首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boh B  Herholz SC  Lappe C  Pantev C 《PloS one》2011,6(7):e21458
In the present study we investigated the capacity of the memory store underlying the mismatch negativity (MMN) response in musicians and nonmusicians for complex tone patterns. While previous studies have focused either on the kind of information that can be encoded or on the decay of the memory trace over time, we studied capacity in terms of the length of tone sequences, i.e., the number of individual tones that can be fully encoded and maintained. By means of magnetoencephalography (MEG) we recorded MMN responses to deviant tones that could occur at any position of standard tone patterns composed of four, six or eight tones during passive, distracted listening. Whereas there was a reliable MMN response to deviant tones in the four-tone pattern in both musicians and nonmusicians, only some individuals showed MMN responses to the longer patterns. This finding of a reliable capacity of the short-term auditory store underlying the MMN response is in line with estimates of a three to five item capacity of the short-term memory trace from behavioural studies, although pitch and contour complexity covaried with sequence length, which might have led to an understatement of the reported capacity. Whereas there was a tendency for an enhancement of the pattern MMN in musicians compared to nonmusicians, a strong advantage for musicians could be shown in an accompanying behavioural task of detecting the deviants while attending to the stimuli for all pattern lengths, indicating that long-term musical training differentially affects the memory capacity of auditory short-term memory for complex tone patterns with and without attention. Also, a left-hemispheric lateralization of MMN responses in the six-tone pattern suggests that additional networks that help structuring the patterns in the temporal domain might be recruited for demanding auditory processing in the pitch domain.  相似文献   

2.
Speech processing inherently relies on the perception of specific, rapidly changing spectral and temporal acoustic features. Advanced acoustic perception is also integral to musical expertise, and accordingly several studies have demonstrated a significant relationship between musical training and superior processing of various aspects of speech. Speech and music appear to overlap in spectral and temporal features; however, it remains unclear which of these acoustic features, crucial for speech processing, are most closely associated with musical training. The present study examined the perceptual acuity of musicians to the acoustic components of speech necessary for intra-phonemic discrimination of synthetic syllables. We compared musicians and non-musicians on discrimination thresholds of three synthetic speech syllable continua that varied in their spectral and temporal discrimination demands, specifically voice onset time (VOT) and amplitude envelope cues in the temporal domain. Musicians demonstrated superior discrimination only for syllables that required resolution of temporal cues. Furthermore, performance on the temporal syllable continua positively correlated with the length and intensity of musical training. These findings support one potential mechanism by which musical training may selectively enhance speech perception, namely by reinforcing temporal acuity and/or perception of amplitude rise time, and implications for the translation of musical training to long-term linguistic abilities.  相似文献   

3.
Perception of our environment is a multisensory experience; information from different sensory systems like the auditory, visual and tactile is constantly integrated. Complex tasks that require high temporal and spatial precision of multisensory integration put strong demands on the underlying networks but it is largely unknown how task experience shapes multisensory processing. Long-term musical training is an excellent model for brain plasticity because it shapes the human brain at functional and structural levels, affecting a network of brain areas. In the present study we used magnetoencephalography (MEG) to investigate how audio-tactile perception is integrated in the human brain and if musicians show enhancement of the corresponding activation compared to non-musicians. Using a paradigm that allowed the investigation of combined and separate auditory and tactile processing, we found a multisensory incongruency response, generated in frontal, cingulate and cerebellar regions, an auditory mismatch response generated mainly in the auditory cortex and a tactile mismatch response generated in frontal and cerebellar regions. The influence of musical training was seen in the audio-tactile as well as in the auditory condition, indicating enhanced higher-order processing in musicians, while the sources of the tactile MMN were not influenced by long-term musical training. Consistent with the predictive coding model, more basic, bottom-up sensory processing was relatively stable and less affected by expertise, whereas areas for top-down models of multisensory expectancies were modulated by training.  相似文献   

4.
Musical training leads to sensory and motor neuroplastic changes in the human brain. Motivated by findings on enlarged corpus callosum in musicians and asymmetric somatomotor representation in string players, we investigated the relationship between musical training, callosal anatomy, and interhemispheric functional symmetry during music listening. Functional symmetry was increased in musicians compared to nonmusicians, and in keyboardists compared to string players. This increased functional symmetry was prominent in visual and motor brain networks. Callosal size did not significantly differ between groups except for the posterior callosum in musicians compared to nonmusicians. We conclude that the distinctive postural and kinematic symmetry in instrument playing cross-modally shapes information processing in sensory-motor cortical areas during music listening. This cross-modal plasticity suggests that motor training affects music perception.  相似文献   

