首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Obesity is recognized as an epidemic health problem worldwide. In humans, the accumulation of omental rather than subcutaneous fat appears to be tightly linked to insulin resistance, type 2 diabetes and cardiovascular disease. Differences in gene expression profiles in the adipose tissue comparing non-obese and obese subjects have been well documented. However, to date, no comparative proteomic studies based on omental fat have investigated the influence of obesity in protein expression. In this work, we searched for proteins differentially expressed in the omental fat of non-obese and obese subjects using 2D-DIGE and MS. Forty-four proteins, several of which were further studied by immunoblotting and immunostaining analyses, showed significant differences in the expression levels in the two groups of subjects. Our findings reveal a clearly distinctive proteomic profile between obese and non-obese subjects which emphasizes: i) reduced metabolic activity in the obese fat, since most down-regulated proteins were engaged in metabolic pathways; and ii) morphological and structural cell changes in the obese fat, as revealed by the functions exerted by most up-regulated proteins. Interestingly, transketolase and aminoacylase-1 represent newly described molecules involved in the pathophysiology of obesity, thus opening up new possibilities in the study of obesity.  相似文献   

2.
Human adipose tissue can produce plasminogen activator inhibitor-1 (PAI-1). It has been suggested that high levels of PAI-1 are of importance in enhanced cardiovascular disease observed among obese subjects, especially abdominally obese individuals. In the present study, we investigated the level of mRNA and production of PAI-1 in adipose tissue from two adipose tissue depots (omental vs. subcutaneous). Adipose tissue from both depots was obtained from obese (mean BMI, 46.9 kg/m 2) and non-obese (mean BMI, 23.9 kg/m 2) women. PAI-1 mRNA was measured both in fresh adipose tissue obtained immediately after surgery and after the adipose tissue (fragments) had been incubated for up to 72 h. In immediately frozen adipose tissue, PAI-1 mRNA expression was similar in omental and subcutaneous adipose tissue. No differences between obese and non-obese women were found. However, when adipose tissue fragments were cultured, PAI-1 mRNA and PAI-1 production were significantly higher in omental than in subcutaneous adipose tissue (p < 0.05). In the culture system, the production of PAI-1 in obese subjects was higher than in non-obese subjects in both subcutaneous (p < 0.05) and in omental adipose tissue (p = 0.19). In order to test whether these regional differences observed after incubation of the adipose tissue were due to differences in local accumulation of cytokines that may stimulate PAI-1 by a paracrine or autocrine manner, we investigated the expression of transforming growth factor beta1 (TGF-beta1) mRNA and tumor necrosis factor alpha (TNF-alpha) mRNA and protein. No differences between the two fat depots were found. In conclusion, no differences in PAI-1 expression between omental and subcutaneous adipose tissue were observed in biopsies frozen immediately after removal, but after incubation of adipose tissue (which somehow stimulates PAI-1 production), higher levels of PAI-1 were found in omental adipose tissue than in subcutaneous adipose tissue. Finally, PAI-1 production in adipose tissue from obese women was higher in non-obese women after incubation for 72 h.  相似文献   

3.

Background

The central component of the complement system, C3, is associated with obesity, metabolic syndrome and cardiovascular disease however the underlying reasons are unknown. In the present study we evaluated gene expression of C3, the cleavage product C3a/C3adesArg and its cognate receptor C3aR in subcutaneous and omental adipose tissue in women.

Methods

Women (n = 140, 21–69 years, BMI 19.5–79 kg/m2) were evaluated for anthropometric and blood parameters, and adipose tissue gene expression.

