首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Faudry E  Vernier G  Neumann E  Forge V  Attree I 《Biochemistry》2006,45(26):8117-8123
Type III secretion/translocation systems are essential actors in the pathogenicity of Gram-negative bacteria. The injection of bacterial toxins across the host cell plasma membranes is presumably accomplished by a proteinaceous structure, the translocon. In vitro, Pseudomonas aeruginosa translocators PopB and PopD form ringlike structures observed by electron microscopy. We demonstrate here that PopB and PopD are functionally active and sufficient to form pores in lipid vesicles. Furthermore, the two translocators act in synergy to promote membrane permeabilization. The size-based selectivity observed for the passage of solutes indicates that the membrane permeabilization is due to the formation of size-defined pores. Our results provide also new insights into the mechanism of translocon pore formation that may occur during the passage of toxins from the bacterium into the cell. While proteins bind to lipid vesicles equally at any pH, the kinetics of membrane permeabilization accelerate progressively with decreasing pH values. Electrostatic interactions and the presence of anionic lipids were found to be crucial for pore formation whereas cholesterol did not appear to play a significant role in functional translocon formation.  相似文献   

2.
Faudry E  Job V  Dessen A  Attree I  Forge V 《The FEBS journal》2007,274(14):3601-3610
Type III secretion systems of Gram-negative pathogenic bacteria allow the injection of effector proteins into the cytosol of host eukaryotic cells. Crossing of the eukaryotic plasma membrane is facilitated by a translocon, an oligomeric structure made up of two bacterial proteins inserted into the host membrane during infection. In Pseudomonas aeruginosa, a major human opportunistic pathogen, these proteins are PopB and PopD. Their interactions with their common chaperone PcrH in the cytosol of the bacteria are essential for the proper function of the injection system. The interaction region between PopD and PcrH was identified using limited proteolysis, revealing that the putative PopD transmembrane fragment is buried within the PopD/PcrH complex. In addition, structural features of PopD and PcrH, either individually or within the binary complex, were characterized using spectroscopic methods and 1D NMR. Whereas PcrH possesses the characteristics of a folded protein, PopD is in a molten globule state either alone or in the PopD/PcrH complex. The molten globule state is known to enable the membrane insertion of translocation/pore-forming domains of bacterial toxins. Therefore, within the bacterial cytoplasm, PopD is preserved in a state that is favorable to secretion and insertion into cell membranes.  相似文献   

3.
Pseudomonas aeruginosa is the agent of opportunistic infections in immunocompromised individuals and chronic respiratory illnesses in cystic fibrosis patients. Pseudomonas aeruginosa utilizes a type III secretion system for injection of toxins into the host cell cytoplasm through a channel on the target membrane (the 'translocon'). Here, we have functionally and structurally characterized PopB and PopD, membrane proteins implicated in the formation of the P.aeruginosa translocon. PopB and PopD form soluble complexes with their common chaperone, PcrH, either as stable heterodimers or as metastable heterooligomers. Only oligomeric forms are able to bind to and disrupt cholesterol-rich membranes, which occurs within a pH range of 5-7 in the case of PopB/PcrH, and only at acidic pH for PcrH-free PopD. Electron microscopy reveals that upon membrane association PopB and PopD form 80 A wide rings which encircle 40 A wide cavities. Thus, formation of metastable oligomers precedes membrane association and ring generation in the formation of the Pseudomonas translocon, a mechanism which may be similar for other pathogens that employ type III secretion systems.  相似文献   

4.
Type III secretion systems (T3SS) are nano-syringes used by a wide range of Gram-negative pathogens to promote infection by directly injecting effector proteins into targeted host cells. Translocation of effectors is triggered by host-cell contact and requires assembly of a pore in the host-cell plasma membrane, which consists of two translocator proteins. Our understanding of the translocation pore, how it is assembled in the host cell membrane and its precise role in effector translocation, is extremely limited. Here we use a genetic technique to identify protein-protein contacts between pore-forming translocator proteins, as well as the T3SS needle-tip, that are critical for translocon function. The data help establish the orientation of the translocator proteins in the host cell membrane. Analysis of translocon function in mutants that break these contacts demonstrates that an interaction between the pore-forming translocator PopD and the needle-tip is required for sensing host cell contact. Moreover, tethering PopD at a dimer interface also specifically prevents host-cell sensing, arguing that the translocation pore is actively involved in detecting host cell contact. The work presented here therefore establishes a signal transduction pathway for sensing host cell contact that is initiated by a conformational change in the translocation pore, and is subsequently transmitted to the base of the apparatus via a specific contact between the pore and the T3SS needle-tip.  相似文献   

