whereas those lacking CycB2 assumed a fat stumpy form. These cells apparently still can undergo cytokinesis generating small numbers of anucleated daughter cells, each containing a single kinetoplast known as a zoid. Two different types of zoids were identified, the slender zoid derived from reduced CycE1/CYC2 expression and the stumpy zoid from CycB2 deficiency. This observation indicates an uncoupling between the kinetoplast and the nuclear cycle, resulting in cell division driven by kinetoplast segregation with neither a priori S phase nor mitosis in the trypanosome.  相似文献   

10.
The subpellicular microtubules of the trypanosome cytoskeleton are cross-linked to each other and the plasma membrane, creating a cage-like structure. We have isolated, from Trypanosoma brucei, two related low-molecular-weight cytoskeleton-associated proteins (15- and 17-kDa), called CAP15 and CAP17, which are differentially expressed during the life cycle. Immunolabeling shows a corset-like colocalization of both CAPs and tubulin. Western blot and electron microscope analyses show CAP15 and CAP17 labeling on detergent-extracted cytoskeletons. However, the localization of both proteins is restricted to the anterior, microtubule minus, and less dynamic half of the corset. CAP15 and CAP17 share properties of microtubule-associated proteins when expressed in heterologous cells (Chinese hamster ovary and HeLa), colocalization with their microtubules, induction of microtubule bundle formation, cold resistance, and insensitivity to nocodazole. When overexpressed in T. brucei, both CAP15 and CAP17 cover the whole subpellicular corset and induce morphological disorders, cell cycle-based abnormalities, and subsequent asymmetric cytokinesis.  相似文献   

11.
12.
The chromosomal passenger protein aurora kinases have been implicated in regulating chromosome segregation and cell division. Three aurora kinase homologues were identified (TbAUK1, -2 and -3) in the Trypanosome Genomic Data Base, and their expressions in the procyclic form of Trypanosoma brucei were knocked down individually by using the RNA interference technique. Only a knockdown of TbAUK1 arrested the cells in G(2)/M phase with each cell showing an extended posterior end, two kinetoplasts, and an enlarged nucleus, apparently the result of an inhibited kinetoplast multiplication and a failed mitosis. There is no mitotic spindle structure in the TbAUK1-depleted cell. The two kinetoplasts moved apart from each other but stopped just before cytokinesis, suggesting that cytokinesis was blocked in its early phase. Overexpression of TbAUK1 in the cells resulted in little change in cell growth. By immunofluorescence, TbAUK1 was primarily localized to the nucleus in interphase and to the mitotic spindle during apparent metaphase and anaphase. Thus, differing from other eukaryotes, TbAUK1 has an apparent triple function in coupling mitosis and kinetoplast replication with cytokinesis in T. brucei. T. brucei polo-like kinase, previously identified as the initiator of cytokinesis without apparent involvement in mitosis in the trypanosome, was either depleted or overexpressed in the TbAUK1-deficient cells. A dominant TbAUK1-depleted phenotype was demonstrated in both cases, suggesting that TbAUK1 plays an essential role in cytokinesis that cannot be affected by changes in the level of T. brucei polo-like kinase. To our knowledge, this is the first time that the function of an aurora B-like kinase is a prerequisite for polo-like kinase action in initiating cytokinesis. TbAUK1 is also the first identified protein that couples both mitosis and kinetoplast replication with cytokinesis in the trypanosome.  相似文献   

13.
Cytokinesis is initiated only after mitotic exit in eukaryotes. However, in the insect (procyclic) form of an ancient protist, Trypanosoma brucei, a blockade at the G2/M checkpoint results in an enrichment of anucleate cells (zoids), suggesting separated regulations between mitosis and cytokinesis (X. Tu and C. C. Wang, J. Biol. Chem. 279:20519-20528, 2004). Polo-like kinases (Plks) are known to play critical roles in controlling both mitosis and cytokinesis. A single Plk homologue in T. brucei, TbPLK, was found to be capable of complementing the Plk (Cdc5) functions in Saccharomyces cerevisiae, thus raising the question of how it may function in the trypanosome with cytokinesis dissociated from mitosis. Depletion of TbPLK in the procyclic form of T. brucei by RNA interference resulted in growth arrest with accumulation of multiple nuclei, kinetoplasts, basal bodies, and flagella in approximately equal numbers among individual cells. There were, however, few zoids detectable, indicating inhibited cytokinesis with unblocked mitosis and kinetoplast segregation. TbPLK is thus apparently involved only in initiating cytokinesis in T. brucei. Overexpression of TbPLK in the trypanosome did not affect cell growth, but 13% of the resulting population was in the zoid form, suggesting runaway cytokinesis. An immunofluorescence assay indicated that TbPLK was localized in a chain of likely flagellum attachment zones in the cytoskeleton. In a dividing cell, a new line of such zones appeared closely paralleling the existing one, which could constitute the cleavage furrow. An exposed region of TbPLK at the anterior tip of the cell may provide the trigger of cytokinesis. Taken together, our results revealed a novel mechanism of cytokinesis initiation in the trypanosome that may serve as a useful model for further in-depth investigations.  相似文献   