Results

Subjects were separated into groups (n = 34–36) according to obesity: normal/overweight (≤30 kg/m2), obese I (≤45 kg/m2), obese II (≤51 kg/m2), and obese III (≤80 kg/m2). Overall, while omental expression remained unchanged, subcutaneous C3 and C3aR gene expression decreased with increasing adiposity (2-way ANOVA, p<0.01), with a concomitant decrease in SC/OM ratio (p<0.001). In subcutaneous adipose, both C3 and C3aR expression correlated with apoB, and apoA1 and inversely with waist circumference and blood pressure, while C3aR also correlated with glucose (p<0.05–0.0001). While omental C3aR expression did not correlate with any factor, omental C3 correlated with waist circumference, glucose and apoB (all p<0.05). Further, while plasma C3a/C3adesArg increased and adiponectin decreased with increasing BMI, both correlated (C3a negatively and adiponectin positively) with subcutaneous C3 and C3aR expression (p<0.05–0.001) or less).

Conclusions

The obesity-induced down-regulation of complement C3 and C3aR which is specific to subcutaneous adipose tissue, coupled to the strong correlations with multiple anthropometric, plasma and adipokine variables support a potential role for complement in immunometabolism.  相似文献   

4.

Background

Development of Type 2 diabetes, like obesity, is promoted by a genetic predisposition. Although several genetic variants have been identified they only account for a small proportion of risk. We have asked if genetic risk is associated with abnormalities in storing excess lipids in the abdominal subcutaneous adipose tissue.

Methodology/Principal Findings

We recruited 164 lean and 500 overweight/obese individuals with or without a genetic predisposition for Type 2 diabetes or obesity. Adipose cell size was measured in biopsies from the abdominal adipose tissue as well as insulin sensitivity (HOMA index), HDL-cholesterol and Apo AI and Apo B. 166 additional non-obese individuals with a genetic predisposition for Type 2 diabetes underwent a euglycemic hyperinsulinemic clamp to measure insulin sensitivity. Genetic predisposition for Type 2 diabetes, but not for overweight/obesity, was associated with inappropriate expansion of the adipose cells, reduced insulin sensitivity and a more proatherogenic lipid profile in non-obese individuals. However, obesity per se induced a similar expansion of adipose cells and dysmetabolic state irrespective of genetic predisposition.

Conclusions/Significance

Genetic predisposition for Type 2 diabetes, but not obesity, is associated with an impaired ability to recruit new adipose cells to store excess lipids in the subcutaneous adipose tissue, thereby promoting ectopic lipid deposition. This becomes particularly evident in non-obese individuals since obesity per se promotes a dysmetabolic state irrespective of genetic predisposition. These results identify a novel susceptibility factor making individuals with a genetic predisposition for Type 2 diabetes particularly sensitive to the environment and caloric excess.  相似文献   

5.

Background

Potential regulators of adipogenesis include microRNAs (miRNAs), small non-coding RNAs that have been recently shown related to adiposity and differentially expressed in fat depots. However, to date no study is available, to our knowledge, regarding miRNAs expression profile during human adipogenesis. Thereby, the aim of this study was to investigate whether miRNA pattern in human fat cells and subcutaneous adipose tissue is associated to obesity and co-morbidities and whether miRNA expression profile in adipocytes is linked to adipogenesis.

Methodology/Principal Findings

We performed a global miRNA expression microarray of 723 human and 76 viral mature miRNAs in human adipocytes during differentiation and in subcutaneous fat samples from non-obese (n = 6) and obese with (n = 9) and without (n = 13) Type-2 Diabetes Mellitus (DM-2) women. Changes in adipogenesis-related miRNAs were then validated by RT-PCR. Fifty of 799 miRNAs (6.2%) significantly differed between fat cells from lean and obese subjects. Seventy miRNAs (8.8%) were highly and significantly up or down-regulated in mature adipocytes as compared to pre-adipocytes. Otherwise, 17 of these 799 miRNAs (2.1%) were correlated with anthropometrical (BMI) and/or metabolic (fasting glucose and/or triglycerides) parameters. We identified 11 miRNAs (1.4%) significantly deregulated in subcutaneous fat from obese subjects with and without DM-2. Interestingly, most of these changes were associated with miRNAs also significantly deregulated during adipocyte differentiation.