5.
The type III secretion system (T3SS) is a specialized apparatus evolved by Gram-negative bacteria to deliver effector proteins into host cells, thus facilitating the establishment of an infection. Effector translocation across the target cell plasma membrane is believed to occur via pores formed by at least two secreted translocator proteins, the functions of which are dependent upon customized class II T3SS chaperones. Recently, three internal tetratricopeptide repeats (TPRs) were identified in this class of chaperones. Here, defined mutagenesis of the class II chaperone PcrH of Pseudomonas aeruginosa revealed these TPRs to be essential for chaperone activity towards the translocator proteins PopB and PopD and subsequently for the translocation of exoenzymes into host cells.  相似文献   

6.
The Pseudomonas aeruginosa cystic fibrosis isolate CHA induces type III secretion system-dependent but ExoU-independent oncosis of neutrophils and macrophages. Time-lapse microscopy of the infection process revealed the rapid accumulation of motile bacteria around infected cells undergoing the process of oncosis, a phenomenon we termed pack swarming. Characterization of the non-chemotactic CHAcheZ mutant showed that pack swarming is a bacterial chemotactic response to infected macrophages. A non-cytotoxic mutant, lacking the type III-secreted proteins PcrV, PopB and PopD, was able to pack swarm only in the presence of the parental strain CHA or when macrophages were pretreated with the pore-forming toxin streptolysin O. Interaction of P. aeruginosa with red blood cells (RBCs) showed that the contact-dependent haemolysis provoked by CHA requires secretion via the type III system and the PcrV, PopB/PopD proteins. The pore inserted into RBC membrane was estimated from osmoprotection experiments to be between 2.8 and 3.5 nm. CHA-infected macrophages could be protected from cell lysis with PEG3350, indicating that the pore introduced into RBC and macrophage membranes is of similar size. The time course uptake of the vital fluorescent dye, Yo-Pro-1, into infected macrophages confirmed that the formation of transmembrane pores by CHA precedes cellular oncosis. Therefore, CHA-induced macrophage death results from a pore-forming activity that is dependent on the intact pcrGVHpopBD operon.  相似文献   

7.
The type III secretion system is a widespread apparatus used by pathogenic bacteria to inject effectors directly into the cytoplasm of eukaryotic cells. A key component of this highly conserved system is the translocon, a pore formed in the host membrane that is essential for toxins to bypass this last physical barrier. In Pseudomonas aeruginosa the translocon is composed of PopB and PopD, both of which before secretion are stabilized within the bacterial cytoplasm by a common chaperone, PcrH. In this work we characterize PopB, the major translocator, in both membrane-associated and PcrH-bound forms. By combining sucrose gradient centrifugation experiments, limited proteolysis, one-dimensional NMR, and β-lactamase reporter assays on eukaryotic cells, we show that PopB is stably inserted into bilayers with its flexible N-terminal domain and C-terminal tail exposed to the outside. In addition, we also report the crystal structure of the complex between PcrH and an N-terminal region of PopB (residues 51–59), which reveals that PopB lies within the concave face of PcrH, employing mostly backbone residues for contact. PcrH is thus the first chaperone whose structure has been solved in complex with both type III secretion systems translocators, revealing that both molecules employ the same surface for binding and excluding the possibility of formation of a ternary complex. The characterization of the major type III secretion system translocon component in both membrane-bound and chaperone-bound forms is a key step for the eventual development of antibacterials that block translocon assembly.  相似文献   

