首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retinitis pigmentosa (RP) is a group of inherited diseases that cause blindness due to the progressive death of rod and cone photoreceptors in the retina. There are currently no effective treatments for RP. Inherited mutations in rhodopsin, the light-sensing protein of rod photoreceptor cells, are the most common cause of autosomal-dominant RP. The majority of mutations in rhodopsin, including the common P23H substitution, lead to protein misfolding, which is a feature in many neurodegenerative disorders. Previous studies have shown that upregulating molecular chaperone expression can delay disease progression in models of neurodegeneration. Here, we have explored the potential of the heat-shock protein co-inducer arimoclomol to ameliorate rhodopsin RP. In a cell model of P23H rod opsin RP, arimoclomol reduced P23H rod opsin aggregation and improved viability of mutant rhodopsin-expressing cells. In P23H rhodopsin transgenic rat models, pharmacological potentiation of the stress response with arimoclomol improved electroretinogram responses and prolonged photoreceptor survival, as assessed by measuring outer nuclear layer thickness in the retina. Furthermore, treated animal retinae showed improved photoreceptor outer segment structure and reduced rhodopsin aggregation compared with vehicle-treated controls. The heat-shock response (HSR) was activated in P23H retinae, and this was enhanced with arimoclomol treatment. Furthermore, the unfolded protein response (UPR), which is induced in P23H transgenic rats, was also enhanced in the retinae of arimoclomol-treated animals, suggesting that arimoclomol can potentiate the UPR as well as the HSR. These data suggest that pharmacological enhancement of cellular stress responses may be a potential treatment for rhodopsin RP and that arimoclomol could benefit diseases where ER stress is a factor.  相似文献   

2.
Rhodopsin, the visual pigment mediating vision under dim light, is composed of the apoprotein opsin and the chromophore ligand 11-cis-retinal. A P23H mutation in the opsin gene is one of the most prevalent causes of the human blinding disease, autosomal dominant retinitis pigmentosa. Although P23H cultured cell and transgenic animal models have been developed, there remains controversy over whether they fully mimic the human phenotype; and the exact mechanism by which this mutation leads to photoreceptor cell degeneration remains unknown. By generating P23H opsin knock-in mice, we found that the P23H protein was inadequately glycosylated with levels 1-10% that of wild type opsin. Moreover, the P23H protein failed to accumulate in rod photoreceptor cell endoplasmic reticulum but instead disrupted rod photoreceptor disks. Genetically engineered P23H mice lacking the chromophore showed accelerated photoreceptor cell degeneration. These results indicate that most synthesized P23H protein is degraded, and its retinal cytotoxicity is enhanced by lack of the 11-cis-retinal chromophore during rod outer segment development.  相似文献   

3.
We inserted into the germline of mice either a mutant or wild-type allele from a patient with retinitis pigmentosa and a missense mutation (P23H) in the rhodopsin gene. All three lines of transgenic mice with the mutant allele developed photoreceptor degeneration; the one with the least severe retinal photoreceptor degeneration had the lowest transgene expression, which was one-sixth the level of endogenous murine rod opsin. Of two lines of mice with the wild-type allele, one expressed approximately equal amounts of transgenic and murine opsin and maintained normal retinal function and structure. The other expressed approximately 5 times more transgenic than murine opsin and developed a retinal degeneration similar to that found in mice carrying a mutant allele, presumably due to the overexpression of this protein. Our findings help to establish the pathogenicity of mutant human P23H rod opsin and suggest that overexpression of wild-type human rod opsin leads to a remarkably similar photoreceptor degeneration.  相似文献   

