首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prior to microtubule capture, sister centromeres resolve from one another, coming to rest on opposite surfaces of the condensing chromosome. Subsequent assembly of sister kinetochores at each sister centromere generates a geometry favorable for equal levels of segregation of chromatids. The holocentric chromosomes of Caenorhabditis elegans are uniquely suited for the study of centromere resolution and subsequent kinetochore assembly. In C. elegans, only two proteins have been identified as being necessary for centromere resolution, the kinase AIR-2 (prophase only) and the centromere protein HCP-4/CENP-C. Here we found that the loss of proteins involved in chromosome cohesion bypassed the requirement for HCP-4/CENP-C but not for AIR-2. Interestingly, the loss of cohesin proteins also restored the localization of HCP-6 to the kinetochore. The loss of the condensin II protein HCP-6 or MIX-1/SMC2 impaired centromere resolution. Furthermore, the loss of HCP-6 or MIX-1/SMC2 resulted in no centromere resolution when either nocodazole or RNA interference (RNAi) of the kinetochore protein KNL-1 perturbed spindle-kinetochore interactions. This result suggests that normal prophase centromere resolution is mediated by condensin II proteins, which are actively recruited to sister centromeres to mediate the process of resolution.  相似文献   

2.
Centromere behavior is specialized in meiosis I, so that sister chromatids of homologous chromosomes are pulled toward the same side of the spindle (through kinetochore mono-orientation) and chromosome number is reduced. Factors required for mono-orientation have been identified in yeast. However, comparatively little is known about how meiotic centromere behavior is specialized in animals and plants that typically have large tandem repeat centromeres. Kinetochores are nucleated by the centromere-specific histone CENH3. Unlike conventional histone H3s, CENH3 is rapidly evolving, particularly in its N-terminal tail domain. Here we describe chimeric variants of CENH3 with alterations in the N-terminal tail that are specifically defective in meiosis. Arabidopsis thaliana cenh3 mutants expressing a GFP-tagged chimeric protein containing the H3 N-terminal tail and the CENH3 C-terminus (termed GFP-tailswap) are sterile because of random meiotic chromosome segregation. These defects result from the specific depletion of GFP-tailswap protein from meiotic kinetochores, which contrasts with its normal localization in mitotic cells. Loss of the GFP-tailswap CENH3 variant in meiosis affects recruitment of the essential kinetochore protein MIS12. Our findings suggest that CENH3 loading dynamics might be regulated differently in mitosis and meiosis. As further support for our hypothesis, we show that GFP-tailswap protein is recruited back to centromeres in a subset of pollen grains in GFP-tailswap once they resume haploid mitosis. Meiotic recruitment of the GFP-tailswap CENH3 variant is not restored by removal of the meiosis-specific cohesin subunit REC8. Our results reveal the existence of a specialized loading pathway for CENH3 during meiosis that is likely to involve the hypervariable N-terminal tail. Meiosis-specific CENH3 dynamics may play a role in modulating meiotic centromere behavior.  相似文献   

3.
Two distinct chromosome architectures are prevalent among eukaryotes: monocentric, in which localized centromeres restrict kinetochore assembly to a single chromosomal site, and holocentric, in which diffuse kinetochores form along the entire chromosome length. During mitosis, both chromosome types use specialized chromatin, containing the histone H3 variant CENP-A, to direct kinetochore assembly. For the segregation of recombined homologous chromosomes during meiosis, monocentricity is thought to be crucial for limiting spindle-based forces to one side of a crossover and to prevent recombined chromatids from being simultaneously pulled towards both spindle poles. The mechanisms that allow holocentric chromosomes to avert this fate remain uncharacterized. Here, we show that markedly different mechanisms segregate holocentric chromosomes during meiosis and mitosis in the nematode Caenorhabditis elegans. Immediately prior to oocyte meiotic segregation, outer-kinetochore proteins were recruited to cup-like structures on the chromosome surface via a mechanism that is independent of CENP-A. In striking contrast to mitosis, both oocyte meiotic divisions proceeded normally following depletion of either CENP-A or the closely associated centromeric protein CENP-C. These findings highlight a pronounced difference between the segregation of holocentric chromosomes during meiosis and mitosis and demonstrate the potential to uncouple assembly of outer-kinetochore proteins from CENP-A chromatin.  相似文献   