Conclusions/Significance

The remarkable inverse miRNA profile revealed for human pre-adipocytes and mature adipocytes hints at a closely crosstalk between miRNAs and adipogenesis. Such candidates may represent biomarkers and therapeutic targets for obesity and obesity-related complications.  相似文献   

6.
7.
G Barker  R Lim  HM Georgiou  M Lappas 《PloS one》2012,7(8):e42943

Objective

The aim of this study was to determine (i) the effect of maternal obesity and gestational diabetes mellitus (GDM) on (i) the circulating levels of omentin-1 in cord and maternal plasma, and (ii) gene expression and release of omentin-1 from human placenta and adipose tissue. The effect of pregnancy on circulating omentin-1 levels was also determined.

Design

Omentin-1 levels were measured in maternal and cord plasma from obese and non-obese normal glucose tolerant women (NGT; n = 44) and women with GDM (n = 39) at the time of term elective Caesarean section. Placenta and adipose tissue expression and release of omentin-1 was measured from 22 NGT and 22 GDM women collected at the time of term elective Caesarean section. Omentin-1 levels were also measured in maternal plasma from 13 NGT women at 11 and 28 weeks gestation and 7 weeks postpartum.

Results

Maternal obesity was associated with significantly lower omentin-1 levels in maternal plasma; however, there was no effect of maternal obesity on cord omentin levels. Omentin-1 gene expression was lower in placenta and adipose tissue obtained from women with pre-existing obesity. In addition to this, adipose tissue release of omentin-1 was significantly lower from obese pregnant women. Omentin-1 levels were significantly lower in non-obese GDM compared to non-obese NGT women. However, there was no difference in omentin-1 levels between obese NGT and obese GDM women. There was no effect of GDM on cord omentin levels, and placental and adipose tissue omentin-1 expression. Maternal omentin-1 levels were negatively correlated with fetal birthweight and fetal ponderal index.

Conclusions

The data presented in this study demonstrate that pre-existing maternal obesity is associated with lower omentin-1 expression in placenta, adipose tissue and maternal plasma. Alteration in omentin-1 in pregnancy may influence the development of metabolic disorders in offspring later in life.  相似文献   

8.

Background

Enlargement of adipocyte is associated with their dysfunction and alterations in metabolic functions.

Objectives

We evaluated the association of adipocyte size of subcutaneous and omental adipose tissue with body composition and cardiovascular risk factors in Asian Indians.

Methodology

Eighty (40 males and 40 females) non-diabetic adult subjects undergoing elective abdominal surgery were included. Pre-surgery evaluation included anthropometric measurements, % body fat by bioimpedance, abdominal fat area at L2–3 level (computed tomography) and biochemical investigations (fasting blood glucose and insulin, lipids and hsCRP). During surgery, about 5 grams each of omental and subcutaneous adipose tissue was obtained for adipocyte size determination.

Results

Females had higher BMI, % body fat, skinfold thickness, total and subcutaneous abdominal fat area as compared to males. Overweight was present in 42.5% and 67.5%, and abdominal obesity in 5% and 52.5% males and females, respectively. Subcutaneous adipocyte size was significantly higher than omental adipocyte size. Omental adipocyte size correlated more strongly than subcutaneous adipocyte size with measures of adiposity (BMI, waist circumference, %BF), total and subcutaneous abdominal fat area and biochemical measures (fasting glucose, total cholesterol, triglycerides and HOMA-IR), the correlations being stronger in females. The correlation of adipocyte size with metabolic parameters was attenuated after adjusting for measures of adiposity.

Conclusion

Omental adipocyte size, though smaller than the subcutaneous adipocyte size, was more closely related to measures of adiposity and metabolic parameters. However, the relationship was not independent of measures of adiposity.  相似文献   

9.

Background

Polyunsaturated n-3 fatty acids (n-3 PUFAs) are reported to protect against high fat diet-induced obesity and inflammation in adipose tissue. Here we aimed to investigate if the amount of sucrose in the background diet influences the ability of n-3 PUFAs to protect against diet-induced obesity, adipose tissue inflammation and glucose intolerance.

