首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Du J  Zhou N  Liu H  Jiang F  Wang Y  Hu C  Qi H  Zhong C  Wang X  Li Z 《PloS one》2012,7(4):e35957
Estrogen receptor α (ERα) is a marker predictive for response of breast cancers to endocrine therapy. About 30% of breast cancers, however, are hormone- independent because of lack of ERα expression. New strategies are needed for re-expression of ERα and sensitization of ER-negative breast cancer cells to selective ER modulators. The present report shows that arsenic trioxide induces reactivated ERα, providing a target for therapy with ER antagonists. Exposure of ER-negative breast cancer cells to arsenic trioxide leads to re-expression of ERα mRNA and functional ERα protein in in vitro and in vivo. Luciferase reporter gene assays and 3-(4,5-dimethylthiazol-2-yl)- 5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assays show that, upon exposure to arsenic trioxide, formerly unresponsive, ER-negative MDA-MB-231 breast cancer cells become responsive to ER antagonists, 4-hydroxytamoxifen and ICI 182,780. Furthermore, methylation- specific PCR and bisulfite-sequencing PCR assays show that arsenic trioxide induces partial demethylation of the ERα promoter. A methyl donor, S-adenosylmethionine (SAM), reduces the degree of arsenic trioxide-induced re-expression of ERα and demethylation. Moreover, Western blot and ChIP assays show that arsenic trioxide represses expression of DNMT1 and DNMT3a along with partial dissociation of DNMT1 from the ERα promoter. Thus, arsenic trioxide exhibits a previously undefined function which induces re-expression ERα in ER-negative breast cancer cells through demethylation of the ERα promoter. These findings could provide important information regarding the application of therapeutic agents targeting epigenetic changes in breast cancers and potential implication of arsenic trioxide as a new drug for the treatment of ER-negative human breast cancer.  相似文献   

4.
Estrogen receptor α (ER-α) is a key mediator of estrogen actions in breast cancer (BC) cells. Understanding the effects of ligand-activated ER-α in target cells requires identification of the molecular partners acting in concert with this nuclear receptor to transduce the hormonal signal. We applied tandem affinity purification (TAP), glycerol gradient centrifugation and MS analysis to isolate and identify proteins interacting with ligand-activated ER-α in MCF-7 cell nuclei. This led to the identification of 264 ER-associated proteins, whose functions highlight the hinge role of ER-α in the coordination of multiple hormone-regulated nuclear processes in BC cells.  相似文献   

5.
6.
7.
MicroRNAs (miRNAs) play an important regulatory role in breast tumorigenesis. Previously, we found that let-7 miRNAs were downregulated significantly in formalin-fixed paraffin-embedded (FFPE) breast cancer tissues. In this study, we further found that endogenous levels of let-7b and let-7i miRNAs are inversely correlated with levels of estrogen receptor (ER)-a36, a new variant of ER-α66, in the FFPE tissue set. Bioinformatic analysis suggested that ER-α36 may be another target of let-7 miRNAs. To test this hypothesis, cotransfection of let-7 mimics or inhibitors together with full-length or a fragment of ER-α36 3'UTR luciferase construct was performed, and we found that let-7b and let-7i mimics suppressed the activity of reporter gene significantly, which was enhanced remarkably by let-7b and let-7i inhibitors. Both mRNA and protein expression of ER-α36 were inhibited by let-7 mimics and enhanced by let-7 inhibitors. Furthermore, ER-α36 mediated nongenomic MAPK and Akt pathways were weakened by let-7b and let-7i mimics in triple negative breast cancer cell line MDA-MB-231. The reverse correlation between let-7 miRNAs and ER-α36 also exists in Tamoxifen (Tam)-resistant MCF7 cell line. Transfection of let-7 mimics to Tam-resistant MCF7 cells downregulated ER-α36 expression and enhanced the sensitivity of MCF7 cells to Tam in estrogen-free medium, which could be restored by overexpression of ER-α36 constructs without 3'UTR. Our results suggested a novel regulatory mechanism of let-7 miRNAs on ER-α36 mediated nongenomic estrogen signal pathways and Tam resistance.  相似文献   

8.
9.
10.
Adiponectin, the most abundant protein secreted by adipose tissue, exhibits insulin-sensitizing, anti-inflammatory, antiatherogenic, and antiproliferative properties. In addition, it appears to play an important role also in the development and progression of several obesity-related malignancies, including breast cancer.

Here, we demonstrated that adiponectin induces a dichotomic effect on breast cancer growth. Indeed, it stimulates growth in ERα+ MCF-7 cells while inhibiting proliferation of ERα? MDA-MB-231 cells. Notably, only in MCF-7 cells adiponectin exposure exerts a rapid activation of MAPK phosphorylation, which is markedly reduced when knockdown of the ERα gene occurred. In addition, adiponectin induces rapid IGF-IR phosphorylation in MCF-7 cells, and the use of ERα siRNA prevents this effect. Moreover, MAPK activation induced by adiponectin was reversed by IGF-IR siRNA. Coimmunoprecipitation studies show the existence of a multiprotein complex involving AdipoR1, APPL1, ERα, IGF-IR, and c-Src that is responsible for MAPK signaling activation in ERα+ positive breast cancer cells. It is well known that in addition to the rapid effects through non-genomic mechanisms, ERα also mediates nuclear genomic actions. In this concern, we demonstrated that adiponectin is able to transactivate ERα in MCF-7 cells. We showed the classical features of ERα transactivation: nuclear localization, downregulation of mRNA and protein levels, and upregulation of estrogen-dependent genes. Thus, our study clarifies the molecular mechanism through which adiponectin modulates breast cancer cell growth, providing evidences on the cell-type dependency of adiponectin action in relationship to ERα status.  相似文献   

