首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compared with other organisms, plants have an extraordinary capacity for self-repair. Even if the entire tissues, including the stem cells, are resected, most plant species are able to completely regenerate whole tissues. However, the mechanism by which plants efficiently regenerate the stem cell niche during tissue reorganization is still largely unknown. Here, we found that the signaling mediated by plant steroid hormones brassinosteroids is activated during stem cell formation after root tip excision in Arabidopsis. Treatment with brassinazole, an inhibitor of brassinosteroid biosynthesis, delayed the recovery of stem cell niche after root tip excision. Regeneration of root tip after resection was also delayed in a brassinosteroid receptor mutant. Therefore, we propose that brassinosteroids participate in efficient root tip regeneration, thereby enabling efficient tissue regeneration to ensure continuous root growth after resection.  相似文献   

2.
Brassinosteroids are widely distributed plant compounds that modulate cell elongation and division, but little is known about the mechanism of action of these plant growth regulators. To investigate brassinosteroids as signals influencing plant growth and development, we identified a brassinosteroid-insensitive mutant in Arabidopsis thaliana (L.) Henyh. ecotype Columbia. The mutant, termed bri1, did not respond to brassinosteroids in hypocotyl elongation and primary root inhibition assays, but it did retain sensitivity to auxins, cytokinins, ethylene, abscisic acid, and gibberellins. The bri1 mutant showed multiple deficiencies in developmental pathways that could not be rescued by brassinosteroid treatment including a severely dwarfed stature; dark green, thickened leaves; males sterility; reduced apical dominance; and de-etiolation of dark-grown seedlings. Genetic analysis suggests that the Bri1 phenotype is caused by a recessive mutation in a single gene with pleiotropic effects that maps 1.6 centimorgans from the cleaved, amplified, polymorphic sequence marker DHS1 on the bottom of chromosome IV. The multiple and dramatic effects of mutation of the BRI1 locus on development suggests that the BRI1 gene may play a critical role in brassinosteroid perception or signal transduction.  相似文献   

3.
The interaction between the plant hormones, brassinosteroids and auxins has been documented in various processes using a variety of plants and plant parts. In this study, detached inflorescences from brassinosteroid biosynthesis and signaling Arabidopsis mutants were evaluated for their gravitropic bending in response to epibrassinolide (EBR) and indole-3-acetic acid (IAA). EBR supplied to the base of detached inflorescences stimulated gravitropic bending in all BR biosynthetic mutants but there was no effect on the BR signaling mutant or wild type plants. When IAA was supplied to the base of BR mutant inflorescences both natural and EBR-induced gravitropic bending was inhibited. Treatment with the auxin inhibitors also decreased both natural and EBR-induced gravitropic bending. No gravitropic bending was observed when the apical tips of BR mutant inflorescences were removed. IAA treatment to the tips of decapitated BR mutant inflorescences restored gravitropic bending to values observed in the inflorescences with an apical tip, however, EBR applied to the tip had no effect. When decapitated inflorescences from BR mutants were treated with IAA to the base and either gel, EBR or IAA was applied to the tip; there was no gravitropic bending. These results show that brassinosteroids have a role in the gravitropic bending response in Arabidopsis and mutants serve to uncover this hidden contributor.  相似文献   

4.
Molecular genetic and physiological studies on brassinosteroid (BR)-related mutants of dicot plants have revealed that BRs play important roles in normal plant growth and development. However, little is known about the function of BR in monocots (grasses), except for the phenotypic analysis of a rice mutant partially insensitive to BR signaling. To investigate the function of BR in monocots, we identified and characterized BR-deficient mutants of rice, BR-deficient dwarf1 (brd1). The brd1 mutants showed a range of abnormalities in organ development and growth, the most striking of which were defects in the elongation of the stem and leaves. Light microscopic observations revealed that this abnormality was primarily owing to a failure in the organization and polar elongation of the leaf and stem cells. The accumulation profile of BR compounds in the brd1 mutants suggested that these plants may be deficient in the activity of BR C-6 oxidase. Therefore, we cloned a rice gene, OsDWARF, which has a high sequence similarity to the tomato C-6 oxidase gene, DWARF. Introduction of the wild-type OsDWARF gene into brd1 rescued the abnormal phenotype of the mutants. The OsDWARF gene was expressed at a low level in all of the examined tissues, with preferential expression in the leaf sheath, and the expression was negatively regulated by brassinolide treatment. On the basis of these findings, we discuss the biological function of BRs in rice plants.  相似文献   