5.
Psychophysiological evidence suggests that music and language are intimately coupled such that experience/training in one domain can influence processing required in the other domain. While the influence of music on language processing is now well-documented, evidence of language-to-music effects have yet to be firmly established. Here, using a cross-sectional design, we compared the performance of musicians to that of tone-language (Cantonese) speakers on tasks of auditory pitch acuity, music perception, and general cognitive ability (e.g., fluid intelligence, working memory). While musicians demonstrated superior performance on all auditory measures, comparable perceptual enhancements were observed for Cantonese participants, relative to English-speaking nonmusicians. These results provide evidence that tone-language background is associated with higher auditory perceptual performance for music listening. Musicians and Cantonese speakers also showed superior working memory capacity relative to nonmusician controls, suggesting that in addition to basic perceptual enhancements, tone-language background and music training might also be associated with enhanced general cognitive abilities. Our findings support the notion that tone language speakers and musically trained individuals have higher performance than English-speaking listeners for the perceptual-cognitive processing necessary for basic auditory as well as complex music perception. These results illustrate bidirectional influences between the domains of music and language.  相似文献   

6.
Musical imagery is a relatively unexplored area, partly because of deficiencies in existing experimental paradigms, which are often difficult, unreliable, or do not provide objective measures of performance. Here we describe a novel protocol, the Pitch Imagery Arrow Task (PIAT), which induces and trains pitch imagery in both musicians and non-musicians. Given a tonal context and an initial pitch sequence, arrows are displayed to elicit a scale-step sequence of imagined pitches, and participants indicate whether the final imagined tone matches an audible probe. It is a staircase design that accommodates individual differences in musical experience and imagery ability. This new protocol was used to investigate the roles that musical expertise, self-reported auditory vividness and mental control play in imagery performance. Performance on the task was significantly better for participants who employed a musical imagery strategy compared to participants who used an alternative cognitive strategy and positively correlated with scores on the Control subscale from the Bucknell Auditory Imagery Scale (BAIS). Multiple regression analysis revealed that Imagery performance accuracy was best predicted by a combination of strategy use and scores on the Vividness subscale of BAIS. These results confirm that competent performance on the PIAT requires active musical imagery and is very difficult to achieve using alternative cognitive strategies. Auditory vividness and mental control were more important than musical experience in the ability to perform manipulation of pitch imagery.  相似文献   

7.
How motor skills are stored in the nervous system represents a fundamental question in neuroscience. Although musical motor skills are associated with a variety of adaptations [1-3], it remains unclear how these changes are linked to the known superior motor performance of expert musicians. Here we establish a direct and specific relationship between the functional organization of the corticomuscular system and skilled musical performance. Principal component analysis was used to identify joint correlation patterns in finger movements evoked by transcranial magnetic stimulation over the primary motor cortex while subjects were at rest. Linear combinations of a selected subset of these patterns were used to reconstruct active instrumental playing or grasping movements. Reconstruction quality of instrumental playing was superior in skilled musicians compared to musically untrained subjects, displayed taxonomic specificity for the trained movement repertoire, and correlated with the cumulated long-term training exposure, but not with the recent past training history. In violinists, the reconstruction quality of grasping movements correlated negatively with the long-term training history of violin playing. Our results indicate that experience-dependent motor skills are specifically encoded in the functional organization of the primary motor cortex and its efferent system and are consistent with a model of skill coding by a modular neuronal architecture [4].  相似文献   

8.
Executive functions (EF) are cognitive capacities that allow for planned, controlled behavior and strongly correlate with academic abilities. Several extracurricular activities have been shown to improve EF, however, the relationship between musical training and EF remains unclear due to methodological limitations in previous studies. To explore this further, two experiments were performed; one with 30 adults with and without musical training and one with 27 musically trained and untrained children (matched for general cognitive abilities and socioeconomic variables) with a standardized EF battery. Furthermore, the neural correlates of EF skills in musically trained and untrained children were investigated using fMRI. Adult musicians compared to non-musicians showed enhanced performance on measures of cognitive flexibility, working memory, and verbal fluency. Musically trained children showed enhanced performance on measures of verbal fluency and processing speed, and significantly greater activation in pre-SMA/SMA and right VLPFC during rule representation and task-switching compared to musically untrained children. Overall, musicians show enhanced performance on several constructs of EF, and musically trained children further show heightened brain activation in traditional EF regions during task-switching. These results support the working hypothesis that musical training may promote the development and maintenance of certain EF skills, which could mediate the previously reported links between musical training and enhanced cognitive skills and academic achievement.  相似文献   