4.
Rhodopsin-containing retinal rod disk membranes from cattle have been examined by differential scanning calorimetry. Under conditions of 67 mM phosphate pH 7.0, unbleached rod outer segment disk membranes gave a single major endotherm with a temperature of denaturation (Tm) of 71.9 +/- 0.4 degrees C and a thermal unfolding calorimetric enthalpy change (delta Hcal) of 700 +/- 17 kJ/mol rhodopsin. Bleached rod outer segment disk membranes (membranes that had lost their absorbance at 498 nm after exposure to orange light) gave a single major endotherm with a Tm of 55.9 +/- 0.3 degrees C and a delta Hcal of 520 +/- 17 kJ/mol opsin. Neither bleached nor unbleached rod outer segment disk membranes gave endotherms upon thermal rescans. When thermal stability is examined over the pH range of 4-9, the major endotherms of both bleached and unbleached rod outer segment disk membranes were found to show maximum stability at pH 6.1. The observed delta Hcal values for bleached and unbleached rod outer segment disk membranes exhibit membrane concentration dependences which plateau at protein concentrations beyond 1.5 mg/mL. For partially bleached samples of rod outer segment disk membranes, the calorimetric enthalpy change for opsin appears to be somewhat dependent on the degree of bleaching, indicating intramembrane nearest neighbor interactions which affect the unfolding of opsin. Delta Hcal and Tm are particularly useful for assessing stability and testing for completeness of regeneration of rhodopsin from opsin. Other factors such as sample preparation and the presence of low concentrations of ethanol also affect the delta Hcal values while the Tm values remain fairly constant. This shows that the delta Hcal is a sensitive parameter for monitoring environmental changes of rhodopsin and opsin.  相似文献   

5.
Retinal rod photoreceptor cells absorb light at one end and establish synaptic contacts on the other. Light sensitivity is conferred by a set of membrane and cytosol proteins that are gathered at one end of the cell to form a specialized organelle, the rod outer segment (ROS). The ROS is composed of rhodopsin-laden, flattened disk-shaped membranes enveloped by the cell's plasma membrane. Rhodopsin is synthesized on elements of the rough endoplasmic reticulum and Golgi apparatus near the nucleus in the inner segment. From this synthetic site, the membrane-bound apoprotein, opsin, is released from the Golgi in the membranes of small vesicles. These vesicles are transported through the cytoplasm of the inner segment until they reach its apical plasma membrane. At that site, opsin-laden vesicles appear to fuse near the base of the connecting cilium that joins the inner and outer segments. This fusion inserts opsin into the plasma membrane of the photoreceptor. Opsin becomes incorporated into the disk membrane by a process of membrane expansion and fusion to form the flattened disks of the outer segment. Within the disks, opsin is highly mobile, and rapidly rotates and traverses the disk surface. Despite its mobility in the outer segment, quantitative electron microscopic, immunocytochemical, and autoradiographic studies of opsin distribution demonstrate that little opsin is detectable in the inner segment plasma membrane, although its bilayer is in continuity with the plasma membrane of the outer segment. The photoreceptor successfully establishes the polarized distribution of its membrane proteins by restricting the redistribution of opsin after vectorially transporting it to one end of the cell on post-Golgi vesicles.  相似文献   

6.
The visual photoreception takes place in the retina, where specialized rod and cone photoreceptor cells are located. The rod outer segments contain a stack of 500-2,000 sealed membrane disks. Rhodopsin is the visual pigment located in rod outer segment disks, it is a member of the G-protein-coupled receptor (GPCR) superfamily, an important group of membrane proteins responsible for the majority of physiological responses to stimuli such as light, hormones, peptides, etc. Alongside rhodopsin, peripherin/Rom proteins located in the disk rims are thought to be responsible for disk morphology. Here we describe the supramolecular structure of rod outer segment disk membranes and the spatial organization of rhodopsin and peripherin/Rom molecules. Using atomic force microscopy operated in physiological buffer solution, we found that rhodopsin is loosely packed in the central region of the disks, in average about 26?000 molecules covering approximately one third of the disk surface. Peripherin/Rom proteins form dense assemblies in the rim region. A protein-free lipid bilayer girdle separates the rhodopsin and peripherin/Rom domains. The described supramolecular assembly of rhodospin, peripherin/Rom and lipids in native rod outer segment disks is consistent with the functional requirements of photoreception.  相似文献   

7.
The photoreceptor rhodopsin is a G-protein coupled receptor that has recently been proposed to exist as a dimer or higher order oligomer, in contrast to the previously described monomer, in retinal rod outer segment disk membranes. Rhodopsin exhibits considerably greater thermal stability than opsin (the bleached form of the receptor), which is reflected in an ∼15°C difference in the thermal denaturation temperatures (Tm) of rhodopsin and opsin as measured by differential scanning calorimetry. Here we use differential scanning calorimetry to investigate the effect of partial bleaching of disk membranes on the Tm of rhodopsin and of opsin in native disk membranes, as well as in cross-linked disk membranes in which rhodopsin dimers are known to be present. The Tms of rhodopsin and opsin are expected to be perturbed if mixed oligomers are present. The Tm remained constant for rhodopsin and opsin in native disks regardless of the level of bleaching. In contrast, the Tm of cross-linked rhodopsin in disk membranes was dependent on the extent of bleaching. The energy of activation for denaturation of rhodopsin and cross-linked rhodopsin was calculated. Cross-linking rhodopsin significantly decreased the energy of activation. We conclude that in native disk membranes, rhodopsin behaves predominantly as a monomer.  相似文献   