8.
Protective antigens of Pseudomonas aeruginosa (PcrV) and Yersinia pestis (LcrV) are key elements of specialized machinery, the type III secretion system (T3SS), which enables the injection of effector molecules into eukaryotic cells. Being positioned at the injectisome extremity, V proteins participate in the translocation process across the host cell plasma membrane. In this study, we demonstrate the assembly of V proteins into oligomeric doughnut-like complexes upon controlled refolding of the proteins in vitro. The oligomeric nature of refolded PcrV was revealed by size exclusion chromatography, native gel electrophoresis, and native mass spectrometry, which ascertain the capacity of the protein to multimerize into higher-order species. Furthermore, transmission electron microscopy performed on oligomers of both PcrV and LcrV revealed the presence of distinct structures with approximate internal and external diameters of 3-4 and 8-10 nm, respectively. The C-terminal helix, alpha12, of PcrV and notably the hydrophobic residues Val(255), Leu(262), and Leu(276) located within this helix, were shown to be crucial for oligomerization. Moreover, the corresponding mutant proteins produced in P. aeruginosa were found to be non-functional in in vivo type III-dependent cytotoxicity assays by directly affecting the correct assembly of PopB/D translocon within the host cell membranes. The detailed understanding of structure-function relationships of T3SS needle tip proteins will be of value in further developments of new vaccines and antimicrobials.  相似文献   

9.
The type III secretion system (T3SS) is a complex macromolecular machinery employed by a number of Gram-negative species to initiate infection. Toxins secreted through the system are synthesized in the bacterial cytoplasm and utilize the T3SS to pass through both bacterial membranes and the periplasm, thus being introduced directly into the eukaryotic cytoplasm. A key element of the T3SS of all bacterial pathogens is the translocon, which comprises a pore that is inserted into the membrane of the target cell, allowing toxin injection. Three macromolecular partners associate to form the translocon: two are hydrophobic and one is hydrophilic, and the latter also associates with the T3SS needle. In this review, we discuss recent advances on the biochemical and structural characterization of the proteins involved in translocon formation, as well as their participation in the modification of intracellular signalling pathways upon infection. Models of translocon assembly and regulation are also discussed.  相似文献   

10.
A ubiquitous early step in infection of man and animals by enteric bacterial pathogens like Salmonella, Shigella and enteropathogenic Escherichia coli (EPEC) is the translocation of virulence effector proteins into mammalian cells via specialized type III secretion systems (TTSSs). Translocated effectors subvert the host cytoskeleton and stimulate signalling to promote bacterial internalization or survival. Target cell plasma membrane cholesterol is central to pathogen-host cross-talk, but the precise nature of its critical contribution remains unknown. Using in vitro cholesterol-binding assays, we demonstrate that Salmonella (SipB) and Shigella (IpaB) TTSS translocon components bind cholesterol with high affinity. Direct visualization of cell-associated fluorescently labelled SipB and parallel immunogold transmission electron microscopy revealed that cholesterol levels limit both the amount and distribution of plasma membrane-integrated translocon. Correspondingly, cholesterol depletion blocked effector translocation into cultured mammalian cells by not only the related Salmonella and Shigella TTSSs, but also the more divergent EPEC system. The data reveal that cholesterol-dependent association of the bacterial TTSS translocon with the target cell plasma membrane is essential for translocon activation and effector delivery into mammalian cells.  相似文献   

11.
Virulent Yersinia species cause systemic infections in rodents, and Y. pestis is highly pathogenic for humans. Pseudomonas aeruginosa , on the other hand, is an opportunistic pathogen, which normally infects only compromised individuals. Surprisingly, these pathogens both encode highly related contact-dependent secretion systems for the targeting of toxins into eukaryotic cells. In Yersinia , YopB and YopD direct the translocation of the secreted Yop effectors across the target cell membrane. In this study, we have analysed the function of the YopB and YopD homologues, PopB and PopD, encoded by P. aeruginosa . Expression of the pcrGVHpopBD operon in defined translocation-deficient mutants ( yopB / yopD ) of Yersinia resulted in complete complementation of the cell contact-dependent, YopE-induced cytotoxicity of Y. pseudotuberculosis on HeLa cells. We demonstrated that the complementation fully restored the ability of Y. pseudotuberculosis to translocate the effector molecules YopE and YopH into the HeLa cells. Similar to YopB, PopB induced a lytic effect on infected erythrocytes. The lytic activity induced by PopB could be prevented if the erythrocytes were infected in the presence of sugars larger than 3 nm in diameter, indicating that PopB induced a pore of similar size compared with that induced by YopB. Our findings show that the contact-dependent toxin-targeting mechanisms of Y. pseudotuberculosis and P. aeruginosa are conserved at the molecular level and that the translocator proteins are functionally interchangeable. Based on these similarities, we suggest that the translocation of toxins such as ExoS, ExoT and ExoU by P. aeruginosa across the eukaryotic cell membrane occurs via a pore induced by PopB.  相似文献   