9.
The perception of a regular beat is fundamental to music processing. Here we examine whether the detection of a regular beat is pre-attentive for metrically simple, acoustically varying stimuli using the mismatch negativity (MMN), an ERP response elicited by violations of acoustic regularity irrespective of whether subjects are attending to the stimuli. Both musicians and non-musicians were presented with a varying rhythm with a clear accent structure in which occasionally a sound was omitted. We compared the MMN response to the omission of identical sounds in different metrical positions. Most importantly, we found that omissions in strong metrical positions, on the beat, elicited higher amplitude MMN responses than omissions in weak metrical positions, not on the beat. This suggests that the detection of a beat is pre-attentive when highly beat inducing stimuli are used. No effects of musical expertise were found. Our results suggest that for metrically simple rhythms with clear accents beat processing does not require attention or musical expertise. In addition, we discuss how the use of acoustically varying stimuli may influence ERP results when studying beat processing.  相似文献   

10.
The development of musical skills by musicians results in specific structural and functional modifications in the brain. Surprisingly, no functional magnetic resonance imaging (fMRI) study has investigated the impact of musical training on brain function during long-term memory retrieval, a faculty particularly important in music. Thus, using fMRI, we examined for the first time this process during a musical familiarity task (i.e., semantic memory for music). Musical expertise induced supplementary activations in the hippocampus, medial frontal gyrus, and superior temporal areas on both sides, suggesting a constant interaction between episodic and semantic memory during this task in musicians. In addition, a voxel-based morphometry (VBM) investigation was performed within these areas and revealed that gray matter density of the hippocampus was higher in musicians than in nonmusicians. Our data indicate that musical expertise critically modifies long-term memory processes and induces structural and functional plasticity in the hippocampus.  相似文献   

11.
Luo C  Guo ZW  Lai YX  Liao W  Liu Q  Kendrick KM  Yao DZ  Li H 《PloS one》2012,7(5):e36568
A number of previous studies have examined music-related plasticity in terms of multi-sensory and motor integration but little is known about the functional and effective connectivity patterns of spontaneous intrinsic activity in these systems during the resting state in musicians. Using functional connectivity and Granger causal analysis, functional and effective connectivity among the motor and multi-sensory (visual, auditory and somatosensory) cortices were evaluated using resting-state functional magnetic resonance imaging (fMRI) in musicians and non-musicians. The results revealed that functional connectivity was significantly increased in the motor and multi-sensory cortices of musicians. Moreover, the Granger causality results demonstrated a significant increase outflow-inflow degree in the auditory cortex with the strongest causal outflow pattern of effective connectivity being found in musicians. These resting state fMRI findings indicate enhanced functional integration among the lower-level perceptual and motor networks in musicians, and may reflect functional consolidation (plasticity) resulting from long-term musical training, involving both multi-sensory and motor functional integration.  相似文献   

12.
Much of our daily communication occurs in the presence of background noise, compromising our ability to hear. While understanding speech in noise is a challenge for everyone, it becomes increasingly difficult as we age. Although aging is generally accompanied by hearing loss, this perceptual decline cannot fully account for the difficulties experienced by older adults for hearing in noise. Decreased cognitive skills concurrent with reduced perceptual acuity are thought to contribute to the difficulty older adults experience understanding speech in noise. Given that musical experience positively impacts speech perception in noise in young adults (ages 18-30), we asked whether musical experience benefits an older cohort of musicians (ages 45-65), potentially offsetting the age-related decline in speech-in-noise perceptual abilities and associated cognitive function (i.e., working memory). Consistent with performance in young adults, older musicians demonstrated enhanced speech-in-noise perception relative to nonmusicians along with greater auditory, but not visual, working memory capacity. By demonstrating that speech-in-noise perception and related cognitive function are enhanced in older musicians, our results imply that musical training may reduce the impact of age-related auditory decline.  相似文献   