Methodology/Principal Findings

We fed C57BL/6J mice a protein- (casein) or sucrose-based high fat diet supplemented with fish oil or corn oil for 9 weeks. Irrespective of the fatty acid source, mice fed diets rich in sucrose became obese whereas mice fed high protein diets remained lean. Inclusion of sucrose in the diet also counteracted the well-known anti-inflammatory effect of fish oil in adipose tissue, but did not impair the ability of fish oil to prevent accumulation of fat in the liver. Calculation of HOMA-IR indicated that mice fed high levels of proteins remained insulin sensitive, whereas insulin sensitivity was reduced in the obese mice fed sucrose irrespectively of the fat source. We show that a high fat diet decreased glucose tolerance in the mice independently of both obesity and dietary levels of n-3 PUFAs and sucrose. Of note, increasing the protein∶sucrose ratio in high fat diets decreased energy efficiency irrespective of fat source. This was accompanied by increased expression of Ppargc1a (peroxisome proliferator-activated receptor, gamma, coactivator 1 alpha) and increased gluconeogenesis in the fed state.

Conclusions/Significance

The background diet influence the ability of n-3 PUFAs to protect against development of obesity, glucose intolerance and adipose tissue inflammation. High levels of dietary sucrose counteract the anti-inflammatory effect of fish oil in adipose tissue and increases obesity development in mice.  相似文献   

10.

Background

Middle age obesity is recognized as a risk factor for Alzheimer''s disease (AD) although a mechanistic linkage remains unclear. Based upon the fact that obese adipose tissue and AD brains are both areas of proinflammatory change, a possible common event is chronic inflammation. Since an autosomal dominant form of AD is associated with mutations in the gene coding for the ubiquitously expressed transmembrane protein, amyloid precursor protein (APP) and recent evidence demonstrates increased APP levels in adipose tissue during obesity it is feasible that APP serves some function in both disease conditions.

Methodology/Principal Findings

To determine whether diet-induced obesity produced proinflammatory changes and altered APP expression in brain versus adipose tissue, 6 week old C57BL6/J mice were maintained on a control or high fat diet for 22 weeks. Protein levels and cell-specific APP expression along with markers of inflammation and immune cell activation were compared between hippocampus, abdominal subcutaneous fat and visceral pericardial fat. APP stimulation-dependent changes in macrophage and adipocyte culture phenotype were examined for comparison to the in vivo changes.

Conclusions/Significance

Adipose tissue and brain from high fat diet fed animals demonstrated increased TNF-α and microglial and macrophage activation. Both brains and adipose tissue also had elevated APP levels localizing to neurons and macrophage/adipocytes, respectively. APP agonist antibody stimulation of macrophage cultures increased specific cytokine secretion with no obvious effects on adipocyte culture phenotype. These data support the hypothesis that high fat diet-dependent obesity results in concomitant pro-inflammatory changes in brain and adipose tissue that is characterized, in part, by increased levels of APP that may be contributing specifically to inflammatory changes that occur.  相似文献   

11.
目的探讨肥胖者网膜脂肪和皮下脂肪两处肿瘤坏死因子-α(TNF-α)蛋白的表达与脂肪细胞大小的相关性。方法选取正常体重者16名,中心型肥胖者32名拟行外科手术患者,术中取出网膜脂肪和皮下脂肪标本,测定脂肪细胞大小,采用western blot方法测定TNF-α蛋白表达。结果肥胖者网膜脂肪和皮下脂肪两处TNF-α蛋白的水平均比正常体重对照组表达高(P<0.01),肥胖者网膜脂肪组织TNF-α蛋白表达高于皮下脂肪(P<0.05),同时研究发现肥胖者皮下脂肪细胞和网膜脂肪细胞大小均明显大于正常体重组(P<0.05),且肥胖者网膜脂肪和皮下脂肪两处脂肪组织TNF-α蛋白表达与脂肪细胞大小呈正相关(网膜:r=0.808,P<0.01;皮下:r=0.452,P<0.05)。结论肥胖者网膜脂肪和皮下脂肪细胞增大,在肥胖相关胰岛素抵抗的发生中起到了重要的作用。  相似文献   

12.
13.