12.
The TTSS encoding ??translocator operon?? of Pseudomonas aeruginosa consists of a major translocator protein PopB, minor translocator protein PopD and their cognate chaperone PcrH. Far-UV CD spectra and secondary structure prediction servers predict an ??-helical model for PopB, PcrH and PopB?CPcrH complex. PopB itself forms a single species of higher order oligomer (15 mer) as seen from AUC, but in complex with PcrH, both monomeric (1:1) and oligomeric form exist. PopB has large solvent-exposed hydrophobic patches and exists as an unordered molten globule in its native state, but on forming complex with PcrH it gets transformed into an ordered molten globule. Tryptophan fluorescence spectrum indicates that PopB interacts with the first TPR region of dimeric PcrH to form a stable PopB?CPcrH complex that has a partial rigid structure with a large hydrodynamic radius and few tertiary contacts. The pH-dependent studies of PopB, PcrH and complex by ANS fluorescence, urea induced unfolding and thermal denaturation experiments prove that PcrH not only provides structural support to the ordered molten globule PopB in complex but also undergoes conformational change to assist PopB to pass through the needle complex of TTSS and form pores in the host cell membrane. ITC experiments show a strong affinity (Kd?~?0.37???M) of PopB for PcrH at pH 7.8, which reduces to ~0.68???M at pH 5.8. PcrH also loses its rigid tertiary structure at pH 5 and attains a molten globule conformation. This indicates that the decrease in pH releases PopB molecules and thus triggers the TTSS activation mechanism for the formation of a functional translocon.  相似文献   

13.
The type III secretion system (T3SS) is employed to deliver effector proteins to the cytosol of eukaryotic hosts by multiple species of Gram-negative bacteria, including Pseudomonas aeruginosa. Translocation of effectors is dependent on the proteins encoded by the pcrGVHpopBD operon. These proteins form a T3S translocator complex, composed of a needle-tip complex (PcrV), translocons (PopB and PopD), and chaperones (PcrG and PcrH). PcrV mediates the folding and insertion of PopB/PopD in host plasmic membranes, where assembled translocons form a translocation channel. Assembly of this complex and delivery of effectors through this machinery is tightly controlled by PcrV, yet the multifunctional aspects of this molecule have not been defined. In addition, PcrV is a protective antigen for P. aeruginosa infection as is the ortholog, LcrV, for Yersinia. We constructed PcrV derivatives containing in-frame linker insertions and site-specific mutations. The expression of these derivatives was regulated by a T3S-specific promoter in a pcrV-null mutant of PA103. Nine derivatives disrupted the regulation of effector secretion and constitutively released an effector protein into growth medium. Three of these regulatory mutants, in which the linker was inserted in the N-terminal globular domain, were competent for the translocation of a cytotoxin, ExoU, into eukaryotic host cells. We also isolated strains expressing a delayed-toxicity phenotype, which secrete translocators slowly despite the normal level of effector secretion. Most of the cytotoxic translocation-competent strains retained the protective epitope of PcrV derivatives, and Mab166 was able to protect erythrocytes during infection with these strains. The use of defined PcrV derivatives possessing distinct phenotypes may lead to a better understanding of the functional aspects of T3 needle-tip proteins and the development of therapeutic agents or vaccines targeting T3SS-mediated intoxication.  相似文献   

14.
The type III secretion system (T3SS) is a complex nanomachine employed by many Gram-negative pathogens, including the nosocomial agent Pseudomonas aeruginosa, to inject toxins directly into the cytoplasm of eukaryotic cells. A key component of all T3SS is the translocon, a proteinaceous channel that is inserted into the target membrane, which allows passage of toxins into target cells. In most bacterial species, two distinct membrane proteins (the “translocators”) are involved in translocon formation, whereas in the bacterial cytoplasm, however, they remain associated to a common chaperone. To date, the strategy employed by a single chaperone to recognize two distinct translocators is unknown. Here, we report the crystal structure of a complex between the Pseudomonas translocator chaperone PcrH and a short region from the minor translocator PopD. PcrH displays a 7-helical tetratricopeptide repeat fold that harbors the PopD peptide within its concave region, originally believed to be involved in recognition of the major translocator, PopB. Point mutations introduced into the PcrH-interacting region of PopD impede translocator-chaperone recognition in vitro and lead to impairment of bacterial cytotoxicity toward macrophages in vivo. These results indicate that T3SS translocator chaperones form binary complexes with their partner molecules, and the stability of their interaction regions must be strictly maintained to guarantee bacterial infectivity. The PcrH-PopD complex displays homologs among a number of pathogenic strains and could represent a novel, potential target for antibiotic development.  相似文献   