8.
Rhodopsin, the major transmembrane protein in both the plasma membrane and the disk membranes of photoreceptor rod outer segments (ROS) forms the apo-protein opsin upon the absorption of light. In vivo the regeneration of rhodopsin is necessary for subsequent receptor activation and for adaptation, in vitro this regeneration can be followed after the addition of 11-cis retinal. In this study we investigated the ability of bleached rhodopsin to regenerate in the compositionally different membrane environments found in photoreceptor rod cells. When 11-cis retinal was added to bleached ROS plasma membrane preparations, rhodopsin did not regenerate within the same time course or to the same extent as bleached rhodopsin in disk membranes. Over 80% of the rhodopsin in newly formed disks regenerated within 90 minutes while only 40% regenerated in older disks. Since disk membrane cholesterol content increases as disks are displaced from the base to the apical tip of the outer segment, we looked at the affect of membrane cholesterol content on the regeneration process. Enrichment or depletion of disk membrane cholesterol did not alter the % rhodopsin that regenerated. Bulk membrane properties measured with a sterol analog, cholestatrienol and a fatty acid analog, cis parinaric acid, showed a more ordered, less fluid, lipid environment within plasma membrane relative to the disks. Collectively these results show that the same membrane receptor, rhodopsin, functions differently as monitored by regeneration in the different lipid environments within photoreceptor rod cells. These differences may be due to the bulk properties of the various membranes.  相似文献   

9.
To study rhodopsin biosynthesis and transport in vivo, we engineered a fusion protein (rho-GFP) of bovine rhodopsin (rho) and green fluorescent protein (GFP). rho-GFP expressed in COS-1 cells bound 11-cis retinal, generating a pigment with spectral properties of rhodopsin (A(max) at 500 nm) and GFP (A(max) at 488 nm). rho-GFP activated transducin at 50% of the wild-type activity, whereas phosphorylation of rho-GFP by rhodopsin kinase was 10% of wild-type levels. We expressed rho-GFP in the rod photoreceptors of Xenopus laevis using the X. laevis principal opsin promoter. Like rhodopsin, rho-GFP localized to rod outer segments, indicating that rho-GFP was recognized by membrane transport mechanisms. In contrast, a rho-GFP variant lacking the C-terminal outer segment localization signal distributed to both outer and inner segment membranes. Confocal microscopy of transgenic retinas revealed that transgene expression levels varied between cells, an effect that is probably analogous to position-effect variegation. Furthermore, rho-GFP concentrations varied along the length of individual rods, indicating that expression levels varied within single cells on a daily or hourly basis. These results have implications for transgenic models of retinal degeneration and mechanisms of position-effect variegation and demonstrate the utility of rho-GFP as a probe for rhodopsin transport and temporal regulation of promoter function.  相似文献   

10.
The rod outer segment (OS), comprised of tightly stacked disk membranes packed with rhodopsin, is in a dynamic equilibrium governed by a diurnal rhythm with newly synthesized membrane inserted at the OS base balancing membrane loss from the distal tip via disk shedding. Using transgenic Xenopus and live cell confocal imaging, we found OS axial variation of fluorescence intensity in cells expressing a fluorescently tagged rhodopsin transgene. There was a light synchronized fluctuation in intensity, with higher intensity in disks formed at night and lower intensity for those formed during the day. This fluctuation was absent in constant light or dark conditions. There was also a slow modulation of the overall expression level that was not synchronized with the lighting cycle or between cells in the same retina. The axial variations of other membrane-associated fluorescent proteins, eGFP-containing two geranylgeranyl acceptor sites and eGFP fused to the transmembrane domain of syntaxin, were greatly reduced or not detectable, respectively. In acutely light-adapted rods, an arrestin-eGFP fusion protein also exhibited axial variation. Both the light-sensitive Rho-eGFP and arrestin-eGFP banding were in phase with the previously characterized birefringence banding (Kaplan, Invest. Ophthalmol. Vis. Sci. 21, 395–402 1981). In contrast, endogenous rhodopsin did not exhibit such axial variation. Thus, there is an axial inhomogeneity in membrane composition or structure, detectable by the rhodopsin transgene density distribution and regulated by the light cycle, implying a light-regulated step for disk assembly in the OS. The impact of these results on the use of chimeric proteins with rhodopsin fused to fluorescent proteins at the carboxyl terminus is discussed.  相似文献   

