首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Cholera infection continues to be a threat to global public health. The current cholera pandemic associated with Vibrio cholerae El Tor has now been ongoing for over half a century.

Methodology/Principal Findings

Thirty-eight V. cholerae El Tor isolates associated with a cholera outbreak in 2009 from the Chandigarh region of India were characterised by a combination of microbiology, molecular typing and whole-genome sequencing. The genomic analysis indicated that two clones of V. cholera circulated in the region and caused disease during this time. These clones fell into two distinct sub-clades that map independently onto wave 3 of the phylogenetic tree of seventh pandemic V. cholerae El Tor. Sequence analyses of the cholera toxin gene, the Vibrio seventh Pandemic Island II (VSPII) and SXT element correlated with this phylogenetic position of the two clades on the El Tor tree. The clade 2 isolates, characterized by a drug-resistant profile and the expression of a distinct cholera toxin, are closely related to the recent V. cholerae isolated elsewhere, including Haiti, but fell on a distinct branch of the tree, showing they were independent outbreaks. Multi-Locus Sequence Typing (MLST) distinguishes two sequence types among the 38 isolates, that did not correspond to the clades defined by whole-genome sequencing. Multi-Locus Variable-length tandem-nucleotide repeat Analysis (MLVA) identified 16 distinct clusters.

Conclusions/Significance

The use of whole-genome sequencing enabled the identification of two clones of V. cholerae that circulated during the 2009 Chandigarh outbreak. These clones harboured a similar structure of ICEVchHai1 but differed mainly in the structure of CTX phage and VSPII. The limited capacity of MLST and MLVA to discriminate between the clones that circulated in the 2009 Chandigarh outbreak highlights the value of whole-genome sequencing as a route to the identification of further genetic markers to subtype V. cholerae isolates.  相似文献   

2.
Kenya is endemic for cholera with different waves of outbreaks having been documented since 1971. In recent years, new variants of Vibrio cholerae O1 have emerged and have replaced most of the traditional El Tor biotype globally. These strains also appear to have increased virulence, and it is important to describe and document their phenotypic and genotypic traits. This study characterized 146 V. cholerae O1 isolates from cholera outbreaks that occurred in Kenya between 1975 and 2017. Our study reports that the 1975–1984 strains had typical classical or El Tor biotype characters. New variants of V. cholerae O1 having traits of both classical and El Tor biotypes were observed from 2007 with all strains isolated between 2015 and 2017 being sensitive to polymyxin B and carrying both classical and El Tor type ctxB. All strains were resistant to Phage IV and harbored rstR, rtxC, hlyA, rtxA and tcpA genes specific for El Tor biotype indicating that the strains had an El Tor backbone. Pulsed field gel electrophoresis (PFGE) genotyping differentiated the isolates into 14 pulsotypes. The clustering also corresponded with the year of isolation signifying that the cholera outbreaks occurred as separate waves of different genetic fingerprints exhibiting different genotypic and phenotypic characteristics. The emergence and prevalence of V. cholerae O1 strains carrying El Tor type and classical type ctxB in Kenya are reported. These strains have replaced the typical El Tor biotype in Kenya and are potentially more virulent and easily transmitted within the population.  相似文献   

