首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
TGF-β1 can regulate osteoblast differentiation not only positively but also negatively. However, the mechanisms of negative regulation are not well understood. We previously established the reproducible model for studying the suppression of osteoblast differentiation by repeated or high dose treatment with TGF-β1, although single low dose TGF-β1 strongly induced osteoblast differentiation. The mRNA expression and protein level of insulin-like growth factor-1 (IGF-1) were remarkably decreased by repeated TGF-β1 administration in human periodontal ligament cells, human mesenchymal stem cells, and murine preosteoblast MC3T3-E1 cells. Repeated TGF-β1 administration subsequently decreased alkaline phosphatase (ALP) activity and mRNA expression of osteoblast differentiation marker genes, such as RUNX2, ALP, and bone sialoprotein (BSP). Additionally, repeated administration significantly reduced the downstream signaling pathway of IGF-1, such as Akt phosphorylation in these cells. Surprisingly, exogenous and overexpressed IGF-1 recovered ALP activity and mRNA expression of osteoblast differentiation marker genes even with repeated TGF-β1 administration. These facts indicate that the key mechanism of inhibition of osteoblast differentiation induced by repeated TGF-β1 treatment is simply due to the down-regulation of IGF-1 expression. Inhibition of IGF-1 signaling using small interfering RNA (siRNA) against insulin receptor substrate-1 (IRS-1) suppressed mRNA expression of RUNX2, ALP, BSP, and IGF-1 even with single TGF-β1 administration. This study showed that persistence of TGF-β1 inhibited osteoblast differentiation via suppression of IGF-1 expression and subsequent down-regulation of the PI3K/Akt pathway. We think this fact could open the way to use IGF-1 as a treatment tool for bone regeneration in prolonged inflammatory disease.  相似文献   

8.
9.
10.
11.
In this study, we investigated the effect of TGF-β1 on cholesterol synthesis in human keratinocytes. TGF-β1 increased the level of cholesterol and the mRNA level of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in human keratinocytes. These results show that TGF-β1 induces cholesterol synthesis by increasing HMG-CoA reductase mRNA expression in human keratinocytes.  相似文献   

12.
Plasminogen activator inhibitor (PAI)-1 is a major fibrinolytic inhibitor. High PAI-1 is associated with increased renal and cardiovascular disease risk. Previous studies demonstrated PAI-1 down-regulation by 1,25-dihydroxyvitamin D? (1,25(OH)?D?), but the molecular mechanism remains unknown. Here we show that exposure of mouse embryonic fibroblasts to TNFα or LPS led to a marked induction of PAI-1, which was blunted by 1,25(OH)?D?, NF-κB inhibitor or p65 siRNA, suggesting the involvement of NF-κB in 1,25(OH)?D?-induced repression. In mouse Pai-1 promoter a putative cis-κB element was identified at -299. EMSA and ChIP assays showed that TNF-α increased p50/p65 binding to this κB site, which was disrupted by 1,25(OH)?D?. Luciferase reporter assays showed that PAI-1 promoter activity was induced by TNFα or LPS, and the induction was blocked by 1,25(OH)?D?. Mutation of the κB site blunted TNFα, LPS or 1,25(OH)?D? effects. 1,25(OH)?D? blocked IκBα degradation and arrested p50/p65 nuclear translocation. In mice LPS stimulated PAI-1 expression in the heart and macrophages, and the stimulation was blunted by pre-treatment with a vitamin D analog. Together these data demonstrate that 1,25(OH)?D? down-regulates PAI-1 by blocking NF-κB activation. Inhibition of PAI-1 production may contribute to the reno- and cardio-protective effects of vitamin D.  相似文献   

13.
14.
15.
The increased activation of osteoclasts is the major manifestation of several lytic bone diseases, including osteoporosis, rheumatoid arthritis, aseptic loosening of orthopedic implants, Paget disease and malignant bone diseases. One important bone-protective therapy in these diseases focuses on the inhibition of osteoclast differentiation and resorptive function. Given that the deleterious side-effects of currently available drugs, it is beneficial to search for effective and safe medications from natural compounds. Cepharanthine (CEP) is a compound extracted from Stephania japonica and has been found to have antioxidant and anti-inflammatory effects. In this study, we found that CEP inhibited receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced osteoclast formation and bone-resorbing activities using osteoclastogenesis and bone resorption assay. By polymerase chain reaction, we also found that CEP inhibited the expression of osteoclast-differentiation marker genes including Ctsk, Calcr, Atp6v0d2, Mmp9 and Nfatc1. Mechanistic analyses including Western blot and luciferase reporter assay revealed that CEP inhibited RANKL-induced activation of NF-κB and nuclear factor of activated T-cell, which are essential for the formation of osteoclast. Collectively, these data suggested that CEP can potentially be used as an alternative therapy for preventing or treating osteolytic diseases.  相似文献   