4.
Although holocentric species are scattered throughout the plant and animal kingdoms, only holocentric chromosomes of the nematode worm Caenorhabditis elegans have been analyzed with centromeric protein markers. In an effort to determine the holocentric structure in plants, we investigated the snowy woodrush Luzula nivea. From the young roots, a cDNA encoding a putative centromere-specific histone H3 (LnCENH3) was successfully isolated based on sequence similarity among plant CENH3s. The deduced amino acid sequence was then used to raise an anti-LnCENH3 antibody. Immunostaining clearly revealed the diffuse centromere-like structure that appears in the linear shape at prophase to telophase. Furthermore, it was shown that the amount of LnCENH3 decreased significantly at interphase. The polar side positioning on each chromatid at metaphase to anaphase also confirmed that LnCENH3 represents one of the centromere-specific proteins in L. nivea. These data from L. nivea are compared with those from C. elegans, and common features of holocentric chromosomes are discussed.  相似文献   

5.
The histone H3 variant (CENH3) of centromeric nucleosomes is essential for kinetochore assembly and thus for chromosome segregation in eukaryotes. The mechanism(s) that determine centromere identity, assembly and maintenance of kinetochores are still poorly understood. Although the role of CENH3 during mitosis has been studied in several organisms, little is known about its meiotic function. We show that RNAi-mediated CENH3 knockdown in Arabidopsis thaliana caused dwarfism as the result of a reduced number of mitotic divisions. The remaining mitotic divisions appeared to be error-free. CENH3 RNAi transformants had reduced fertility because of frequently disturbed meiotic chromosome segregation. N-terminally truncated EYFP-CENH3(C) is deposited to and functional within Arabidopsis centromeres of mitotic chromosomes, but cannot be loaded onto centromeres of meiotic nuclei. Thus the N-terminal part is apparently required for CENH3 loading during meiosis. EYFP-CENH3(C) expression reduces the amount of endogenous CENH3, thus mimicking the effect of RNAi. The consequences of reduced endogenous CENH3 and lack of meiotic incorporation of EYFP-CENH3(C) are reduced fertility caused by insufficient CENH3 loading to the centromeres of meiotic chromosomes, subsequent lagging of chromosomes and formation of micronuclei.  相似文献   

6.
While the approximate chromosomal position of centromeres has been identified in many species, little is known about the dynamics and diversity of centromere positions within species. Multiple lines of evidence indicate that DNA sequence has little or no impact in specifying centromeres in maize and in most multicellular organisms. Given that epigenetically defined boundaries are expected to be dynamic, we hypothesized that centromere positions would change rapidly over time, which would result in a diversity of centromere positions in isolated populations. To test this hypothesis, we used CENP-A/cenH3 (CENH3 in maize) chromatin immunoprecipitation to define centromeres in breeding pedigrees that included the B73 inbred as a common parent. While we found a diversity of CENH3 profiles for centromeres with divergent sequences that were not inherited from B73, the CENH3 profiles from centromeres that were inherited from B73 were indistinguishable from each other. We propose that specific genetic elements in centromeric regions favor or inhibit CENH3 accumulation, leading to reproducible patterns of CENH3 occupancy. These data also indicate that dramatic shifts in centromere position normally originate from accumulated or large-scale genetic changes rather than from epigenetic positional drift.  相似文献   