14.
The Trypanosoma brucei flagellum is a multifunctional organelle with critical roles in motility, cellular morphogenesis, and cell division. Although motility is thought to be important throughout the trypanosome lifecycle, most studies of flagellum structure and function have been restricted to the procyclic lifecycle stage, and our knowledge of the bloodstream form flagellum is limited. We have previously shown that trypanin functions as part of a flagellar dynein regulatory system that transmits regulatory signals from the central pair apparatus and radial spokes to axonemal dyneins. Here we investigate the requirement for this dynein regulatory system in bloodstream form trypanosomes. We demonstrate that trypanin is localized to the flagellum of bloodstream form trypanosomes, in a pattern identical to that seen in procyclic cells. Surprisingly, trypanin RNA interference is lethal in the bloodstream form. These knockdown mutants fail to initiate cytokinesis, but undergo multiple rounds of organelle replication, accumulating multiple flagella, nuclei, kinetoplasts, mitochondria, and flagellum attachment zone structures. These findings suggest that normal flagellar beat is essential in bloodstream form trypanosomes and underscore the emerging concept that there is a dichotomy between trypanosome lifecycle stages with respect to factors that contribute to cell division and cell morphogenesis. This is the first time that a defined dynein regulatory complex has been shown to be essential in any organism and implicates the dynein regulatory complex and other enzymatic regulators of flagellar motility as candidate drug targets for the treatment of African sleeping sickness.  相似文献   

15.
The genome of the African trypanosome Trypanosoma brucei (Tb) contains at least three gene families (TbMSP-A, -B, and -C) encoding homologues of the abundant major surface protease (MSP, previously called GP63), which is found in all Leishmania species. TbMSP-B mRNA occurs in both procyclic and bloodstream trypanosomes, whereas TbMSP-A and -C mRNAs are detected only in bloodstream organisms. RNA interference (RNAi)-mediated gene silencing was used to investigate the function of TbMSP-B protein. RNAi directed against TbMSP-B but not TbMSP-A ablated the steady state TbMSP-B mRNA levels in both procyclic and bloodstream cells but had no effect on the kinetics of cultured trypanosome growth in either stage. Procyclic trypanosomes have been shown previously to have an uncharacterized cell surface metalloprotease activity that can release ectopically expressed surface proteins. To determine whether TbMSP-B is responsible for this release, transgenic variant surface glycoprotein 117 (VSG117) was expressed constitutively in T. brucei procyclic TbMSP-RNAi cell lines, and the amount of surface VSG117 was determined using a surface biotinylation assay. Ablation of TbMSP-B but not TbMSP-A mRNA resulted in a marked decrease in VSG release with a concomitant increase in steady state cell-associated VSG117, indicating that TbMSP-B mediates the surface protease activity of procyclic trypanosomes. This finding is consistent with previous pharmacological studies showing that peptidomimetic collagenase inhibitors block release of transgenic VSG from procyclic trypanosomes and are toxic for bloodstream but not procyclic organisms.  相似文献   

16.
AIR9 is a cytoskeleton‐associated protein in Arabidopsis thaliana with roles in cytokinesis and cross wall maturation, and reported homologues in land plants and excavate protists, including trypanosomatids. We show that the Trypanosoma brucei AIR9‐like protein, TbAIR9, is also cytoskeleton‐associated and colocalizes with the subpellicular microtubules. We find it to be expressed in all life cycle stages and show that it is essential for normal proliferation of trypanosomes in vitro. Depletion of TbAIR9 from procyclic trypanosomes resulted in increased cell length due to increased microtubule extension at the cell posterior. Additionally, the nucleus was re‐positioned to a location posterior to the kinetoplast, leading to defects in cytokinesis and the generation of aberrant progeny. In contrast, in bloodstream trypanosomes, depletion of TbAIR9 had little effect on nucleus positioning, but resulted in aberrant cleavage furrow placement and the generation of non‐equivalent daughter cells following cytokinesis. Our data provide insight into the control of nucleus positioning in this important pathogen and emphasize differences in the cytoskeleton and cell cycle control between two life cycle stages of the T. brucei parasite.  相似文献   