16.
The transforming growth factor-beta (TGF-β) 1 is a mediator of extracellular matrix (ECM) gene expression in mesangial cells and the development of diabetic glomerulopathy. Here, we investigate the effects of TGF-β1 on laminin γ1 and fibronectin polypeptide expression and cell survival in mouse mesangial cells (MES-13). TGF-β1 (10 ng/ml) stimulates laminin-γ1 and fibronectin expression ~two-fold in a time-dependent manner (0–48 h). TGF-β1 treatment also retards laminin-γ1 mobility on SDS-gels, and tunicamycin, an inhibitor of the N-linked glycosylation, blocks the mobility shift. TGF-β1 increases the binding of laminin γ1 to WGA-agarose and the binding is abolished by tunicamycin suggesting that laminin γ1 is modified by N-linked glycosylation. TGF-β1 also elevates fibronectin glycosylation but its mobility is not altered. The degradation of laminin γ1 and fibronectin proteins is reduced by their glycosylation. In addition, TGF-β1 enhances mesangial cell viability and metabolic activities initially (0–24 h); however, eventually leads to cell death (24–48 h). TGF-β1 elevates pro-apoptotic caspase-3 activity and decrease cell cycle progression factor cyclin D1 expression, which parallels cell death. These results indicate that TGF-β1 plays an important role in ECM expression, protein glycosylation and demise of mesangial cells in the diabetic glomerular mesangium. (Mol Cell Biochem 278: 165–175, 2005)  相似文献   

17.
Summary Intestinal epithelial cells (IEC) are known to produce monocyte chemoattractant protein-1 (MCP-1). However, MCP-1 production, as with many other cytokines, can be regulated by a network of cytokines present in the environment of the IEC. Both IEC and inflammatory cells have been shown to produce transforming growth factor-β (TGF-β), and the regulatory effect of this cytokine on MCP-1 secretion by IEC has not been determined. Using the IEC-18 cell line, we have found that TGF-β1 alone induced the secretion of high levels of MCP-1. Treatment with TGF-β1 also enhanced the levels of MCP-1 messenger ribonucleic acid. However, costimulation of the cells with TGF-β1 and interleukin-1β (IL-1β) resulted in significant, but less than additive, increases in MCP-1 secretion. Finally, the enhancing effect of TGF-β1 on MCP-1 secretion was not due to IL-6. These results suggest that TGF-β1 from IEC or inflammatory cells may significantly enhance the secretion of MCP-1 by IEC and play an important role in inflamed mucosal tissues.  相似文献   

18.
Alpha-albumin (AFM), a member of the albumin gene family that also includes albumin, alpha-fetoprotein, and vitamin D-binding protein, is expressed predominantly in the liver and activated at birth. Here, we identify two hepatocyte nuclear factor 1 (HNF1)-binding sites in the AFM promoter that are highly conserved in different mammals. These two sites bind HNF1α and HNF1β. The distal site (centered at -132, relative to AFM exon 1) is more important than proximal site (centered at -58), based on HNF1 binding and mutational analysis in transfected cells. Our data indicate that HNF1α is a more potent activator of AFM promoter than is HNF1β. However, HNF1β can act in a dominant manner to inhibit HNF1α-dependent transactivation of the AFM promoter when both proteins are expressed together. This suggests that the differential timing with which the albumin family genes are activated in the liver may be influenced by their responsiveness to HNF1α and HNF1β. Our comparison of HNF1-binding sites in the promoters in the albumin family of genes indicates that the primordial albumin-like gene contained two HNF1 sites; one of these sites was lost from the albumin promoter, but both sites still are present in other members of this gene family.  相似文献   

19.
Tumorigenesis is in many respects a process of dysregulated cellular evolution that drives malignant cells to acquire six phenotypic hallmarks of cancer, including their ability to proliferate and replicate autonomously, to resist cytostatic and apoptotic signals, and to induce tissue invasion, metastasis, and angiogenesis. Transforming growth factor-β (TGF-β) is a potent pleiotropic cytokine that functions as a formidable barrier to the development of cancer hallmarks in normal cells and tissues. Paradoxically, tumorigenesis counteracts the tumor suppressing activities of TGF-β, thus enabling TGF-β to stimulate cancer invasion and metastasis. Fundamental gaps exist in our knowledge of how malignant cells overcome the cytostatic actions of TGF-β, and of how TGF-β stimulates the acquisition of cancer hallmarks by developing and progressing human cancers. Here we review the molecular and cellular mechanisms that underlie the ability of TGF-β to mediate tumor suppression in normal cells, and conversely, to facilitate cancer progression and disease dissemination in malignant cells.  相似文献   

20.
Plasminogen activator inhibitor (PAI)-1 is a major fibrinolytic inhibitor. High PAI-1 is associated with increased renal and cardiovascular disease risk. Previous studies demonstrated PAI-1 down-regulation by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), but the molecular mechanism remains unknown. Here we show that exposure of mouse embryonic fibroblasts to TNFα or LPS led to a marked induction of PAI-1, which was blunted by 1,25(OH)2D3, NF-κB inhibitor or p65 siRNA, suggesting the involvement of NF-κB in 1,25(OH)2D3-induced repression. In mouse Pai-1 promoter a putative cis-κB element was identified at −299. EMSA and ChIP assays showed that TNF-α increased p50/p65 binding to this κB site, which was disrupted by 1,25(OH)2D3. Luciferase reporter assays showed that PAI-1 promoter activity was induced by TNFα or LPS, and the induction was blocked by 1,25(OH)2D3. Mutation of the κB site blunted TNFα, LPS or 1,25(OH)2D3 effects. 1,25(OH)2D3 blocked IκBα degradation and arrested p50/p65 nuclear translocation. In mice LPS stimulated PAI-1 expression in the heart and macrophages, and the stimulation was blunted by pre-treatment with a vitamin D analog. Together these data demonstrate that 1,25(OH)2D3 down-regulates PAI-1 by blocking NF-κB activation. Inhibition of PAI-1 production may contribute to the reno- and cardio-protective effects of vitamin D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号