3.
The genomes of Vibrio cholerae O1 Matlab variant MJ-1236, Mozambique O1 El Tor variant B33, and altered O1 El Tor CIRS101 were sequenced. All three strains were found to belong to the phylocore group 1 clade of V. cholerae, which includes the 7th-pandemic O1 El Tor and serogroup O139 isolates, despite displaying certain characteristics of the classical biotype. All three strains were found to harbor a hybrid variant of CTXΦ and an integrative conjugative element (ICE), leading to their establishment as successful clinical clones and the displacement of prototypical O1 El Tor. The absence of strain- and group-specific genomic islands, some of which appear to be prophages and phage-like elements, seems to be the most likely factor in the recent establishment of dominance of V. cholerae CIRS101 over the other two hybrid strains.Vibrio cholerae, a bacterium autochthonous to the aquatic environment, is the causative agent of cholera, a life-threatening disease that causes severe, watery diarrhea. Cholera bacteria are serogrouped based on their somatic O antigens, with more than 200 serogroups identified to date (6). Only toxigenic strains of serogroups O1 and O139 have been identified as agents of cholera epidemics and pandemics; serogroups other than O1 and O139 have the potential to cause mild gastroenteritis or, rarely, local outbreaks. Genes coding for cholera toxin (CTX), ctxAB, and other virulence factors have been shown to reside in bacteriophages and various mobile genetic elements. In addition, V. cholerae serogroup O1 is differentiated into two biotypes, classical and El Tor, by a combination of biochemical traits, by sensitivity to biotype-specific bacteriophages, and more recently by nucleotide sequencing of specific genes and by molecular typing (5, 17, 19).There have been seven pandemics of cholera recorded throughout human history. The seventh and current pandemic began in 1961 in the Indonesian island of Sulawesi and subsequently spread to Asia, Africa, and Latin America; the six previous pandemics are believed to have originated in the Indian subcontinent. Isolates of the sixth pandemic were almost exclusively of the O1 classical biotype, whereas the current (seventh) pandemic is dominated by the V. cholerae O1 El Tor biotype as the causative agent, a transition occurring between 1923 and 1961. Today, the disease continues to remain a scourge in developing countries, confounded by the fact that V. cholerae is native to estuaries and river systems throughout the world (8).Over the past 20 years, several new epidemic lineages of V. cholerae O1 El Tor have emerged (or reemerged). For example, in 1992, a new serogroup, namely, O139 of V. cholerae, was identified as the cause of epidemic cholera in India and Bangladesh (25). The initial concern was that a new pandemic was beginning; however, the geographic range of V. cholerae O139 is currently restricted to Asia. Additionally, V. cholerae O1 hybrids and altered El Tor variants have been isolated repeatedly in Bangladesh (Matlab) (23, 24) and Mozambique (1). Altered V. cholerae O1 El Tor isolates produce cholera toxin of the classical biotype but can be biotyped as El Tor by conventional phenotypic assays, whereas V. cholerae O1 hybrid variants cannot be biotyped based on phenotypic tests and can produce cholera toxin of either biotype. These new variants have subsequently replaced the prototype seventh-pandemic V. cholerae O1 El Tor strains in Asia and Africa, with respect to frequency of isolation from clinical cases of cholera (27).Here, we report the genome sequence of three V. cholerae O1 variants, MJ-1236, a Matlab type I hybrid variant from Bangladesh that cannot be biotyped by conventional methods, CIRS101, an altered O1 El Tor isolate from Bangladesh which harbors ctxB of classical origin, and B33, an altered O1 El Tor isolate from Mozambique which harbors classical CTXΦ, and we compare their genomes with prototype El Tor and classical genomes. From an epidemiological viewpoint, among the three variants characterized in this study, V. cholerae CIRS101 is currently the most “successful” in that strains belonging to this type have virtually replaced the prototype El Tor in Asia and many parts of Africa, notably East Africa. This study, therefore, gives us a unique opportunity to understand why V. cholerae CIRS101 is currently the most successful El Tor variant.  相似文献   

4.

Background

Cholera is endemic in Bangladesh, with outbreaks reported annually. Currently, the majority of epidemic cholera reported globally is El Tor biotype Vibrio cholerae isolates of the serogroup O1. However, in Bangladesh, outbreaks attributed to V. cholerae serogroup O139 isolates, which fall within the same phylogenetic lineage as the O1 serogroup isolates, were seen between 1992 and 1993 and in 2002 to 2005. Since then, V. cholerae serogroup O139 has only been sporadically isolated in Bangladesh and is now rarely isolated elsewhere.

Methods

Here, we present case histories of four cholera patients infected with V. cholerae serogroup O139 in 2013 and 2014 in Bangladesh. We comprehensively typed these isolates using conventional approaches, as well as by whole genome sequencing. Phenotypic typing and PCR confirmed all four isolates belonging to the O139 serogroup.

Findings

Whole genome sequencing revealed that three of the isolates were phylogenetically closely related to previously sequenced El Tor biotype, pandemic 7, toxigenic V. cholerae O139 isolates originating from Bangladesh and elsewhere. The fourth isolate was a non-toxigenic V. cholerae that, by conventional approaches, typed as O139 serogroup but was genetically divergent from previously sequenced pandemic 7 V. cholerae lineages belonging to the O139 or O1 serogroups.