11.
The present study demonstrates some important facts on the regeneration of rhodopsin in rod outer segment membranes. 11-cis-Retinal added to a rod outer segment membrane suspension did not react directly with opsin but was rapidly solubilized into membranes and then recombined with opsin in the membrane. It was also revealed that the regeneration of rhodopsin was perturbed by the formation of retinylidene Schiff base with phosphatidylethanolamine in rod outer segment membranes, which decreased with increasing temperature. The activation energy of rhodopsin regeneration in rod outer segment membranes was 18.7 kcal/mol, being smaller than the value of 22 kcal/mol in 1% digitonin solution. 11-cis-Retinal could be found to transfer relatively fast (tau-1/k(1) R 10(3) s) between rod outer segment membranes by using the regeneration of rhodopsin. It was demonstrated that the kinetic measurement for the transport of membrane-soluble molecules such as retinal between membranes could be perform ed with ease and precisely by the method described in this paper.  相似文献   

12.
Rhodopsin in the rod outer segment plasma membrane   总被引:8,自引:8,他引:0       下载免费PDF全文
Isolated frog retinas were incubated in vitro with a 4-h pulse of [3H]leucine, then chased for 32 h with a nonradioactive amino acid mixture. At the end of the incubation, light and electron microscope autoradiograms were prepared from some of the retinas. The autoradiograms revealed: (a) intense radioactivity in the basal disks of the rod outer segments, (b) diffuse label evenly distributed throughout the rod outer segments, and (c) a high concentration of label in the entire rod outer segment plasma membrane. Incubation under identical conditions, but with puromycin added, significantly inhibited the labeling of all of these components. To identify the labeled proteins, purified outer segments from the remaining retinas were analyzed biochemically by SDS disc gel electrophoresis and gel filtration chromatography. SDS gel electrophoresis showed that about 90% of the total rod outer segment radioactivity chromatographed coincident with visual pigment, suggesting that the radiolabeled protein in the plasma membrane is visual pigment. Gel filtration chromatography demonstrated that the radiolabeled protein co-chromatographed with rhodopsin rather than opsin, and that the newly synthesized visual pigment is both the basal disks and the plasma membrane is present in the native configuration.  相似文献   

13.
Mature retinal rod photoreceptors sequester opsin in the disk and plasma membranes of the rod outer segment (ROS). Opsin is synthesized in the inner segment and is transferred to the outer segment along the connecting cilium that joins the two compartments. We have investigated early stages of retinal development during which the polarized distribution of opsin is established in the rod photoreceptor cell. Retinas were isolated from newborn rats, 3-21 d old, and incubated with affinity purified biotinyl-sheep anti-bovine opsin followed by avidin- ferritin. At early postnatal ages prior to the development of the ROS, opsin is labeled by antiopsin on the inner segment plasma membrane. At the fifth postnatal day, as ROS formation begins opsin was detected on the connecting cilium plasma membrane. However, the labeling density of the ciliary plasma membrane was not uniform: the proximal cilium was relatively unlabeled in comparison with the distal cilium and the ROS plasma membrane. In nearly mature rat retinas, opsin was no longer detected on the inner segment plasma membrane. A similar polarized distribution of opsin was also observed in adult human rod photoreceptor cells labeled with the same antibodies. These results suggest that some component(s) of the connecting cilium and its plasma membrane may participate in establishing and maintaining the polarized distribution of opsin.  相似文献   