7.
Meiosis in angiosperm plants is followed by mitotic divisions to form multicellular haploid gametophytes. Termination of meiosis and transition to gametophytic development is, in Arabidopsis, governed by a dedicated mechanism that involves SMG7 and TDM1 proteins. Mutants carrying the smg7-6 allele are semi-fertile due to reduced pollen production. We found that instead of forming tetrads, smg7-6 pollen mother cells undergo multiple rounds of chromosome condensation and spindle assembly at the end of meiosis, resembling aberrant attempts to undergo additional meiotic divisions. A suppressor screen uncovered a mutation in centromeric histone H3 (CENH3) that increased fertility and promoted meiotic exit in smg7-6 plants. The mutation led to inefficient splicing of the CENH3 mRNA and a substantial decrease of CENH3, resulting in smaller centromeres. The reduced level of CENH3 delayed formation of the mitotic spindle but did not have an apparent effect on plant growth and development. We suggest that impaired spindle re-assembly at the end of meiosis limits aberrant divisions in smg7-6 plants and promotes formation of tetrads and viable pollen. Furthermore, the mutant with reduced level of CENH3 was very inefficient haploid inducer indicating that differences in centromere size is not the key determinant of centromere-mediated genome elimination.  相似文献   

8.
In eukaryotic phyla studied so far, the essential centromeric histone H3 variant (CENH3) is loaded to centromeric nucleosomes after S-phase (except for yeast) but before mitotic segregation (except for metazoan). While the C-terminal part of CENH3 seems to be sufficient for mitotic centromere function in plants, meiotic centromeres neither load nor tolerate impaired CENH3 molecules. However, details about CENH3 deposition in meiocytes are unknown (except for Drosophila). Therefore, we quantified fluorescence signals after the immunostaining of CENH3 along meiotic and mitotic nuclear division cycles of rye, a monocotyledonous plant. One peak of fluorescence intensity appeared in the early meiotic prophase of pollen mother cells and a second one during interkinesis, both followed by a decrease of CENH3. Then, the next loading occurred in the male gametophyte before its first mitotic division. These data indicate that CENH3 loading differs between mitotic and meiotic nuclei. Contrary to the situation in mitotic cycles, CENH3 deposition is biphasic during meiosis and apparently linked with a quality check, a removal of impaired CENH3 molecules, and a general loss of CENH3 after each loading phase. These steps ensure an endowment of centromeres with a sufficient amount of correct CENH3 molecules as a prerequisite for centromere maintenance during mitotic cycles of the microgametophyte and the progeny. From a comparison with data available for Drosophila, we hypothesise that the post-divisional mitotic CENH3 loading in metazoans is evolutionarily derived from the post-divisional meiotic loading phase, while the pre-divisional first meiotic loading has been conserved among eukaryotes.  相似文献   

9.
The kinetochore creates chromosomal attachment sites for microtubules. The kinetochore-microtubule interface plays an important role in ensuring accurate transmission of genetic information to daughter cells. Bombyx mori is known to possess holocentric chromosomes, where spindle microtubules attach along the entire length of the chromosome. Recent evidence suggests that CENP-A and CENP-C, which are essential for centromere structure and function in other species, have lost in holocentric insects, implying that B. mori is able to build its kinetochore regardless of the lack of CENP-A and CENP-C. Here we report the identification of three outer kinetochore genes in the silkworm B. mori by using bioinformatics and RNA interference-based screening. While the homologs of Ndc80 and Mis12 have strong similarity with those of other organisms, the five encoded proteins (BmNuf2, BmSpc24, BmSpc25, BmDsn1 and BmNnf1) are highly diverged from their counterparts in other species. Microscopic studies show that the outer kinetochore protein is distributed along the entire length of the chromosomes, which is a key feature of holocentric chromosomes. We also demonstrate that BmDsn1 forms a heterotrimeric complex with BmMis12 and BmNnf1, which acts as a receptor of the Ndc80 complex. In addition, our study suggests that a small-scale RNAi-based candidate screening is a useful approach to identify genes which may be highly divergent among different species.  相似文献   