Conclusion

These results suggest that previously observed lineages of V. cholerae O139 persist in Bangladesh and can cause clinical disease and that a novel disease-causing non-toxigenic O139 isolate also occurs.  相似文献   

5.

Background

Increase in the number of multidrug resistant pathogens and the accompanied rise in case fatality rates has hampered the treatment of many infectious diseases including cholera. Unraveling the mechanisms responsible for multidrug resistance in the clinical isolates of Vibrio cholerae would help in understanding evolution of these pathogenic bacteria and their epidemic potential. This study was carried out to identify genetic factors responsible for multiple drug resistance in clinical isolates of Vibrio cholerae O1, serotype Ogawa, biotype El Tor isolated from the patients admitted to the Infectious Diseases Hospital, Kolkata, India, in 2009.

Methodology/Principal Findings

One hundred and nineteen clinical isolates of V. cholerae were analysed for their antibiotic resistance phenotypes. Antibiogram analysis revealed that majority of the isolates showed resistance to co-trimoxazole, nalidixic acid, polymixin B and streptomycin. In PCR, SXT integrase was detected in 117 isolates and its sequence showed 99% identity notably to ICEVchInd5 from Sevagram, India, ICEVchBan5 from Bangladesh and VC1786ICE sequence from Haiti outbreak among others. Antibiotic resistance traits corresponding to SXT element were transferred from the parent Vibrio isolate to the recipient E. coli XL-1 Blue cells during conjugation. Double-mismatch-amplification mutation assay (DMAMA) revealed the presence of Haitian type ctxB allele of genotype 7 in 55 isolates and the classical ctxB allele of genotype 1 in 59 isolates. Analysis of topoisomerase sequences revealed the presence of mutation Ser83 → Ile in gyrA and Ser85→ Leu in parC. This clearly showed the circulation of SXT-containing V. cholerae as causative agent for cholera in Kolkata.

Conclusions

There was predominance of SXT element in these clinical isolates from Kolkata region which also accounted for their antibiotic resistance phenotype typical of this element. DMAMA PCR showed them to be a mixture of isolates with different ctxB alleles like classical, El Tor and Haitian variants.  相似文献   

6.
Cholera occurs in sporadic cases and outbreaks in Nepal each year. Vibrio cholerae O1 (n = 522) isolated during 2007-2010 from diarrheal patients at 10 different hospital laboratories in Nepal were characterized. Biochemical and serologic identifications showed that all the isolates belonged to serogroup O1, El Tor biotype. Except 72 isolates of Inaba serotype isolated in the year 2007, all the remaining isolates were of Ogawa serotype. All isolates were resistant to nalidixic acid and furazolidone. Resistance to tetracycline, ciprofloxacin, erythromycin and co-trimoxazole were 21, 4, 16 and 90 % respectively. Seventy-seven of these isolates were selected for further characterization for ctxB gene and MLVA typing. Two different variants of classical type cholera toxin were observed. Ogawa strains from 2007 and 2010-Western Nepal outbreak harbored CTX-3 type cholera toxin, whereas Inaba serotypes in 2007 and the remaining Ogawa serotypes in 2008-2010 harbored CTX 3b-type toxin. MLVA analysis showed circulation of four different groups of altered V. cholerae O1 El Tor strains. Two different profiles were seen among 2007 Inaba (9, 3, 6, x, x) and Ogawa (10, 7, 6, x, x) isolates. The MLVA profile of 2008 and 2009 Ogawa isolates were similar to those of Inaba strains of 2007. Isolates from 2010 also showed three different MLVA profiles; profile 9, 3, 6, x, x in 3 isolates, 11, 7, 6, x, x among 2010 Western Nepal outbreak strains and profile 8, 3, 6, x, x among isolates from Butwal and Kathmandu.  相似文献   

