首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Natural selection at high densities has often been postulated to favour the evolution of greater efficiency of food use. Contrary to this expectation, a previous study suggested the existence of a trade-off between larval feeding rate and efficiency at using food to complete larval development in populations ofDrosophila melanogaster subjected to crowding for many generations. In this paper, we confirm the generality of such a density-dependent trade-off between food acquisition and utilization by demonstrating its occurrence in a new set ofDrosophila populations subjected to extreme larval crowding. We suggest that such trade-offs between food acquisition and food use may represent a general phenomenon in organisms exhibiting scramble competition. We test and reject the possible mechanistic explanation that decreased efficiency of food use in faster-feeding larvae may merely be a consequence of a faster passage of food through the gut, leading to incomplete assimilation of nutrients and energy.  相似文献   

2.
Multiple experimental evolution studies on Drosophila melanogaster in the 1980s and 1990s indicated that enhanced competitive ability evolved primarily through increased larval tolerance to nitrogenous wastes and increased larval feeding and foraging rate, at the cost of efficiency of food conversion to biomass, and this became the widely accepted view of how adaptation to larval crowding evolves in fruitflies. We recently showed that populations of D. ananassae and D. n. nasuta subjected to extreme larval crowding evolved greater competitive ability without evolving higher feeding rates, primarily through a combination of reduced larval duration, faster attainment of minimum critical size for pupation, greater efficiency of food conversion to biomass, increased pupation height and, perhaps, greater urea/ammonia tolerance. This was a very different suite of traits than that seen to evolve under similar selection in D. melanogaster and was closer to the expectations from the theory of K-selection. At that time, we suggested two possible reasons for the differences in the phenotypic correlates of greater competitive ability seen in the studies with D. melanogaster and the other two species. First, that D. ananassae and D. n. nasuta had a very different genetic architecture of traits affecting competitive ability compared to the long-term laboratory populations of D. melanogaster used in the earlier studies, either because the populations of the former two species were relatively recently wild-caught, or by virtue of being different species. Second, that the different evolutionary trajectories in D. ananassae and D. n. nasuta versus D. melanogaster were a reflection of differences in the manner in which larval crowding was imposed in the two sets of selection experiments. The D. melanogaster studies used a higher absolute density of eggs per unit volume of food, and a substantially larger total volume of food, than the studies on D. ananassae and D. n. nasuta. Here, we show that long-term laboratory populations of D. melanogaster, descended from some of the populations used in the earlier studies, evolve essentially the same set of traits as the D. ananassae and D. n. nasuta crowding-adapted populations when subjected to a similar larval density at low absolute volumes of food. As in the case of D. ananassae and D. n. nasuta, and in stark contrast to earlier studies with D. melanogaster, these crowding-adapted populations of D. melanogaster did not evolve greater larval feeding rates as a correlate of increased competitive ability. The present results clearly suggest that the suite of phenotypes through which the evolution of greater competitive ability is achieved in fruitflies depends critically not just on larval density per unit volume of food, but also on the total amount of food available in the culture vials. We discuss these results in the context of an hypothesis about how larval density and the height of the food column in culture vials might interact to alter the fitness costs and benefits of increased larval feeding rates, thus resulting in different routes to the evolution of greater competitive ability, depending on the details of exactly how the larval crowding was implemented.  相似文献   

3.
The standard view of adaptation to larval crowding in fruitflies, built on results from 25 years of multiple experimental evolution studies on Drosophila melanogaster, was that enhanced competitive ability evolves primarily through increased larval feeding and foraging rate, and increased larval tolerance to nitrogenous wastes, at the cost of efficiency of food conversion to biomass. These results were at odds from the predictions of classical K-selection theory, notably the expectation that selection at high density should result in the increase of efficiency of conversion of food to biomass, and were better interpreted through the lens of α-selection. We show here that populations of D. ananassae and D. n. nasuta subjected to extreme larval crowding evolve greater competitive ability and pre-adult survivorship at high density, primarily through a combination of reduced larval duration, faster attainment of minimum critical size for pupation, greater time efficiency of food conversion to biomass and increased pupation height, with a relatively small role of increased urea/ammonia tolerance, if at all. This is a very different suite of traits than that seen to evolve under similar selection in D. melanogaster, and seems to be closer to the expectations from the canonical theory of K-selection. We also discuss possible reasons for these differences in results across the three species. Overall, the results reinforce the view that our understanding of the evolution of competitive ability in fruitflies needs to be more nuanced than before, with an appreciation that there may be multiple evolutionary routes through which higher competitive ability can be attained.  相似文献   