10.
The centromere is an essential chromosomal component assembling the kinetochore for chromosome attachment to the spindle microtubules and for directing the chromosome segregation during nuclear division. Kinetochore assembly requires deposition of the centromeric histone H3 variant (CENH3) into centromeric nucleosomes. CENH3 has a variable N-terminal and a more conserved C-terminal part, including the loop1 region of the histone fold domain, which is considered to be critical for centromere targeting. To investigate the structural requirements for centromere targeting, constructs for EYFP-tagged CENH3 of A. lyrata, A. arenosa, Capsella bursa-pastoris, Zea mays and Luzula nivea (the latter with holocentric chromosomes) were transformed into A. thaliana. Except for LnCENH3, all recombinant CENH3 proteins targeted A. thaliana centromeres, but the more distantly related the heterologous protein is, the lower is the efficiency of targeting. Alignment of CENH3 sequences revealed that the tested species share only three amino acids at loop1 region: threonine2, arginine12 and alanine15. These three amino acids were substituted by asparagine, proline and valine encoding sequences within a recombinant EYFP-AtCENH3 construct via PCR mutagenesis prior to transformation of A. thaliana. After transformation, immunostaining of root tip nuclei with anti-GFP antibodies yielded only diffuse signals, indicating that the original three amino acids are necessary but not sufficient for targeting A. thaliana centromeres.  相似文献   

11.
Centromere-drive is a process where centromeres compete for transmission through asymmetric "female" meiosis for inclusion into the oocyte. In symmetric "male" meiosis, all meiotic products form viable germ cells. Therefore, the primary incentive for centromere-drive, a potential transmission bias, is believed to be missing from male meiosis. In this article, we consider whether male meiosis also bears the primary cost of centromere-drive. Because different taxa carry out different combinations of meiotic programs (symmetric?+?asymmetric, symmetric only, asymmetric only), it is possible to consider the evolutionary consequences of centromere-drive in the context of these differing systems. Groups with both types of meiosis have large, rapidly evolving centromeric regions, and their centromeric histones (CenH3s) have been shown to evolve under positive selection, suggesting roles as suppressors of centromere-drive. In contrast, taxa with only symmetric male meiosis have shown no evidence of positive selection in their centromeric histones. In this article, we present the first evolutionary analysis of centromeric histones in ciliated protozoans, a group that only undergoes asymmetric "female" meiosis. We find no evidence of positive selection acting on CNA1, the CenH3 of Tetrahymena species. Cytological observations of a panel of Tetrahymena species are consistent with dynamic karyotype evolution in this lineage. Our findings suggest that defects in male meiosis, and not mitosis or female meiosis, are the primary selective force behind centromere-drive suppression. Our study raises the possibility that taxa like ciliates, with only female meiosis, may therefore undergo unsuppressed centromere drive.  相似文献   

12.
Centromere protein A (CENP-A) is a histone H3 variant that defines centromeric chromatin and is essential for centromere function. In most eukaryotes, CENP-A-containing chromatin is epigenetically maintained, and centromere identity is inherited from one cell cycle to the next. In the germ line of the holocentric nematode Caenorhabditis elegans, this inheritance cycle is disrupted. CENP-A is removed at the mitosis-to-meiosis transition and is reestablished on chromatin during diplotene of meiosis I. Here, we show that the N-terminal tail of CENP-A is required for the de novo establishment of centromeres, but then its presence becomes dispensable for centromere maintenance during development. Worms homozygous for a CENP-A tail deletion maintain functional centromeres during development but give rise to inviable offspring because they fail to reestablish centromeres in the maternal germ line. We identify the N-terminal tail of CENP-A as a critical domain for the interaction with the conserved kinetochore protein KNL-2 and argue that this interaction plays an important role in setting centromere identity in the germ line. We conclude that centromere establishment and maintenance are functionally distinct in C. elegans.

This study of the nematode Caenorhabditis elegans shows that centromere identity is set in the maternal germ line and passed on to the progeny via an epigenetic mechanism that requires the N-terminal tail of the centromeric histone H3 variant CENP-A.  相似文献   