7.
The genotype and antibiotic resistance pattern of the toxigenic Vibrio cholerae strains associated with cholera outbreaks vary frequently. Fifty-one V. cholerae strains isolated from cholera outbreaks in Chennai (2002–2005) were screened for the presence of virulence and regulatory genes by multiplex polymerase chain reaction (PCR) assay. Genotyping of the isolates was done by VC1 primers derived from enterobacterial repetitive intergenic consensus (ERIC)-related sequence in V. cholerae. All the isolates possessed toxigenic genes, such as ctxA, ctxB, tcpA, ace, ompU, toxR and zot. Two different El Tor genotypes and one O139 genotype could be delineated by VC1-PCR. One of the El Tor genotypes was similar to the El Tor strains isolated from Bhind district and Delhi during 2004. Antibiotic susceptibility testing revealed greater variability among the isolates tested. All the isolates were found to be susceptible to norfloxacin, ciprofloxacin and tetracycline. Thiry-three per cent of the isolates were found to be resistant to more than 4 antibiotics and could be termed as multiple antibiotic resistant. Coexistence of O139 serogroup along with the El Tor biotype could be identified among the strains recovered during the period 2002–2004. The O139 isolates were found to be more susceptible to the antibiotics tested when compared to the El Tor isolates.  相似文献   

8.
Vibrio cholerae O139 (synonym Bengal), a novel serovar of V. cholerae, is the causative agent of large outbreaks of cholera-like illness currently sweeping India and Bangladesh. Eight randomly selected V. cholerae O139 isolates were studied for their biological properties, which were compared with those of V. cholerae O1 and other V. cholerae non-O1. The V. cholerae O139 isolates were characterized by the production of large amount of cholera toxin, hemagglutination, weak hemolytic properties, resistance to polymyxin B, lysogeny with, and production of, kappa type phage (4/8 isolates only), and resistance to both classical and El Tor-specific phages. Thus, V. cholerae O139 isolates had an overall similarity with V. cholerae O1 El Tor.  相似文献   

9.
In July 1994, 6 cholera cases due to Vibrio cholerae O1 El Tor Ogawa sporadically appeared in Okinawa. All 6 patients had no history of traveling abroad. In the period of this cholera outbreak, a strain of V. cholerae O1 El Tor Ogawa was detected from an imported fish at the Naha port quarantine station. The isolates were characterized to clarify whether or not, they belonged to a common clone. Phenotypes were identical except that one strain revealed cured Celebes and the others were original Celebes in kappa phage typing. The restriction fragment patterns of DNA of the isolates hybridized with an enzyme-labeled oligonucleotide probe for cholera toxin gene (ctx) were identical. Randomly amplified polymorphic DNA of the isolates were identical when a primer was used, but 2 patterns were seen when another primer was used. Pulsed-field gel electrophoresis of the chromosomal DNA digested with NotI restriction enzyme showed 3 patterns. The DNA fragment pattern of the strain isolated from the imported fish was different from the clinical isolates. These results suggested that there was no epidemiological relation among the strains of V. cholerae O1 isolated during this period.  相似文献   

10.
Pandemic V. cholerae strains in the O1 serogroup have 2 biotypes: classical and El Tor. The classical biotype strains of the sixth pandemic, which encode the classical type cholera toxin (CT), have been replaced by El Tor biotype strains of the seventh pandemic. The prototype El Tor strains that produce biotype-specific cholera toxin are being replaced by atypical El Tor variants that harbor classical cholera toxin. Atypical El Tor strains are categorized into 2 groups, Wave 2 and Wave 3 strains, based on genomic variations and the CTX phage that they harbor. Whole-genome analysis of V. cholerae strains in the seventh cholera pandemic has demonstrated gradual changes in the genome of prototype and atypical El Tor strains, indicating that atypical strains arose from the prototype strains by replacing the CTX phages. We examined the molecular mechanisms that effected the emergence of El Tor strains with classical cholera toxin-carrying phage. We isolated an intermediary V. cholerae strain that carried two different CTX phages that encode El Tor and classical cholera toxin, respectively. We show here that the intermediary strain can be converted into various Wave 2 strains and can act as the source of the novel mosaic CTX phages. These results imply that the Wave 2 and Wave 3 strains may have been generated from such intermediary strains in nature. Prototype El Tor strains can become Wave 3 strains by excision of CTX-1 and re-equipping with the new CTX phages. Our data suggest that inter-chromosomal recombination between 2 types of CTX phages is possible when a host bacterial cell is infected by multiple CTX phages. Our study also provides molecular insights into population changes in V. cholerae in the absence of significant changes to the genome but by replacement of the CTX prophage that they harbor.  相似文献   