4.
A collection of forty populations were used to study the phenotypic adaptation of Drosophila melanogaster larvae to urea‐laced food. A long‐term goal of this research is to map genes responsible for these phenotypes. This mapping requires large numbers of populations. Thus, we studied fifteen populations subjected to direct selection for urea tolerance and five controls. In addition, we studied another twenty populations which had not been exposed to urea but were subjected to stress or demographic selection. In this study, we describe the differentiation in these population for six phenotypes: (1) larval feeding rates, (2) larval viability in urea‐laced food, (3) larval development time in urea‐laced food, (4) adult starvation times, (5) adult desiccation times, and (6) larval growth rates. No significant differences were observed for desiccation resistance. The demographically/stress‐selected populations had longer times to starvation than urea‐selected populations. The urea‐adapted populations showed elevated survival and reduced development time in urea‐laced food relative to the control and nonadapted populations. The urea‐adapted populations also showed reduced larval feeding rates relative to controls. We show that there is a strong linear relationship between feeding rates and growth rates at the same larval ages feeding rates were measured. This suggests that feeding rates are correlated with food intake and growth. This relationship between larval feeding rates, food consumption, and efficiency has been postulated to involve important trade‐offs that govern larval evolution in stressful environments. Our results support the idea that energy allocation is a central organizing theme in adaptive evolution.  相似文献   

5.
In comparisons across Drosophila species, faster pre-adult development is phenotypically correlated with increased pre-adult competitive ability, suggesting that these two traits may also be evolutionary correlates of one another. However, correlations between traits within- and among- species can differ, and in most cases it is the within-species genetic correlations that are likely to act as constraints on adaptive evolution. Moreover, laboratory studies on Drosophila melanogaster have shown that the suite of traits that evolves in populations subjected to selection for faster development is the opposite of the traits that evolve in populations selected for increased pre-adult competitive ability. This observation led us to propose that, despite having a higher carrying capacity and a reduced minimum food requirement for completing development than controls, D. melanogaster populations subjected to selection for faster development should have lower competitive ability than controls owing to their reduced larval feeding rates and urea tolerance. Here, we describe results from pre-adult competition experiments that clearly show that the faster developing populations are substantially poorer competitors than controls when reared at high density in competition with a marked mutant strain. We briefly discuss these results in the context of different formulations of density-dependent selection theory.  相似文献   

6.
The quantitative food consumption and somatic growth of Atlantic salmon Salmo salar parr were compared between three sub-Arctic rivers in northern Norway and Finland, addressing the potential occurrence of resource limitation and interspecific competition. In one of the rivers, previous resource partitioning studies have suggested severe dietary competition between juvenile S. salar and a dense population of alpine bullheads Cottus poecilopus . It was hypothesized that S. salar parr in this river would have restricted food consumption and growth rates compared to the S. salar populations in the other two rivers where interspecific competition was less likely to occur. The feeding and growth performance differed significantly between the S. salar populations. The lowest food acquisition and growth rates were in the S. salar parr population living in sympatry with C. poecilopus , confirming a restricted food supply for the S. salar parr and providing empirical support for the presence of resource limitation and interspecific food competition in this river system. The study reveals that S. salar parr in sub-Arctic rivers may experience food limitations resulting in diminished growth rates.  相似文献   