15.
Yamamoto H  Fujita H  Kida Y  Sakaguchi M 《Biochemistry》2012,51(17):3596-3605
Various proteins are translocated through and inserted into the endoplasmic reticulum membrane via translocon channels. The hydrophobic segments of signal sequences initiate translocation, and those on translocating polypeptides interrupt translocation to be inserted into the membrane. Positive charges suppress translocation to regulate the orientation of the signal sequences. Here, we investigated the effect of membrane cholesterol on the translocational behavior of nascent chains in a cell-free system. We found that the three distinct translocation processes were sensitive to membrane cholesterol. Cholesterol inhibited the initiation of translocation by the signal sequence, and the extent of inhibition depended on the signal sequence. Even when initiation was not inhibited, cholesterol impeded the movement of the positively charged residues of the translocating polypeptide chain. In surprising contrast, cholesterol enhanced the translocation of hydrophobic sequences through the translocon. On the basis of these findings, we propose that membrane cholesterol greatly affects partitioning of hydrophobic segments into the membrane and impedes the movement of positive charges.  相似文献   

16.
Type III secretion is used by many gram-negative bacterial pathogens to directly deliver protein toxins (effectors) into targeted host cells. In all cases, secretion of effectors is triggered by host cell contact, although the mechanism is unclear. In Pseudomonas aeruginosa, expression of all type III secretion-related genes is up-regulated when secretion is triggered. We were able to visualize this process using a green fluorescent protein reporter system and to use it to monitor the ability of bacteria to trigger effector secretion on cell contact. Surprisingly, the action of one of the major type III secreted effectors, ExoS, prevented triggering of type III secretion by bacteria that subsequently attached to cells, suggesting that triggering of secretion is feedback regulated. Evidence is presented that translocation (secretion of effectors across the host cell plasma membrane) of ExoS is indeed self-regulated and that this inhibition of translocation can be achieved by either of its two enzymatic activities. The translocator proteins PopB, PopD, and PcrV are secreted via the type III secretion system and are required for pore formation and translocation of effectors across the host cell plasma membrane. Here we present data that secretion of translocators is in fact not controlled by calcium, implying that triggering of effector secretion on cell contact represents a switch in secretion specificity, rather than a triggering of secretion per se. The requirement for a host cell cofactor to control effector secretion may help explain the recently observed phenomenon of target cell specificity in both the Yersinia and P. aeruginosa type III secretion systems.  相似文献   

17.
Pathogen trafficking pathways and host phosphoinositide metabolism   总被引:1,自引:0,他引:1  
Phosphoinositide (PI) glycerolipids are key regulators of eukaryotic signal transduction, cytoskeleton architecture and membrane dynamics. The host cell PI metabolism is targeted by intracellular bacterial pathogens, which evolved intricate strategies to modulate uptake processes and vesicle trafficking pathways. Upon entering eukaryotic host cells, pathogenic bacteria replicate in distinct vacuoles or in the host cytoplasm. Vacuolar pathogens manipulate PI levels to mimic or modify membranes of subcellular compartments and thereby establish their replicative niche. Legionella pneumophila , Brucella abortus , Mycobacterium tuberculosis and Salmonella enterica translocate effector proteins into the host cell, some of which anchor to the vacuolar membrane via PIs or enzymatically turnover PIs. Cytoplasmic pathogens target PI metabolism at the plasma membrane, thus modulating their uptake and antiapoptotic signalling pathways. Employing this strategy, Shigella flexneri directly injects a PI-modifying effector protein, while Listeria monocytogenes exploits PI metabolism indirectly by binding to transmembrane receptors. Thus, regardless of the intracellular lifestyle of the pathogen, PI metabolism is critically involved in the interactions with host cells.  相似文献   