11.
Thirty-four Vibrio cholerae isolates collected from a cholera outbreak in Hyderabad, South India were found to belong to serogroup Ol biotype El Tor serotype Ogawa. The genotype of all the isolates was confirmed by PCR assays. All the isolates were found PCR positive for ctxAB, ompW, rflOl, rtxC, and tcpA genes. All the isolates but one harboured rstR El Tor allele. However, one isolate carried both rstR EL Tor as well as rstR Classical alleles. Cholera toxin (ctxB) genotyping of the isolates confirmed the presence of altered cholera toxin B of classical biotype in all the isolates. All the isolates except VCH35 harboured an RS1-CTX prophage array on the large chromosome. The isolate VCH35 contained a tandem repeat of classical CTX prophage on the small chromosome. The clonal relationship among the V. cholerae isolates as carried out by enterobacterial repetitive intergenic consensus sequences PCR, BOX PCR and randomly amplified polymorphic DNA, uniformly showed a genetic relationship among the outbreak isolates. The results of this study suggest that altered El Tor biotype V. cholerae with the classical cholera toxin gene are involved in cholera outbreaks in India.  相似文献   

12.
Vibrio cholerae, the causing agent of cholera is still a major health challenge in most of the developing countries. In this study, V. cholerae strains collected from different cholera outbreaks in India over a period of past 7 years were found to have various toxigenic, pathogenic and regulatory genes viz. ctxAB, zot, tcp, hlyA, ace, ompU, ompW, rfbO1, toxT and toxR. The biotype specific genes rstR and rtxC revealed the El Tor biotype in majority of the isolates. However, variants among the isolates were found having genotype of both the biotypes. Sequencing of ctxB gene revealed the presence of altered ctxB of classical biotype with additional variations in isolates of 2007. Mismatch amplification mutation assay PCR also confirmed the isolates belonging to classical biotype. Antibiogram of the isolates revealed resistance for nalidixic acid, co-trimoxazole, streptomycin, and polymyxin B and susceptibility for tetracycline among most of the isolates from India. However, V. cholerae isolates from a recent outbreak in Eastern India were resistant to tetracycline. The study corroborated the continuous emergence and wide-spread of multidrug resistant El Tor variant strains in the Indian subcontinent.  相似文献   

13.

Background  

Over the last decade, cholera outbreaks in parts of Kenya have become common. Although a number of recent studies describe the epidemiology of cholera in Kenya, there is pauCity of information concerning the diversity and occurrence of mobile genetic elements in Vibrio cholerae strains implicated in these outbreaks. A total of 65 Vibrio cholerae O1 El Tor serotype Inaba isolated between 1994 and 2007 from various outbreaks in Kenya were investigated for mobile genetic elements including integrons, transposons, the integrating conjugative elements (ICEs), conjugative plasmids and for their genotypic relatedness.  相似文献   