13.
Musical competence may confer cognitive advantages that extend beyond processing of familiar musical sounds. Behavioural evidence indicates a general enhancement of both working memory and attention in musicians. It is possible that musicians, due to their training, are better able to maintain focus on task-relevant stimuli, a skill which is crucial to working memory. We measured the blood oxygenation-level dependent (BOLD) activation signal in musicians and non-musicians during working memory of musical sounds to determine the relation among performance, musical competence and generally enhanced cognition. All participants easily distinguished the stimuli. We tested the hypothesis that musicians nonetheless would perform better, and that differential brain activity would mainly be present in cortical areas involved in cognitive control such as the lateral prefrontal cortex. The musicians performed better as reflected in reaction times and error rates. Musicians also had larger BOLD responses than non-musicians in neuronal networks that sustain attention and cognitive control, including regions of the lateral prefrontal cortex, lateral parietal cortex, insula, and putamen in the right hemisphere, and bilaterally in the posterior dorsal prefrontal cortex and anterior cingulate gyrus. The relationship between the task performance and the magnitude of the BOLD response was more positive in musicians than in non-musicians, particularly during the most difficult working memory task. The results confirm previous findings that neural activity increases during enhanced working memory performance. The results also suggest that superior working memory task performance in musicians rely on an enhanced ability to exert sustained cognitive control. This cognitive benefit in musicians may be a consequence of focused musical training.  相似文献   

14.
The corpus callosum (CC) is a brain structure composed of axon fibres linking the right and left hemispheres. Musical training is associated with larger midsagittal cross-sectional area of the CC, suggesting that interhemispheric communication may be faster in musicians. Here we compared interhemispheric transmission times (ITTs) for musicians and non-musicians. ITT was measured by comparing simple reaction times to stimuli presented to the same hemisphere that controlled a button-press response (uncrossed reaction time), or to the contralateral hemisphere (crossed reaction time). Both visual and auditory stimuli were tested. We predicted that the crossed-uncrossed difference (CUD) for musicians would be smaller than for non-musicians as a result of faster interhemispheric transfer times. We did not expect a difference in CUDs between the visual and auditory modalities for either musicians or non-musicians, as previous work indicates that interhemispheric transfer may happen through the genu of the CC, which contains motor fibres rather than sensory fibres. There were no significant differences in CUDs between musicians and non-musicians. However, auditory CUDs were significantly smaller than visual CUDs. Although this auditory-visual difference was larger in musicians than non-musicians, the interaction between modality and musical training was not significant. Therefore, although musical training does not significantly affect ITT, the crossing of auditory information between hemispheres appears to be faster than visual information, perhaps because subcortical pathways play a greater role for auditory interhemispheric transfer.  相似文献   

15.
This study tested the hypothesis that the previously reported advantage of musicians over non-musicians in understanding speech in noise arises from more efficient or robust coding of periodic voiced speech, particularly in fluctuating backgrounds. Speech intelligibility was measured in listeners with extensive musical training, and in those with very little musical training or experience, using normal (voiced) or whispered (unvoiced) grammatically correct nonsense sentences in noise that was spectrally shaped to match the long-term spectrum of the speech, and was either continuous or gated with a 16-Hz square wave. Performance was also measured in clinical speech-in-noise tests and in pitch discrimination. Musicians exhibited enhanced pitch discrimination, as expected. However, no systematic or statistically significant advantage for musicians over non-musicians was found in understanding either voiced or whispered sentences in either continuous or gated noise. Musicians also showed no statistically significant advantage in the clinical speech-in-noise tests. Overall, the results provide no evidence for a significant difference between young adult musicians and non-musicians in their ability to understand speech in noise.  相似文献   

16.
The mismatch field (MMF) to minor pitch changes in two experimental conditions was studied. Standard tones of 1000 Hz and deviant tones of 1050 Hz both of 50 ms duration were delivered in single tone condition. Paired tones of the same duration were used in the paired tone condition. The standard tone pair consisted of two 1000 Hz tones, whereas the deviant tone pair was composed of a 1000 Hz tone in the first position and a 1050 Hz tone in the second position with a silent interval of 15 ms between the two. Standards of 90% and deviants of 10% probability were presented in random order and with a randomized interstimulus interval between 600 and 900 ms. The source analysis showed a more lateral location for the MMF obtained in the paired tone condition (MMF.P) compared to the MMF elicited by the single deviants (MMF.S). The source location of both the MMF.P and MMF.S turned out to be significantly anterior relative to the sources of the M100. The increased stimulus repetition in the paired tone condition (two times more stimuli than in the single tone condition) lead to a strong suppression of the field amplitude and of the dipole moment of the M100, while this effect could not be seen for the MMF. The data demonstrate a fundamental difference between the processes reflected by the M100 and the MMF: while the M100 represents the processing of every individual tone, the MMF reflects the change detection of the paired stimuli as unitary events, forming a perceptual group. The different sources of the MMF.P and MMF.S also support an integrated processing of the paired stimuli.  相似文献   