7.
1. Intraspecific competition for restricted food resources is considered to play a fundamental part in density dependence of somatic growth and other population characteristics, but studies simultaneously addressing the interrelationships between population density, food acquisition and somatic growth have been missing. 2. We explored the food consumption and individual growth rates of Arctic charr Salvelinus alpinus in a long-term survey following a large-scale density manipulation experiment in a subarctic lake. 3. Prior to the initiation of the experiment, the population density was high and the somatic growth rates low, revealing a severely overcrowded and stunted fish population. 4. During the 6-year period of stock depletion the population density of Arctic charr was reduced with about 75%, resulting in an almost twofold increase in food consumption rates and enhanced individual growth rates of the fish. 5. Over the decade following the density manipulation experiment, the population density gradually rose to intermediate levels, accompanied by corresponding reductions in food consumption and somatic growth rates. 6. The study revealed negative relationships with population density for both food consumption and individual growth rates, reflecting a strong positive correlation between quantitative food intake and somatic growth rates. 7. Both the growth and consumption rate relationships with population density were well described by negative power curves, suggesting that large density perturbations are necessary to induce improved feeding conditions and growth rates in stunted fish populations. 8. The findings demonstrate that quantitative food consumption represents the connective link between population density and individual growth rates, apparently being highly influenced by intraspecific competition for limited resources.  相似文献   

8.
Sisterson MS  Averill AL 《Oecologia》2003,135(3):362-371
Parasitism influences many aspects of a host's behavior and physiology. Therefore, parasitism is also likely to influence the competitive ability of the host. Field populations of phytophagous insects are often a mix of parasitized and unparasitized conspecifics and the inclusion of parasitism in their competitive dynamics may alter expected outcomes. We investigated the influence of parasitism by the hymenopteran parasitoid Phanerotoma franklini Gahan on the competitive interactions among larvae of its host Acrobasis vaccinii Riley. We found that parasitized larvae were poorer competitors and required less food to complete development compared to unparasitized larvae. To examine the influence of parasitism on the competitive dynamics of this system, we constructed an individual-based model parameterized with our laboratory data. The model examined the role of resource availability and parasitism rate on larval survival. The model suggests that parasitized larvae (and, hence parasitoids) experience higher levels of mortality from competition than unparasitized larvae. Further, the model also suggests that the decreased consumption of resources by parasitized larvae results in a decline in the occurrence of competition as the parasitism rate increases. We suggest that these observations may be general to many parasitoid-host systems.  相似文献   

9.
Studies of siblings have focused mainly on their competitive interactions and to a lesser extent on their cooperation. However, competition and cooperation are at opposite ends on a continuum of possible interactions and the nature of these interactions may be flexible with ecological factors tipping the balance toward competition in some environments and cooperation in others. Here we show that the presence of parental care and the density of larvae on the breeding carcass change the outcome of sibling interactions in burying beetle broods. With full parental care there was a strong negative relationship between larval density and larval mass, consistent with sibling competition for resources. In the absence of care, initial increases in larval density had beneficial effects on larval mass but further increases in larval density reduced larval mass. This likely reflects a density‐dependent shift between cooperation and competition. In a second experiment, we manipulated larval density and removed parental care. We found that the ability of larvae to penetrate the breeding carcass increased with larval density and that feeding within the carcass resulted in heavier larvae than feeding outside the carcass. However, larval density did not influence carcass decay.  相似文献   

10.
The relative contributions of ancestry, chance, and past and ongoing election to variation in one adaptive (larval feeding rate) and one seemingly nonadaptive (pupation height) trait were determined in populations ofDrosophila melanogaster adapting to either low or high larval densities in the laboratory. Larval feeding rates increased rapidly in response to high density, and the effects of ancestry, past selection and chance were ameliorated by ongoing selection within 15–20 generations. Similarly, in populations previously kept at high larval density, and then switched to low larval density, the decline of larval feeding rate to ancestral levels was rapid (15-20 generations) and complete, providing support for a previously stated hypothesis regarding the costs of faster feeding inDrosophila larvae. Variation among individuals was the major contributor to variation in pupation height, a trait that would superficially appear to be nonadaptive in the environmental context of the populations used in this study because it did not diverge between sets of populations kept at low versus high larval density for many generations. However, the degree of divergence among populations (FST) for pupation height was significantly less than expected for a selectively neutral trait, and we integrate results from previous studies to suggest that the variation for pupation height among populations is constrained by stabilizing selection, with a flat, plateau-like fitness function that, consequently, allows for substantial phenotypic variation within populations. Our results support the view that the genetic imprints of history (ancestry and past selection) in outbreeding sexual populations are typically likely to be transient in the face of ongoing selection and recombination. The results also illustrate the heuristic point that different forms of selection-for example directional versus stabilizing selection—acting on a trait in different populations may often not be due to differently shaped fitness functions, but rather due to differences in how the fitness function maps onto the actual distribution of phenotypes in a given population. We discuss these results in the light of previous work on reverse evolution, and the role of ancestry, chance, and past and ongoing selection in adaptive evolution.  相似文献   