13.
CENP-A (CID in flies) is the histone H3 variant essential for centromere specification, kinetochore formation, and chromosome segregation during cell division. Recent studies have elucidated major cell cycle mechanisms and factors critical for CENP-A incorporation in mitosis, predominantly in cultured cells. However, we do not understand the roles, regulation, and cell cycle timing of CENP-A assembly in somatic tissues in multicellular organisms and in meiosis, the specialized cell division cycle that gives rise to haploid gametes. Here we investigate the timing and requirements for CID assembly in mitotic tissues and male and female meiosis in Drosophila melanogaster, using fixed and live imaging combined with genetic approaches. We find that CID assembly initiates at late telophase and continues during G1 phase in somatic tissues in the organism, later than the metaphase assembly observed in cultured cells. Furthermore, CID assembly occurs at two distinct cell cycle phases during male meiosis: prophase of meiosis I and after exit from meiosis II, in spermatids. CID assembly in prophase I is also conserved in female meiosis. Interestingly, we observe a novel decrease in CID levels after the end of meiosis I and before meiosis II, which correlates temporally with changes in kinetochore organization and orientation. We also demonstrate that CID is retained on mature sperm despite the gross chromatin remodeling that occurs during protamine exchange. Finally, we show that the centromere proteins CAL1 and CENP-C are both required for CID assembly in meiosis and normal progression through spermatogenesis. We conclude that the cell cycle timing of CID assembly in meiosis is different from mitosis and that the efficient propagation of CID through meiotic divisions and on sperm is likely to be important for centromere specification in the developing zygote.  相似文献   

14.
T Fukagawa  C Pendon  J Morris    W Brown 《The EMBO journal》1999,18(15):4196-4209
CENP-C is an evolutionarily conserved centromeric protein. We have used the chicken DT40 cell line to test the idea that CENP-C is sufficient as well as necessary for the formation of a functional centromere. We have compared the effects of disrupting the localization of CENP-C with those of inducibly overexpressing the protein. Removing CENP-C from the centromere causes disassembly of the centromere protein complex and blocks cells at the metaphase-anaphase junction. Overexpressed CENP-C is associated with an increase in errors of chromosome segregation and inhibits the completion of mitosis. However, the excess CENP-C does not disrupt the native centromeres detectably and does not associate with another conserved centromere protein, ZW10. The distribution of the excess CENP-C changes during the cell cycle. In metaphase, the excess CENP-C coats the chromosome arms. At the metaphase-anaphase transition, the excess CENP-C clusters, and during interphase it is present in large bodies which form around pre-existing centromeres which are also clustered. These results indicate that CENP-C is necessary but not sufficient for the formation of a functional centromere and suggest that the structure of CENP-C may be regulated during the cell cycle.  相似文献   

15.
Centromeres are defined by the location of Centromeric Histone H3 (CENP-A/CENH3) which interacts with DNA to define the locations and sizes of functional centromeres. An analysis of 26 maize genomes including 110 fully assembled centromeric regions revealed positive relationships between centromere size and genome size. These effects are independent of variation in the amounts of the major centromeric satellite sequence CentC. We also backcrossed known centromeres into two different lines with larger genomes and observed consistent increases in functional centromere sizes for multiple centromeres. Although changes in centromere size involve changes in bound CENH3, we could not mimic the effect by overexpressing CENH3 by threefold. Literature from other fields demonstrate that changes in genome size affect protein levels, organelle size and cell size. Our data demonstrate that centromere size is among these scalable features, and that multiple limiting factors together contribute to a stable centromere size equilibrium.  相似文献   

16.
The centromere, which is one of the essential parts of a chromosome, controls kinetochore formation and chromosome segregation during mitosis and meiosis. While centromere function is conserved in eukaryotes, the centromeric DNA sequences evolve rapidly and have few similarities among species. The histone H3 variant CENH3(CENP-A in human), which mostly exists in centromeric nucleosomes, is a universal active centromere mark in eukaryotes and plays an essential role in centromere identity determination. The relationship between centromeric DNA sequences and centromere identity determination is one of the intriguing questions in studying centromere formation. Due to the discoveries in the past decades, including "neocentromeres" and "centromere inactivation", it is now believed that the centromere identity is determined by epigenetic mechanisms. This review will present recent progress in plant centromere biology.  相似文献   