14.
The genetic relatedness of Vibrio cholerae O1/O139 isolates obtained from 100 patients and 146 of their household contacts in Dhaka, Bangladesh, between 2002 and 2005 was assessed by multilocus variable-number tandem-repeat analysis. Isolate genotypes were analyzed at five loci containing tandem repeats. Across the population, as well as within households, isolates with identical genotypes were clustered in time. Isolates from individuals within the same household were more likely to have similar or identical genotypes than were isolates from different households, but even within a household, isolates from different individuals often had different genotypes. When household contacts were sampled regularly for 3 weeks after the illness of the household index patient, isolates with genotypes related to the index patient appeared in contacts, on average, ∼3 days after the index patient, while isolates with unrelated genotypes appeared in contacts ∼6 days after. Limited data revealed that multiple isolates from the same individual collected within days of each other or even from a single stool sample may have identical, similar, or unrelated genotypes as well. Our results demonstrate that genetically related V. cholerae strains cluster in local outbreaks but also suggest that multiple distinct strains of V. cholerae O1 may circulate simultaneously within a household.Vibrio cholerae is the etiologic agent of cholera, a secretory diarrheal disease with a high mortality rate in humans if untreated (25). Serogroups of V. cholerae, a motile, Gram-negative, curved rod, can be defined serologically by the O side chain of the lipopolysaccharide (LPS) component of the outer membrane (9). V. cholerae is found in a variety of forms in aquatic ecosystems (41, 42), and more than 200 different serogroups have been isolated, mostly from environmental sources (45). However, the vast majority of V. cholerae strains that cause the clinical disease cholera belong to serogroup O1 or O139 (37, 42). V. cholerae O1, the historical agent of epidemic and pandemic cholera and the current leading cause of cholera both globally and in Bangladesh (42), is classified into two major biotypes, classical and El Tor (44), and two major serotypes, Ogawa and Inaba (48). The current global pandemic is caused by V. cholerae O1 El Tor. A second pathogenic serogroup, O139, emerged in the Bengal region in 1992 by horizontal transfer of new LPS biosynthesis-encoding genes into the El Tor biotype (1, 4). This new serogroup continues to cocirculate with El Tor V. cholerae O1 serotypes Ogawa and Inaba as a cause of disease in humans, although it accounts for a smaller proportion of all cholera now than in its first years of circulation (16, 20). Recently, comparative genomics has revealed an extensive amount of lateral gene transfer between strains, suggesting that genomic classification may be an alternative to serogrouping for classifying pathogenic V. cholerae strains (11).Toxigenic V. cholerae may be present in environmental sources in regions of endemicity and emerge, often seasonally, to cause cholera in humans (12, 18). Once an outbreak has begun, organisms from one infected individual are more infectious for the next individual, a property termed hyperinfectivity, and these forms may be able to pass directly from human to human through fecal-oral contamination (35). However, because vibrio organisms are difficult to isolate from implicated environmental or domestic water sources (28, 29), little is known about the diversity of V. cholerae in inocula that cause human infection.Established laboratory methods for differentiating V. cholerae strains, apart from serogrouping and serotyping, include rRNA restriction fragment length polymorphism (ribotyping), pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST). These methods, however, have a limited capacity to differentiate between pathogenic V. cholerae strains, as clinical isolates are relatively genetically monomorphic. For instance, V. cholerae O1 comprises approximately 30 ribotypes (39); however, only a few ribotypes are common in clinical isolates, ribotypes evolve slowly, and all isolates of a given pathogenic V. cholerae serotype in a local area over a period of multiple years often belong to a single ribotype (8, 14, 17). In a broad sampling of 154 V. cholerae isolates from Bangladesh and worldwide over several decades, only 15 ribotypes were identified, and of these, many were found in nonpathogenic environmental isolates only; only five ribotypes were associated with the V. cholerae O1 El Tor biotype that currently predominates as the cause of clinical disease, while pathogenic isolates of serogroup O139 were indistinguishable from each other by ribotype (19).PFGE, in which restriction endonuclease digestion of genomic DNA generates mutation-sensitive banding patterns, is often more sensitive than ribotyping in detecting strain variation (7, 34, 51) and detects extensive genetic variation within nonpathogenic V. cholerae serogroups (3, 46). However, PFGE types change slowly and are useful primarily for distinguishing between strains in different pandemics or between different continental branches of those pandemics. In an analysis of 180 mostly western-hemisphere isolates (7), PFGE differences had developed from a prior pandemic strain over the 30 years since its arrival in Latin America, but a new strain that had been causing disease for 2 years still had only a single PFGE type across the 64 isolates analyzed. Similarly, in a Japanese study (2), although 19 PFGE types were identified among O1 isolates, the majority of the domestic isolates, along with several imported isolates, belonged to a single PFGE type.Further differentiation between V. cholerae isolates is achievable by MLST, which characterizes isolates by internal DNA sequences in selected housekeeping genes (32). Nevertheless, epidemic strains also cluster tightly in this typing scheme (5, 32) and the method has been useful primarily for determining relationships between nontoxigenic strains (36) or for linking regional outbreaks (which typically appear monoclonal by these methods) with the pandemic strain responsible (5, 33).Although these methods have distinguished major pandemic clones from other nonpathogenic human and environmental isolates of V. cholerae, the near clonality of pathogenic O1 and O139 strains means that established methods may not provide sufficiently robust differentiation of these genetically similar pathogenic strains to answer important epidemiological questions. Therefore, there is a need for other methods that can distinguish among clinical O1 and O139 isolates and track the epidemiology of outbreaks in a restricted geographic area on a shorter time scale.Multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) is one method that may be useful for differentiating between pathogenic V. cholerae O1 and O139 strains that would be indistinguishable by other techniques (15). This method examines short repeating DNA segments at various locations in the genome that can vary in number at each location and uses the number of repeats at each varying locus as a fingerprint to distinguish between isolates.Escherichia coli is the paradigm organism for demonstrating the value of the MLVA method. Noller et al. (38) showed that E. coli O157 isolates that were indistinguishable by MLST could be distinguished to some extent by PFGE but that MLVA distinguished between isolates that had the same PFGE type and did so in a manner consistent with the known epidemiology of the isolates (38a). In addition, machine-scored VNTR assays have been demonstrated to be robust and portable and to discriminate clearly between isolates by using relatively few loci, therefore limiting the effect of compounding genotyping errors (6).For V. cholerae, five VNTR loci have been identified (15), and the initial application of MLVA at those loci has demonstrated distinct populations of clinical isolates of V. cholerae in different geographic regions within Bangladesh and India (23, 47). Predominant isolates in each of two rural Bangladeshi regions varied gradually over a time scale of months to years (47), and isolates collected from India over a 15-year period varied widely, with individual MLVA types clustering in time and place—some with widespread dissemination and others with limited local occurrence only (23). MLVA has also been used to classify hybrid and altered V. cholerae variants and to demonstrate their genetic distance from the pandemic El Tor strain (10). Use of the MLVA method for epidemiologic study of cholera requires that V. cholerae VNTR alleles remain reasonably stable during bacterial replication in patients or in laboratory culture after isolation. Some degree of stability of two of the five loci used in V. cholerae MLVA has been demonstrated previously by serial passage in vitro through four overnight cultures (15). In this study, we used MLVA to examine V. cholerae O1 and O139 isolates obtained from infected patients and their household contacts—including multiple isolates from the same individual and isolates from multiple individuals within the same household—in a large city where cholera is endemic.  相似文献   