11.
Intraspecific competitive behaviours were studied in a reintroduced population of Griffon Vultures Gyps fulvus in order to describe the pattern of competition between ages and sexes, assess the effect of reintroduction on competitive behaviour, and study the potential consequences of food management on competition. There was no evidence for a difference in feeding or display rates between age classes. However interaction rates, aggressiveness and dominance were higher in old adults than in the other age classes. No difference in the pattern of competition was found between sexes. There was no difference in the competitive ability (feeding rate and dominance) of reintroduced and wild-bred individuals. Feeding rates increased with resource availability. Group size also increased with food mass, but was lower than the theoretical maximum number of birds. This may be evidence of competition by interference where some individuals are able to increase their feeding rate by the exclusion of others. An increase in both the number of carcasses and the number of feeding sites is thus recommended to induce dispersal and reduce this competition.  相似文献   

12.
The provision of wild birds with supplementary food has increased substantially over recent decades. While it is assumed that provisioning birds is beneficial, supplementary feeding can have detrimental ‘carry‐over’ effects on reproductive traits. Due to difficulties in monitoring individual feeding behaviour, assessing how individuals within a population vary in their exploitation of supplementary food resources has been limited. Quantifying individual consumption of supplementary food is necessary to understand the operation of carry‐over effects at the individual level. We used Radio Frequency Identification (RFID) technology and automated feeders to estimate individual consumption of supplementary winter food in a large wild population of great tits Parus major and blue tits Cyanistes caeruleus. Using these data, we identified demographic factors that explained individual variation in levels of supplementary food consumption. We also tested for carry‐over effects of supplementary food consumption on recruitment, reproductive success and a measure of survival. Individual variation in consumption of supplementary food was explained by differences between species, ages, sexes and years. Individuals were consistent across time in their usage of supplementary resources. We found no strong evidence that the extent of supplementary food consumption directly influenced subsequent fitness parameters. Such effects may instead result from supplementary food influencing population demographics by enhancing the survival and subsequent breeding of less competitive individuals, which reduce average breeding parameters and increase density‐dependent competition. Carry‐over effects of supplementary feeding are not universal and may depend upon the temporal availability of the food provided. Our study demonstrates how RFID systems can be used to examine individual‐level behaviour with minimal effects on fitness.  相似文献   

13.
Abstract. In Drosophila , both the phenotypic and evolutionary effect of temperature on adult size involves alterations to larval resource processing and affects other life-history traits, that is, development time but most notably, larval survival. Therefore, thermal evolution of adult body size might not be independent of simultaneous adaptation of larval traits to resource availability. Using experimental evolution lines adapted to high and low temperatures at different levels of food, we show that selection pressures interact in shaping larval resource processing. Evolution on poor food invariably leads to lower resource acquisition suggesting a cost to feeding behavior. However, following low temperature selection, lower resource acquisition led to a higher adult body size, probably by more efficient allocation to growth. In contrast, following high temperature selection, low resource acquisition benefited larval survival, possibly by reducing feeding-associated costs. We show that evolved differences to larval resource processing provide a possible proximate mechanism to variation in a suite of correlated life-history traits during adaptation to different climates. The implication for natural populations is that in nature, thermal evolution drives populations to opposite ends of an adult size versus larval survival trade-off by altering resource processing, if resource availability is limited.  相似文献   