11.
12.
About two thirds of breast cancers in women are hormone-dependent and require estrogen for growth, its effects being mainly mediated through estrogen receptor α (ERα). Docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) have opposite effects on carcinogenesis, with DHA suppressing and AA promoting tumor growth both in vitro and in vivo. However, the mechanism is not clear. Here, we examined whether the effect is mediated through changes in ERα distribution. MCF-7 cells, an ERα-positive human breast cancer cell line, was cultured in estrogen-free medium containing 0, 10 or 60 μM DHA or AA, then were stimulated with estradiol. DHA supplementation resulted in down-regulation of ERα expression (particularly in the extranuclear fraction), a reduction in phosphorylated MAPK, a decrease in cyclin D1 levels and an inhibition in cell viability. In contrast, AA had no such effects. The DHA-induced decrease in ERα expression resulted from proteasome-dependent degradation and not from decreased ERα mRNA expression. We propose that breast cancer cell proliferation is inhibited by DHA through proteasome-dependent degradation of ERα, reduced cyclin D1 expression and inhibition of MAPK signaling.  相似文献   

13.
Epigenetic regulation of the nuclear estrogen and androgen receptors, ER and AR, constitutes the molecular basis for the long-lasting effects of sex steroids on gene expression in cells. The effects prevail at hundreds of gene loci in the proximity of estrogen- and androgen-responsive elements and many more such loci through intra- and even inter-chromosomal level regulation. Such a memory system should be active in a flexible manner during the early development of vertebrates, and later replaced to establish more stable marks on genomic DNA. In mammals, DNA methylation is utilized as a very stable mark for silencing of the ERα and AR isoform expression during cancer cell and normal brain development. The factors affecting the DNA methylation of the ERα and AR genes in cells include estrogen and androgen. Since testosterone induces brain masculinization through its aromatization to estradiol in a narrow time window of the perinatal stage in rodents, the autoregulation of estrogen receptors, especially the predominant form of ERα, at the level of DNA methylation to set up the “cell memory” affecting the sexually differentiated status of brain function has been attracting increasing attention. The alternative usage of the androgen-AR system for brain masculinization and estrogenic regulation of AR expression in some species imply that the DNA methylation pattern of the AR gene can be established by closely related but different systems for sex steroid-induced phenomena, including brain masculinization.  相似文献   

14.
15.
Molecular Biology Reports - RUNX1T1 is extensively studied in the context of AML1-RUNX1T1 fusion protein in acute myeloid leukemia. Little is known about the function of RUNX1T1 itself, although...  相似文献   

16.
P Saha  S Fortin  V Leblanc  S Parent  E Asselin  G Bérubé 《Steroids》2012,77(11):1113-1122
Doxorubicin (DOX) is an important medicine for the treatment of breast cancer, which is the most frequently diagnosed and the most lethal cancer in women worldwide. However, the clinical use of DOX is impeded by serious toxic effects such as cardiomyopathy and congestive heart failure. Covalently linking DOX to estrogen to selectively deliver the drug to estrogen receptor-positive (ER(+)) cancer tissues is one of the strategies under investigation for improving the efficacy and decreasing the cardiac toxicity of DOX. However, conjugation of drug performed until now was at 3- or 17-position of estrogen, which is not ideal since the hydroxyl groups at this position are important for receptor binding affinity. In this study, we designed, prepared and evaluated in vitro the first estrogen-doxorubicin conjugates at 16α-position of estradiol termed E-DOXs (8a-d). DOX was conjugated using a 3-9 carbon atoms alkylamide linking arm. E-DOXs were prepared from estrone using a seven-step procedure to afford the desired conjugates in low to moderate yields. The antiproliferative activities of the E-DOX 8a conjugate through a 3-carbon spacer chain on ER(+) MCF7 and HT-29 are in the micromolar range while inactive on M21 and the ER(-) MDA-MB-231 cells (>50μM). Compound 8a exhibits a selectivity ratio (ER(+)/ER(-) cell lines) of >3.5. Compounds 8b-8d bearing alkylamide linking arms ranging from 5 to 9 carbon atoms were inactive at the concentrations tested (>50μM). Interestingly, compounds 8a-8c exhibited affinity for the estrogen receptor α (ERα) in the nanomolar range (72-100nM) whereas compound 8d exhibited no affinity at concentrations up to 215nM. These results indicate that a short alkylamide spacer is required to maintain both antiproliferative activity toward ER(+) MCF7 and affinity for the ERα of the E-DOX conjugates. Compound 8a is potentially a promising conjugate to target ER(+) breast cancer and might be useful also for the design of more potent E-DOX conjugates.  相似文献   

17.
18.
19.
The binding between the estrogen receptor α (ER-α) and a variety of compounds in traditional Chinese formulae, Si-Wu-Tang (SWT) series decoctions, was studied using a stably-transfected human breast cancer cell line (MVLN). In 38 compounds tested from SWT series decoctions, the estrogen-like activity of 22 compounds was above 60% in 20 μg mL(-1). Furthermore, theoretical affinity of these compounds was certificated using the functional virtual screen of ER-α modulators by FlexX-Pharm. The accuracy of functional virtual screening of ER-α modulators could reach to 77.27%. The results showed that some compounds, such as organic acids and flavones in SWT series decoctions could be used as selective estrogen receptor modulators (SERMs) and could be selected for further development as potential agents for estrogen related diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号