14.
The P23H opsin mutation is the most common cause of autosomal dominant retinitis pigmentosa. Even though the pathobiology of the resulting retinal degeneration has been characterized in several animal models, its complex molecular mechanism is not well understood. Here, we expressed P23H bovine rod opsin in the nervous system of Caenorhabditis elegans. Expression was low due to enhanced protein degradation. The mutant opsin was glycosylated, but the polysaccharide size differed from that of the normal protein. Although P23H opsin aggregated in the nervous system of C. elegans, the pharmacological chaperone 9-cis-retinal stabilized it during biogenesis, producing a variant of rhodopsin called P23H isorhodopsin. In vitro, P23H isorhodopsin folded correctly, formed the appropriate disulfide bond, could be photoactivated but with reduced sensitivity, and underwent Meta II decay at a rate similar to wild type isorhodopsin. In worm neurons, P23H isorhodopsin initiated phototransduction by coupling with the endogenous Gi/o signaling cascade that induced loss of locomotion. Using pharmacological interventions affecting protein synthesis and degradation, we showed that the chromophore could be incorporated either during or after mutant protein translation. However, regeneration of P23H isorhodopsin with chromophore was significantly slower than that of wild type isorhodopsin. This effect, combined with the inherent instability of P23H rhodopsin, could lead to the structural cellular changes and photoreceptor death found in autosomal dominant retinitis pigmentosa. These results also suggest that slow regeneration of P23H rhodopsin could prevent endogenous chromophore-mediated stabilization of rhodopsin in the retina.  相似文献   

15.
Guanosine 3′,5′-cyclic monophosphate phosphodiesterase (EC 3.1.4.1) in frog rod outer segment prepared by a sucrose stepwise density gradient method was activated by light in the presence of GTP. Rhodopsin in rod outer segment was solubilized with sucrose laurylmonoester and then purified by concavanalin A-Sepharose column. Addition of photo-bleached preparation of the purified rhodopsin to the rod outer segment, which had been prepared by 43% (w/w) sucrose floatation, caused the activation of phosphodiesterase in the dark, while each component of the photo-product eluted from the column (all-trans retinal and opsin) did not. Regenerated rhodopsin prepared from 11-cis retinal and purified opsin activated phosphosdiesterase when it was bleached. From these facts it is suggested that an intermediate or a process of photolysis of rhodopsin causes activation of phosphodiesterase.  相似文献   

16.
In the rod cell of the retina, arrestin is responsible for blocking signaling of the G-protein-coupled receptor rhodopsin. The general visual signal transduction model implies that arrestin must be able to interact with a single light-activated, phosphorylated rhodopsin molecule (Rho*P), as would be generated at physiologically relevant low light levels. However, the elongated bi-lobed structure of arrestin suggests that it might be able to accommodate two rhodopsin molecules. In this study, we directly addressed the question of binding stoichiometry by quantifying arrestin binding to Rho*P in isolated rod outer segment membranes. We manipulated the "photoactivation density," i.e. the percentage of active receptors in the membrane, with the use of a light flash or by partially regenerating membranes containing phosphorylated opsin with 11-cis-retinal. Curiously, we found that the apparent arrestin-Rho*P binding stoichiometry was linearly dependent on the photoactivation density, with one-to-one binding at low photoactivation density and one-to-two binding at high photoactivation density. We also observed that, irrespective of the photoactivation density, a single arrestin molecule was able to stabilize the active metarhodopsin II conformation of only a single Rho*P. We hypothesize that, although arrestin requires at least a single Rho*P to bind the membrane, a single arrestin can actually interact with a pair of receptors. The ability of arrestin to interact with heterogeneous receptor pairs composed of two different photo-intermediate states would be well suited to the rod cell, which functions at low light intensity but is routinely exposed to several orders of magnitude more light.  相似文献   

17.
The clinically common mutant opsin P23H, associated with autosomal dominant retinitis pigmentosa, yields low levels of rhodopsin when retinal is added following induction of the protein in stably transfected HEK-293 cells. We previously showed that P23H rhodopsin levels could be increased by providing a 7-membered ring, locked analog of 11-cis-retinal during expression of P23H opsin in vivo. Here we demonstrate that the mutant opsin is effectively rescued by 9- or 11-cis-retinal, the native chromophore. When retinal was added during expression, P23H rhodopsin levels were 5-fold (9-cis) and 6-fold (11-cis) higher than when retinal was added after opsin was expressed and cells were harvested. Levels of P23H opsin were increased approximately 3.5-fold with both compounds, but wild-type protein levels were only slightly increased. Addition of retinal during induction promoted the Golgi-specific glycosylation of P23H opsin and transport of the protein to the cell surface. P23H rhodopsins containing 9- or 11-cis-retinal had blue-shifted absorption maxima and altered photo-bleaching properties compared with the corresponding wild-type proteins. Significantly, P23H rhodopsins were more thermally unstable than the wild-type proteins and more rapidly bleached by hydroxylamine in the dark. We suggest that P23H opsin is similarly unstable and that retinal binds and stabilizes the protein early in its biogenesis to promote its cellular folding and trafficking. The implications of this study for treating retinitis pigmentosa and other protein conformational disorders are discussed.  相似文献   