14.
Trade-offs between competitive ability and the other life-history traits are considered to be a major mechanism of competitive coexistence. Many theoretical studies have demonstrated the robustness of such a coexistence mechanism ecologically; however, it is unknown whether the coexistence is robust evolutionarily. Here, we report that evolution of life-history traits not directly related to competition, such as longevity, and predator avoidance, easily collapses competitive coexistence in several competition systems: spatially structured, and predator-mediated two-species competition systems. In addition, we found that a superior competitor can be excluded by an inferior one by common mechanisms among the models. Our results suggest that ecological competitive coexistence due to a life-history trait trade-off balance may not be balanced on an evolutionary timescale, that is, it may be evolutionarily fragile.  相似文献   

15.
Synopsis In dense, single-species assemblages of crucian carp, competition is intense and results in populations of stunted fish. To explore mechanisms underlying this competition, we measured handling times, return rates, and prey choice for five sizes of crucian carp feeding on six sizes of a standardized food. Handling times increased with prey size and decreased with fish size. Return rates (dry mass ingested per unit handling time) increased dramatically with fish size, and generally decreased with increasing prey size, especially for small fish. Patterns of return rates among size-classes suggested that one or more size-related shifts in feeding efficiency exist for crucian carp; combined with physiological stresses related to winter anoxia, the inability of fish to make these shifts may contribute to size structures observed in high-density populations. Comparisons of relations among fish size, prey size, and return rates for crucian carp and bluegill, Lepomis macrochirus, suggest that similar intraspecific competitive relations exist between generalist species with size-structured populations. Despite differences in return rates among prey sizes, the extent of food selectivity based on prey size exhibited by crucian carp in two types of choice trials was less than predicted. Crucian carp commonly take in several items before mechanically processing food with their pharyngeal apparatus; this multiple prey processing may contribute to disparities between observed choice patterns and those predicted based on return rates for single prey.  相似文献   

16.
In blowflies, larval aggregation in patches of food can be both intra- and interspecific, depending upon the degree to which competitors are clumped among the patches. In the present study, the implications of spatial aggregation for larval competition was investigated in experimental populations of the introduced blowfly Chrysomya putoria and the native Cochliomyia macellaria , using data from survival to adulthood in a range of single- and double-species larval cultures. The reduction in C. macellaria survival rate in the presence of C. putoria suggests that the former species is the inferior competitor. The results on survival to adulthood for both species in single- and double-species cultures can be explained in the light of the relationship between the level of intra- and interspecific aggregation and the efficiency of the larval feeding process. The possible implications of these results for the population biology of both species in natural environments are discussed.  相似文献   

17.
Drosophila melanogaster populations subjected to extreme larval crowding (CU lines) in our laboratory have evolved higher larval feeding rates than their corresponding controls (UU lines). It has been suggested that this genetically based behavior may involve an energetic cost, which precludes natural selection in a density-regulated population to simultaneously maximize food acquisition and food conversion into biomass. If true, this stands against some basic predictions of the general theory of density-dependent natural selection. Here we investigate the evolutionary consequences of density-dependent natural selection on growth rate and body size in D. melanogaster. The CU populations showed a higher growth rate during the postcritical period of larval life than UU populations, but the sustained differences in weight did not translate into the adult stage. The simplest explanation for these findings (that natural selection in a crowded larval environment favors a faster food acquisition for the individual to attain the same final body size in a shorter period of time) was tested and rejected by looking at the larva-to-adult development times. Larvae of CU populations starved for different periods of time develop into comparatively smaller adults, suggesting that food seeking behavior in a food depleted environment carries a higher cost to these larvae than to their UU counterparts. The results have important implications for understanding the evolution of body size in natural populations of Drosophila, and stand against some widespread beliefs that body size may represent a compromise between the conflicting effects of genetic variation in larval and adult performance.  相似文献   