17.
The single flagellum of the protozoan parasite Trypanosoma brucei is attached along the length of the cell body by a complex structure that requires the FLA1 protein. We show here that inhibition of FLA1 expression by RNA interference in procyclic trypanosomes causes flagellar detachment and prevents cytokinesis. Despite being unable to divide, these cells undergo mitosis and develop a multinucleated phenotype. The Trypanosoma cruzi FLA1 homolog, GP72, is unable to complement either the flagellar detachment or cytokinesis defects in procyclic T. brucei that have been depleted of FLA1 by RNA interference. Instead, GP72 itself caused flagellar detachment when expressed in T. brucei. In contrast to T. brucei cells depleted of FLA1, procyclic T. brucei expressing GP72 continued to divide despite having detached flagella, demonstrating that flagellar attachment is not absolutely necessary for cytokinesis. We have also identified a FLA1-related gene (FLA2) whose sequence is similar but not identical to FLA1. Inhibition of FLA1 and FLA2 expression in bloodstream T. brucei caused flagellar detachment and blocked cytokinesis but did not inhibit mitosis. These experiments demonstrate that the FLA proteins are essential and suggest that in procyclic T. brucei, the FLA1 protein has separable functions in flagellar attachment and cytokinesis.  相似文献   

18.
Li Y  Li Z  Wang CC 《Molecular microbiology》2003,49(1):251-265
Ubiquitination and proteasomal degradation of cell cycle regulatory proteins are known to play a pivotal role in controlling the progression of the eukaryotic cell cycle. Using the technique of RNA interference (RNAi) on the bloodstream form of Trypanosoma brucei, we were able to knock down expression of each of the 11 non-ATPase regulatory subunit proteins (Rpns) in the 19S regulatory complex of the 26S proteasome. In each case, the knock-down led to arrest of cells within the G1 and G2 phases, suggesting blockage of cell cycle progression at both G1/S and G2/M boundaries. This finding differs from that observed previously in the procyclic form of T. brucei, in which loss of individual Rpns blocks only passage across the G2/M boundary. Thus, proteasomal degradation of additional regulatory protein(s) may be required for exiting from G1 phase in the bloodstream form. In vitro differentiation of each of the 11 Rpn-depleted bloodstream form cell lines into the procyclic form was monitored. Each cell line proceeded to completion of the differentiation process like the wild-type cells with the total percentage of differentiated cells about equivalent to the sum of G1 and G2 cells. Thus, cells trapped in either G1 or G2 phase can apparently still enter and complete the process of differentiation, which is probably neither stage specific nor dependent on the progression of the T. brucei cell cycle. The process is probably a simple pattern change of gene expression in the trypanosome induced by a temperature decrease from 37 degrees C to 26 degrees C in the presence of citrate and cis-aconitate.  相似文献   

19.
Two MOB1 genes, MOB1-A and MOB1-B, were identified in Trypanosoma brucei. MOB1-A of T. brucei was shown to form a complex with TbPK50, a functional homologue of the Schizosaccharomyces pombe protein kinase Orb6, and immune precipitated MOB1-A exhibited histone H1 protein kinase activity. MOB1-A and TbPK50 were also shown to bind p12cks1, a cyclin-dependent kinase accessory protein. Immune fluorescence of epitope-tagged MOB1-A and MOB1-B in bloodstream form trypanosomes showed they had a punctate distribution all through the cell cytoplasm and were excluded from the nucleus throughout the cell cycle. Using RNA interference (RNAi), MOB1 was shown to be essential in both bloodstream and procyclic life cycle stages. In the bloodstream form, RNAi of MOB1 resulted, after 8 h, in a significant increase in post-mitotic cells, the majority of which had a visible cleavage furrow. This was followed by the appearance of cells with abnormal complements of nuclei and kinetoplasts, often with the number of nuclei exceeding the number of kinetoplasts. Thus, downregulation of MOB1 in the bloodstream form results in a delay in cytokinesis, and leads to a deregulation of the cell cycle, possibly through an inhibitory effect on kinetoplast replication. In contrast, downregulation of MOB1 in the procyclic form appears to impede the accuracy of cytokinesis, by allowing mispositioning of the cleavage furrow and inappropriate cytokinesis. Unlike its counterpart in budding yeast, T. brucei MOB1 does not appear to be required for mitotic exit.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号