18.
The type III secretion system (T3SS) is a complex nanomachine of many pathogenic Gram-negative bacteria. It forms a proteinaceous channel that is inserted into the host eukaryotic cell membrane for injection of bacterial proteins that manipulate host cell signaling. However, few studies have focused on the effector-independent functions of the T3SS. Using a murine model of acute lung infection with Pseudomonas aeruginosa, an important human opportunistic pathogen, we compared the pathogenicity of mutant bacteria that lack all of the known effector toxins ( ΔSTY), with mutant bacteria that also lack the major translocator protein PopB (ΔSTY/ΔPopB) and so cannot form a functional T3SS channel in the host cell membrane. Mortality was higher among mice challenged with ΔSTY compared to mice challenged with ΔSTY/ΔPopB mutant bacteria. In addition, mice infected with ΔSTY showed decreased bacterial clearance from the lungs compared to those infected with ΔSTY/ΔPopB. Infection was in both cases associated with substantial killing of lung infiltrating macrophages. However, macrophages from ΔSTY-infected mice died by pro-inflammatory necrosis characterized by membrane permeabilization and caspase-1 mediated IL-1β production, whereas macrophages from ΔSTY/ΔPopB infected mice died by apoptosis, which is characterized by annexin V positive staining of the cell membrane and caspase-3 activation. This was confirmed in macrophages infected in vitro. These results demonstrate a T3SS effector toxin independent role for the T3SS, in particular the T3SS translocator protein PopB, in the pathogenicity of P. aeruginosa during acute lung infection.  相似文献   

19.
Many plant‐ and animal‐pathogenic Gram‐negative bacteria employ the type III secretion system (T3SS) to translocate effector proteins from bacterial cells into the cytosol of eukaryotic host cells. The effector translocation occurs through an integral component of T3SS, the channel‐like translocon, assembled by hydrophilic and hydrophobic proteinaceous translocators in a two‐step process. In the first, hydrophilic translocators localize to the tip of a proteinaceous needle in animal pathogens, or a proteinaceous pilus in plant pathogens, and associate with hydrophobic translocators, which insert into host plasma membranes in the second step. However, the pilus needs to penetrate plant cell walls in advance. All hydrophilic translocators so far identified in plant pathogens are characteristic of harpins: T3SS accessory proteins containing a unitary hydrophilic domain or an additional enzymatic domain. Two‐domain harpins carrying a pectate lyase domain potentially target plant cell walls and facilitate the penetration of the pectin‐rich middle lamella by the bacterial pilus. One‐domain harpins target plant plasma membranes and may play a crucial role in translocon assembly, which may also involve contrapuntal associations of hydrophobic translocators. In all cases, sensory components in the target plasma membrane are indispensable for the membrane recognition of translocators and the functionality of the translocon. The conjectural sensors point to membrane lipids and proteins, and a phosphatidic acid and an aquaporin are able to interact with selected harpin‐type translocators. Interactions between translocators and their sensors at the target plasma membrane are assumed to be critical for translocon assembly.  相似文献   

20.
Yersinia pestis enters host cells and evades host defenses, in part, through interactions between Yersinia pestis proteins and host membranes. One such interaction is through the type III secretion system, which uses a highly conserved and ordered complex for Yersinia pestis outer membrane effector protein translocation called the injectisome. The portion of the injectisome that interacts directly with host cell membranes is referred to as the translocon. The translocon is believed to form a pore allowing effector molecules to enter host cells. To facilitate mechanistic studies of the translocon, we have developed a cell-free approach for expressing translocon pore proteins as a complex supported in a bilayer membrane mimetic nano-scaffold known as a nanolipoprotein particle (NLP) Initial results show cell-free expression of Yersinia pestis outer membrane proteins YopB and YopD was enhanced in the presence of liposomes. However, these complexes tended to aggregate and precipitate. With the addition of co-expressed (NLP) forming components, the YopB and/or YopD complex was rendered soluble, increasing the yield of protein for biophysical studies. Biophysical methods such as Atomic Force Microscopy and Fluorescence Correlation Spectroscopy were used to confirm that the soluble YopB/D complex was associated with NLPs. An interaction between the YopB/D complex and NLP was validated by immunoprecipitation. The YopB/D translocon complex embedded in a NLP provides a platform for protein interaction studies between pathogen and host proteins. These studies will help elucidate the poorly understood mechanism which enables this pathogen to inject effector proteins into host cells, thus evading host defenses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号