18.
Frog retinal rod outer segments appear to contain uncharacterized chemical components whose mass is roughly equivalent to 12--51% of the rhodopsin mass. Available data suggest that such components include soluble proteins and complex polysaccharides, and that hyaluronic acid accounts for a substantial fraction of this mass. Electron microscopic histochemical staining studies suggest that these polysaccharide components are located within the ROS disks. The oligosaccharide moieties of rhodopsin also appear localized within the disks. The interdisk cytoplasm may contain carbohydrates, but their quantity and identity are uncertain. Rhodopsin oligosaccharides as well as some fraction of the intradisk polysaccharide appear to have extended saccharide chains preferentially oriented perpendicular to the surface of the disk membrane. Possible roles for these polysaccharides in disk development and photoexcitation are discussed. The immediate need for complete rod outer segment chemical composition data is emphasized.  相似文献   

19.
Rho (rhodopsin; opsin plus 11-cis-retinal) is a prototypical G protein-coupled receptor responsible for the capture of a photon in retinal photoreceptor cells. A large number of mutations in the opsin gene associated with autosomal dominant retinitis pigmentosa have been identified. The naturally occurring T4R opsin mutation in the English mastiff dog leads to a progressive retinal degeneration that closely resembles human retinitis pigmentosa caused by the T4K mutation in the opsin gene. Using genetic approaches and biochemical assays, we explored the properties of the T4R mutant protein. Employing immunoaffinity-purified Rho from affected RHO(T4R/T4R) dog retina, we found that the mutation abolished glycosylation at Asn(2), whereas glycosylation at Asn(15) was unaffected, and the mutant opsin localized normally to the rod outer segments. Moreover, we found that T4R Rho(*) lost its chromophore faster as measured by the decay of meta-rhodopsin II and that it was less resistant to heat denaturation. Detergent-solubilized T4R opsin regenerated poorly and interacted abnormally with the G protein transducin (G(t)). Structurally, the mutation affected mainly the "plug" at the intradiscal (extracellular) side of Rho, which is possibly responsible for protecting the chromophore from the access of bulk water. The T4R mutation may represent a novel molecular mechanism of degeneration where the unliganded form of the mutant opsin exerts a detrimental effect by losing its structural integrity.  相似文献   

20.
Peripherin-2 is a member of the tetraspanin family of membrane proteins that plays a critical role in photoreceptor outer segment disk morphogenesis. Mutations in peripherin-2 are responsible for various retinal degenerative diseases including autosomal dominant retinitis pigmentosa (ADRP). To identify determinants required for peripherin-2 targeting to disk membranes and elucidate mechanisms underlying ADRP, we have generated transgenic Xenopus tadpoles expressing wild-type and ADRP-linked peripherin-2 mutants as green fluorescent fusion proteins in rod photoreceptors. Wild-type peripherin-2 and P216L and C150S mutants, which assemble as tetramers, targeted to disk membranes as visualized by confocal and electron microscopy. In contrast the C214S and L185P mutants, which form homodimers, but not tetramers, were retained in the rod inner segment. Only the P216L disease mutant induced photoreceptor degeneration. These results indicate that tetramerization is required for peripherin-2 targeting and incorporation into disk membranes. Tetramerization-defective mutants cause ADRP through a deficiency in wild-type peripherin-2, whereas tetramerization-competent P216L peripherin-2 causes ADRP through a dominant negative effect, possibly arising from the introduction of a new oligosaccharide chain that destabilizes disks. Our results further indicate that a checkpoint between the photoreceptor inner and outer segments allows only correctly assembled peripherin-2 tetramers to be incorporated into nascent disk membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号