Background

The adipose tissue is important for development of insulin resistance and type 2 diabetes and adipose tissue dysfunction has been proposed as an underlying cause. In the present study we investigated presence of adipocyte hypertrophy, and gene expression pattern of adipose tissue dysfunction in the subcutaneous adipose tissue of healthy, non-obese subjects predisposed to type 2 diabetes compared to matched control subjects with no known genetic predisposition for type 2 diabetes.

Method

Seventeen healthy and non-obese subjects with known genetic predisposition for type 2 diabetes (first-degree relatives, FDRs) and 17 control subjects were recruited. The groups were matched for gender and BMI and had similar age. Glucose tolerance was determined by an oral glucose tolerance test and insulin sensitivity was calculated using HOMA-index. Blood samples were collected and subcutaneous abdominal adipose tissue biopsies obtained for gene expression analysis and adipocyte cell size measurement.

Results

Our findings show that, in spite of similar age, BMI and percent body fat, FDRs displayed adipocyte hypertrophy, as well as higher waist/hip ratio, fasting insulin levels, HOMA-IR and serum triglycerides. Adipocyte hypertrophy in the FDR group, but not among controls, was associated with measures of impaired insulin sensitivity. The adipocyte hypertrophy was accompanied by increased inflammation and Wnt-signal activation. In addition, signs of tissue remodeling and fibrosis were observed indicating presence of early alterations associated with adipose tissue dysfunction in the FDRs.

Conclusion

Genetic predisposition for type 2 diabetes is associated with impaired insulin sensitivity, adipocyte hypertrophy and other markers of adipose tissue dysfunction. A dysregulated subcutaneous adipose tissue may be a major susceptibility factor for later development of type 2 diabetes.  相似文献   

14.
15.

Background  

Given the epidemic proportions of obesity worldwide and the concurrent prevalence of metabolic syndrome, there is an urgent need for better understanding the underlying mechanisms of metabolic syndrome, in particular, the gene expression differences which may participate in obesity, insulin resistance and the associated series of chronic liver conditions. Real-time PCR (qRT-PCR) is the standard method for studying changes in relative gene expression in different tissues and experimental conditions. However, variations in amount of starting material, enzymatic efficiency and presence of inhibitors can lead to quantification errors. Hence the need for accurate data normalization is vital. Among several known strategies for data normalization, the use of reference genes as an internal control is the most common approach. Recent studies have shown that both obesity and presence of insulin resistance influence an expression of commonly used reference genes in omental fat. In this study we validated candidate reference genes suitable for qRT-PCR profiling experiments using visceral adipose samples from obese and lean individuals.  相似文献   

16.
Human obesity is characterized by chronic low-grade inflammation in white adipose tissue and is often associated with hypertension. The potential induction of indoleamine 2,3-dioxygenase-1 (IDO1), the rate-limiting enzyme in tryptophan/kynurenine degradation pathway, by proinflammatory cytokines, could be associated with these disorders but has remained unexplored in obesity. Using immunohistochemistry, we detected IDO1 expression in white adipose tissue of obese patients, and we focused on its contribution in the regulation of vascular tone and on its immunoregulatory effects. Concentrations of tryptophan and kynurenine were measured in sera of 36 obese and 15 lean women. The expression of IDO1 in corresponding omental and subcutaneous adipose tissues and liver was evaluated. Proinflammatory markers and T-cell subsets were analyzed in adipose tissue via the expression of CD14, IL-18, CD68, TNFα, CD3ε, FOXP3 [a regulatory T-cell (Treg) marker] and RORC (a Th17 marker). In obese subjects, the ratio of kynurenine to tryptophan, which reflects IDO1 activation, is higher than in lean subjects. Furthermore, IDO1 expression in both adipose tissues and liver is increased and is inversely correlated with arterial blood pressure. Inflammation is associated with a T-cell infiltration in obese adipose tissue, with predominance of Th17 in the omental compartment and of Treg in the subcutaneous depot. The Th17/Treg balance is decreased in subcutaneous fat and correlates with IDO1 activation. In contrast, in the omental compartment, despite IDO1 activation, the Th17/Treg balance control is impaired. Taken together, our results suggest that IDO1 activation represents a local compensatory mechanism to limit obesity-induced inflammation and hypertension.  相似文献   