17.
The kinetochore is a complex multiprotein structure located at centromeres and required for the proper segregation of chromosomes during mitosis and meiosis. An important role in kinetochore assembly and function plays the centromeric histone H3 variant (CENH3). Cell cycle stage of CENH3 deposition to centromeres varies between different organisms. We confirmed by in vivo studies that deposition of Arabidopsis CENH3 takes place at centromeres during G2 and demonstrated that additionally a low turnover of CENH3 occurs along the cell cycle, apparently for replacement of damaged protein. Furthermore, enhanced yellow fluorescent protein (EYFP)-CENH3 of photobleached chromocenters is not replaced by EYFP-CENH3 molecules from unbleached centromeres of the same nucleus, indicating a stable incorporation of CENH3 into centromeric nucleosomes. In differentiated endopolyploid nuclei however, the amount of CENH3 at centromeres declines with age.  相似文献   

18.
Centromere is the defining unit of a chromosome where kinetochore complex assembles and facilitates chromosome segregation. Centromeres contain unique repetitive sequences and are enriched with transposons and retrotransposons. Although how centromere is determined is still not clearly understood, binding of a key protein, namely, the Centromeric Histone H3 (CENH3) to centromeric repetitive DNA sequences has been found to be critical for the specification of centromere. Hence, centromeres are said to be epigenetically specified by CENH3. Despite considerable variation in size and sequence, CENH3 protein shows significant conservation of structure and function. CENH3 disruption or overexpression shows severe defects in spindle fiber attachment and ultimately leads to embryo lethality. Basic studies on complementation of CENH3 in Arabidopsis thaliana have led to the development of a novel method of haploid production through selective elimination of one set of parental chromosomes in the zygote. These findings have also shed new light on selective loss of chromosomes in interspecific crosses of Hordeum vulgare × H. bulbosum. Here, we briefly review unique features of CENH3 and discuss the new plant breeding opportunities that have emerged from the study of CENH3.  相似文献   

19.
A chromosome with two functional centromeres is cytologically unstable and can only be stabilized when one of the two centromeres becomes inactivated via poorly understood mechanisms. Here, we report a transmissible chromosome with multiple centromeres in wheat. This chromosome encompassed one large and two small domains containing the centromeric histone CENH3. The two small centromeres are in a close vicinity and often fused as a single centromere on metaphase chromosomes. This fused centromere contained approximately 30% of the CENH3 compared to the large centromere. An intact tricentric chromosome was transmitted to about 70% of the progenies, which was likely a consequence of the dominating pulling capacity of the large centromere during anaphases of meiosis. The tricentric chromosome showed characteristics typical to dicentric chromosomes, including chromosome breaks and centromere inactivation. Remarkably, inactivation was always associated with the small centromeres, indicating that small centromeres are less likely to survive than large ones in dicentric chromosomes. The inactivation of the small centromeres also coincided with changes of specific histone modifications, including H3K27me2 and H3K27me3, of the pericentromeric chromatin.  相似文献   

20.
In most eukaryotes, centromeres assemble at a single location per chromosome. Naturally occurring telocentric chromosomes (telosomes) with a terminal centromere are rare but do exist. Telosomes arise through misdivision of centromeres in normal chromosomes, and their cytological stability depends on the structure of their kinetochores. The instability of telosomes may be attributed to the relative centromere size and the degree of completeness of their kinetochore. Here we test this hypothesis by analyzing the cytogenetic structure of wheat telosomes. We used a population of 80 telosomes arising from the misdivision of the 21 chromosomes of wheat that have shown stable inheritance over many generations. We analyzed centromere size by probing with the centromere-specific histone H3 variant, CENH3. Comparing the signal intensity for CENH3 between the intact chromosome and derived telosomes showed that the telosomes had approximately half the signal intensity compared to that of normal chromosomes. Immunofluorescence of CENH3 in a wheat stock with 28 telosomes revealed that none of the telosomes received a complete CENH3 domain. Some of the telosomes lacked centromere specific retrotransposons of wheat in the CENH3 domain, indicating that the stability of telosomes depends on the presence of CENH3 chromatin and not on the presence of CRW repeats. In addition to providing evidence for centromere shift, we also observed chromosomal aberrations including inversions and deletions in the short arm telosomes of double ditelosomic 1D and 6D stocks. The role of centromere-flanking, pericentromeric heterochromatin in mitosis is discussed with respect to genome/chromosome integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号