18.
为了阐明草地螟Loxostege sticticalis大发生种群幼虫取食行为特征, 在室内条件下(温度22±1℃, 相对湿度70%)对不同幼虫密度[1, 10, 30头/瓶(650 mL)]饲养草地螟幼虫的食物利用率及消化酶活性进行了研究。结果表明: 幼虫中等(或高)密度对草地螟幼虫相对中肠重量、 相对取食量、 粪便干重、 食物利用率和近似消化率及总蛋白酶和亮氨酸氨肽酶活性影响显著。幼虫相对中肠重量以10头/瓶的幼虫密度最大, 1头/瓶的幼虫密度最小。随着幼虫密度的增加, 幼虫相对取食量和粪便干重增加, 而虫体干重减轻, 幼虫食物利用率降低。幼虫密度30头/瓶的幼虫相对取食量和粪便干重显著高于1和10头/瓶的, 而30头/瓶的幼虫食物利用率显著低于1头/瓶的。幼虫近似消化率随幼虫密度的逐渐增加而显著降低。幼虫密度10头/瓶的幼虫总蛋白酶和亮氨酸氨肽酶的活性显著高于1和30头/瓶的, 而淀粉酶的活性受幼虫密度影响不显著。随幼虫密度的增加, 幼虫相对中肠重量与总蛋白酶和亮氨酸氨肽酶活性变化趋势较为一致, 消化酶活性的变化可能与相对中肠重量大小有关。因此, 幼虫密度是影响草地螟幼虫取食行为的重要因子, 这些结果为阐明草地螟大发生种群与一般种群的为害特征提供了重要理论依据。  相似文献   

19.
1. Competition was created between the larvae of two life‐history strains of the blowfly Lucilia cuprina (Wiedemann) that have different requirements for larval resource acquisition. Adult females of one strain had the ability to mature eggs in the absence of adult feeding (autogeny) whereas the other strain lacked this ability. Autogeny shifts the burden of resource acquisition from adults to larvae, potentially leading to greater competition at this earlier life history stage. 2. A replacement series was used to determine the per‐capita competitive effect between strains relative to the intra‐strain effect, and density‐ and frequency‐dependent variation in this per‐capita effect was then evaluated. Evidence was found of competitive superiority of autogenous larvae when they occurred at a low frequency and low density, but their competitive ability was lost or reversed at higher frequencies and densities. 3. A dynamic competitive environment created by frequency and density dependence can account for the maintenance of genetic diversity for major life‐history traits. Such competition may explain why autogeny is rare in field populations of L. cuprina even although underlying genetic variation for the trait seems to be present.  相似文献   

20.
Resource competition is frequently strong among parasites that feed within small discrete resource patches, such as seeds or fruits. The properties of a host can influence the behavioural, morphological and life‐history traits of associated parasites, including traits that mediate competition within the host. For seed parasites, host size may be an especially important determinant of competitive ability. Using the seed beetle, Callosobruchus maculatus, we performed replicated, reciprocal host shifts to examine the role of seed size in determining larval competitiveness and associated traits. Populations ancestrally associated with either a small host (mung bean) or a large one (cowpea) were switched to each other's host for 36 generations. Compared to control lines (those remaining on the ancestral host), lines switched from the small host to the large host evolved greater tolerance of co‐occurring larvae within seeds (indicated by an increase in the frequency of small seeds yielding two adults), smaller egg size and higher fecundity. Each change occurred in the direction predicted by the traits of populations already adapted to cowpea. However, we did not observe the expected decline in adult mass following the shift to the larger host. Moreover, lines switched from the large host (cowpea) to the small host (mung bean) did not evolve the predicted increase in larval competitiveness or egg size, but did exhibit the predicted increase in body mass. Our results thus provide mixed support for the hypothesis that host size determines the evolution of competition‐related traits of seed beetles. Evolutionary responses to the two host shifts were consistent among replicate lines, but the evolution of larval competition was asymmetric, with larval competitiveness evolving as predicted in one direction of host shift, but not the reverse. Nevertheless, our results indicate that switching hosts is sufficient to produce repeatable and rapid changes in the competition strategy and fitness‐related traits of insect populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号