17.
Intraabdominal fat in humans is located in two major depots, the omental and mesenteric. We compared basal and stimulated lipolysis in adipose tissue from these two depots and the subcutaneous abdominal depot of obese women and men. Omental fat cells of women are smaller and have lower rates of basal lipolysis than in men. Basal Iipolysis rates are significantly higher in subcutaneous than intraabdominal adipose tissues of both genders. In men, the incremental lipolytic response to norepinephrine is significantly greater in both intraabdominal fat depots than in the subcutaneous fat, while in women tlie response of tlie mesenteric is lower than tlie omental. In women, but not men, responsiveness to tlie beta agonist isoproterenol is also increased in omental tissue. Thus, in women, omental and mesenteric adipose tissues show distinctly different metabolic properties which may moderate the impact of intraabdominal obesity.  相似文献   

18.
19.

Background

Obesity, especially visceral obesity, is known to be an important correlate for cardiovascular disease and increased mortality. On the other hand, high cardiorespiratory fitness is suggested to be an effective contributor for reducing this risk. This study was conducted to determine the combined impact of cardiorespiratory fitness and visceral adiposity, otherwise known as fitness and fatness, on metabolic syndrome in overweight and obese adults.

Methods

A total of 232 overweight and obese individuals were grouped into four subtypes according to their fitness level. This was measured by recovery heart rate from a step test in addition to visceral adiposity defined as the visceral adipose tissue area to subcutaneous adipose tissue area ratio (VAT/SAT ratio). Associations of fitness and visceral fatness were analyzed in comparison with the prevalence of metabolic syndrome.

Results

The high visceral fat and low fitness group had the highest prevalence of metabolic syndrome [Odds Ratio (OR) 5.02; 95% Confidence Interval (CI) 1.85–13.61] compared with the reference group, which was the low visceral adiposity and high fitness group, after adjustments for confounding factors. Viscerally lean but unfit subjects were associated with a higher prevalence of metabolic syndrome than more viscerally obese but fit subjects (OR 3.42; 95% CI 1.27–9.19, and OR 2.70; 95% CI 1.01–7.25, respectively).

Conclusions

Our study shows that visceral obesity and fitness levels are cumulatively associated with a higher prevalence of metabolic syndrome in healthy overweight and obese adults. This suggests that cardiorespiratory fitness is a significant modifier in the relation of visceral adiposity to adverse metabolic outcomes in overweight and obese individuals.  相似文献   

20.

Background

Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear. Tartrate resistant acid phosphatase (TRAP) is an enzyme expressed by subsets of macrophages and osteoclasts that exists either as an enzymatically inactive monomer or as an active, proteolytically processed dimer.

Principal Findings

Using mice over expressing TRAP, we show that over-expression of monomeric, but not the dimeric form in adipose tissue leads to early onset spontaneous hyperplastic obesity i.e. many small fat cells. In vitro, recombinant monomeric, but not proteolytically processed TRAP induced proliferation and differentiation of mouse and human adipocyte precursor cells. In humans, monomeric TRAP was highly expressed in the adipose tissue of obese individuals. In both the mouse model and in the obese humans the source of TRAP in adipose tissue was macrophages. In addition, the obese TRAP over expressing mice exhibited signs of a low-grade inflammatory reaction in adipose tissue without evidence of abnormal adipocyte lipolysis, lipogenesis or insulin sensitivity.

Conclusion

Monomeric TRAP, most likely secreted from adipose tissue macrophages, induces hyperplastic obesity with normal adipocyte lipid metabolism and insulin sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号