15.
The resurgence of enteric pathogen Vibrio cholerae, the causative organism of epidemic cholera, remains a major health problem in many developing countries. The outbreaks of cholera follow a seasonal pattern in regions of endemicity. The southern Indian state of Kerala is endemic to cholera. A V. cholerae strain isolated from the stool sample of a patient in Piravam, Kerala, South India, was analysed. However, this case occurred at a time not associated with cholera outbreaks, leading to concern among the State health officials. We compared the virulence potential of the isolate with that of the standard or reference strains, that have been widely used as positive control. The isolate was identified as V. cholerae O1 biotype El Tor serotype Inaba. The resistance pattern of the isolate to common antibiotics was examined and it was found to be multi-drug resistant in nature. The strain was analysed for the presence of the CTX genetic element, which encodes genes for cholera toxin and other important regulatory genes. It was found to be positive for all the genes tested. In Kerala, most of the cholera outbreaks have been reported to be caused by V. cholerae O1 El Tor belonging to Ogawa serotype. Interestingly, the V. cholerae strain isolated from this case has been found to be of Inaba serotype, which is rarely reported.  相似文献   

16.
Forty-four Vibrio cholerae isolates collected over a 7-month period in Chennai, India in 2004 were characterized for gene traits, antimicrobial susceptibility and genomic fingerprints. All 44 isolates were identified as O1 El Tor Ogawa, positive for various toxigenic and pathogenic genes viz. ace, ctxB, hlyA, ompU, ompW, rfbO1, rtx, tcpA, toxR and zot. Nucleotide sequencing revealed the presence of cholera toxin B of classical biotype in all the El Tor isolates, suggesting infection of isolates by classical CTXΦ. Antibiogram analysis showed a broad-spectrum antibiotic resistance that was also confirmed by the presence of resistant genes in the genomes. All isolates contained a class 1 integron and an SXT constin. However, isolates were sensitive to chloramphenicol and tested negative for the chloramphenicol resistant gene suggesting a deletion in SXT constin. Fingerprinting analysis of isolates by ERIC- and Box PCR revealed similar DNA patterns indicating the clonal dissemination of a single predominant V. cholerae O1 strain throughout the 2004 outbreak in Chennai.  相似文献   