17.
For listeners familiar with Western twelve-tone equal-tempered (12-TET) music, a novel microtonal tuning system is expected to present additional processing challenges. We aimed to determine whether this was the case, focusing on the extent to which our perceptions can be considered bottom-up (psychoacoustic and primarily perceptual) and top-down (dependent on familiarity and cognitive processing). We elicited both overt response ratings, and covert event-related potentials (ERPs), so as to compare subjective impressions of sounds with the neurophysiological processing of the acoustic signal. We hypothesised that microtonal intervals are perceived differently from 12-TET intervals, and that the responses of musicians (n = 10) and non-musicians (n = 10) are distinct. Two-note chords were presented comprising 12-TET intervals (consonant and dissonant) or microtonal (quarter tone) intervals, and ERP, subjective roughness ratings, and liking ratings were recorded successively. Musical experience mediated the perception of differences between dissonant and microtone intervals, with non-musicians giving similar ratings for each, and musicians preferring dissonant over the less commonly used microtonal intervals, rating them as less rough. ERP response amplitude was greater for consonant intervals than other intervals. Musical experience interacted with interval type, suggesting that musical expertise facilitates the sensory and perceptual discrimination of microtonal intervals from 12-TET intervals, and an increased ability to categorize such intervals. Non-musicians appear to have perceived microtonal intervals as instances of neighbouring 12-TET intervals.  相似文献   

18.
The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB). The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians'' brains are often associated with enhanced auditory processing. In this study, we analysed EEG brain responses from two groups, musicians and non-musicians, when stimulated by short presentation (1 min) of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our analysis on alpha and gamma band EEG signals, and they were analysed in terms of spectral power, and functional connectivity as measured by two phase synchrony based measures, phase locking value and phase lag index. Finally, these measures were used to characterize the degree of centrality, segregation and integration of the functional brain network. We found that beat frequencies belonging to alpha band produced the most significant steady-state responses across groups. Further, processing of low frequency (delta, theta, alpha) binaural beats had significant impact on cortical network patterns in the alpha band oscillations. Altogether these results provide a neurophysiological account of cortical responses to BB stimulation at varying frequencies, and demonstrate a modulation of cortico-cortical connectivity in musicians'' brains, and further suggest a kind of neuronal entrainment of a linear and nonlinear relationship to the beating frequencies.  相似文献   

19.
The musician''s brain is considered as a good model of brain plasticity as musical training is known to modify auditory perception and related cortical organization. Here, we show that music-related modifications can also extend beyond motor and auditory processing and generalize (transfer) to speech processing. Previous studies have shown that adults and newborns can segment a continuous stream of linguistic and non-linguistic stimuli based only on probabilities of occurrence between adjacent syllables, tones or timbres. The paradigm classically used in these studies consists of a passive exposure phase followed by a testing phase. By using both behavioural and electrophysiological measures, we recently showed that adult musicians and musically trained children outperform nonmusicians in the test following brief exposure to an artificial sung language. However, the behavioural test does not allow for studying the learning process per se but rather the result of the learning. In the present study, we analyze the electrophysiological learning curves that are the ongoing brain dynamics recorded as the learning is taking place. While musicians show an inverted U shaped learning curve, nonmusicians show a linear learning curve. Analyses of Event-Related Potentials (ERPs) allow for a greater understanding of how and when musical training can improve speech segmentation. These results bring evidence of enhanced neural sensitivity to statistical regularities in musicians and support the hypothesis of positive transfer of training effect from music to sound stream segmentation in general.  相似文献   

20.
Most perceived parameters of sound (e.g. pitch, duration, timbre) can also be imagined in the absence of sound. These parameters are imagined more veridically by expert musicians than non-experts. Evidence for whether loudness is imagined, however, is conflicting. In music, the question of whether loudness is imagined is particularly relevant due to its role as a principal parameter of performance expression. This study addressed the hypothesis that the veridicality of imagined loudness improves with increasing musical expertise. Experts, novices and non-musicians imagined short passages of well-known classical music under two counterbalanced conditions: 1) while adjusting a slider to indicate imagined loudness of the music and 2) while tapping out the rhythm to indicate imagined timing. Subtests assessed music listening abilities and working memory span to determine whether these factors, also hypothesised to improve with increasing musical expertise, could account for imagery task performance. Similarity between each participant’s imagined and listening loudness profiles and reference recording intensity profiles was assessed using time series analysis and dynamic time warping. The results suggest a widespread ability to imagine the loudness of familiar music. The veridicality of imagined loudness tended to be greatest for the expert musicians, supporting the predicted relationship between musical expertise and musical imagery ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号