17.
Since Vibrio cholerae O139 first appeared in 1992, both O1 El Tor and O139 have been recognized as the epidemic serogroups, although their geographic distribution, endemicity, and reservoir are not fully understood. To address this lack of information, a study of the epidemiology and ecology of V. cholerae O1 and O139 was carried out in two coastal areas, Bakerganj and Mathbaria, Bangladesh, where cholera occurs seasonally. The results of a biweekly clinical study (January 2004 to May 2005), employing culture methods, and of an ecological study (monthly in Bakerganj and biweekly in Mathbaria from March 2004 to May 2005), employing direct and enrichment culture, colony blot hybridization, and direct fluorescent-antibody methods, showed that cholera is endemic in both Bakerganj and Mathbaria and that V. cholerae O1, O139, and non-O1/non-O139 are autochthonous to the aquatic environment. Although V. cholerae O1 and O139 were isolated from both areas, most noteworthy was the isolation of V. cholerae O139 in March, July, and September 2004 in Mathbaria, where seasonal cholera was clinically linked only to V. cholerae O1. In Mathbaria, V. cholerae O139 emerged as the sole cause of a significant outbreak of cholera in March 2005. V. cholerae O1 reemerged clinically in April 2005 and established dominance over V. cholerae O139, continuing to cause cholera in Mathbaria. In conclusion, the epidemic potential and coastal aquatic reservoir for V. cholerae O139 have been demonstrated. Based on the results of this study, the coastal ecosystem of the Bay of Bengal is concluded to be a significant reservoir for the epidemic serogroups of V. cholerae.  相似文献   

18.

Background

In Bangladesh, increases in cholera epidemics are being documented with a greater incidence and severity. The aim of this prospective study was to identify the prevalence and importance of V. cholerae O1 and enterotoxigenic Escherichia coli (ETEC) as causal agents of severe diarrhea in a high diarrhea prone urban area in Dhaka city.

Methodology

Systematic surveillance was carried out on all diarrheal patients admitted from Mirpur between March 2008 to February 2010 at the ICDDR, B hospital. Stool or rectal swabs were collected from every third diarrheal patient for microbiological evaluation.

Principal Findings

Of diarrheal patients attending the hospital from Mirpur, 41% suffered from severe dehydration with 39% requiring intravenous rehydration therapy. More diarrheal patients were above five years of age (64%) than those below five years of age (36%). About 60% of the patients above five years of age had severe dehydration compared with only 9% of patients under five years of age. The most prevalent pathogen isolated was Vibrio cholerae O1 (23%) followed by ETEC (11%). About 8% of cholera infection was seen in infants with the youngest children being one month of age while in the case of ETEC the rate was 11%. Of the isolated ETEC strains, the enterotoxin type were almost equally distributed; ST accounted for 31% of strains; LT/ST for 38% and LT for 31%.

Conclusion

V. cholerae O1 is the major bacterial pathogen and a cause of severe cholera disease in 23% of patients from Mirpur. This represents a socioeconomic group that best reflects the major areas of high cholera burden in the country. Vaccines that can target such high risk groups in the country and the region will hopefully be able to reduce the disease morbidity and the transmission of pathogens that impact the life and health of people.  相似文献   

19.
Vibrio cholerae isolates recovered from cholera outbreaks in Bhind district of Madhya Pradesh and Delhi, Northern India were characterized. The O1 serogroup isolates from Bhind outbreak were of Inaba serotype whereas both Ogawa and Inaba serotypes were recovered from Delhi. PCR analysis revealed that only O1 serogroup V. cholerae isolates carried the virulence-associated genes like ctxA, tcpA, ace, and zot. Molecular typing by repetitive sequence based ERIC, VCR1, and VC1 PCR’s revealed similar DNA profile for both Inaba and Ogawa serotypes. A discrete VC1-PCR band identified among the El Tor strains had greater similarity (>97%) to the V. cholerae genome sequence and therefore has the potential to be used as a marker for the identification of the V. cholerae strains. Non-O1 strains recovered from Bhind region differed among themselves as well as from that of the O1 isolates. All the O1 serogroup isolates possessed SXT element and were uniformly resistant to the antibiotics nalidixic acid, polymyxin-B, furazolidone, cloxacilin, trimethoprim-sulfamethaxazole, and vibriostatic agent 0129. Inaba strains from both Delhi and Bhind differed from Ogawa strains by their resistance to streptomycin despite sharing similar DNA patterns in all the three rep-PCRs. Though Delhi and Bhind are separate geographical regions in Northern India, Inaba strains from both these places appear to be closely related owing to their similarity in antibiogram and genetic profile.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号