5.
Brassinosteroids which show high structural similarity to animal steroid hormones elicit a variety of growth responses when exogeneously applied to plant tissues. Thus far however, the function of endogeneous brassinosteroids in higher plants has been unclear. This paper describes three extremely dwarfed Arabidopsis thaliana mutants, cbb1 (dwf1-6), cbb2 and cbb3, which are impared in cell elongation controlled by brassinosteroids. While cbb1 (dwf1-6) and cbb3 can be phenotypically normalized to wild-type by feeding with brassinosteroids indicating deficiencies of brassinosteroid biosynthesis, cbb2 is brassinosteroid-insensitive and defines a function required for further metabolic conversion necessary for biological activity or for perception/signal transduction of these growth-regulating plant steroid hormones. Expression of the meri5 and TCH4 genes is low in all three cbb mutants and can be restored to wild-type levels by brassinosteroid treatment in the cbb1 (dwf1-6) and cbb3 mutants but are unaffected in the cbb2 mutant. These data indicate that brassinosteroids are essential for proper plant development and play an important role in the control of cell elongation.  相似文献   

6.
New cultivars with very erect leaves, which increase light capture for photosynthesis and nitrogen storage for grain filling, may have increased grain yields. Here we show that the erect leaf phenotype of a rice brassinosteroid-deficient mutant, osdwarf4-1, is associated with enhanced grain yields under conditions of dense planting, even without extra fertilizer. Molecular and biochemical studies reveal that two different cytochrome P450s, CYP90B2/OsDWARF4 and CYP724B1/D11, function redundantly in C-22 hydroxylation, the rate-limiting step of brassinosteroid biosynthesis. Therefore, despite the central role of brassinosteroids in plant growth and development, mutation of OsDWARF4 alone causes only limited defects in brassinosteroid biosynthesis and plant morphology. These results suggest that regulated genetic modulation of brassinosteroid biosynthesis can improve crops without the negative environmental effects of fertilizers.  相似文献   

7.
The ben1-1D (bri1-5 enhanced 1-1dominant) mutant was identified via an activation-tagging screen for bri1-5 extragenic modifiers. bri1-5 is a weak mutant allele of the brassinosteroid receptor gene, BRI1. Overexpression of BEN1 greatly enhances the defective phenotypes of bri1-5 plants. Removal of BEN1 by gene disruption in a Col-0 wild-type background, on the other hand, promotes the elongation of organs. Because BEN1 encodes a novel protein homologous to dihydroflavonol 4-reductase (DFR) and anthocyanidin reductase (BAN), BEN1 is probably involved in a brassinosteroid metabolic pathway. Analyses of brassinosteroid profiles demonstrated that BEN1 is indeed responsible for regulating the levels of several brassinosteroids, including typhasterol, castasterone and brassinolide. In vivo feeding and in vitro biochemical assays suggest that BEN1 is probably involved in a new mechanism to regulate brassinosteroid levels. These results provide additional insight into the regulatory mechanisms of bioactive brassinosteroids.  相似文献   

8.
9.
We have isolated a new recessive dwarf mutant of rice (Oryza sativa L. cv Nipponbare). Under normal growth conditions, the mutant has very short leaf sheaths; has short, curled, and frizzled leaf blades; has few tillers; and is sterile. Longitudinal sections of the leaf sheaths revealed that the cell length along the longitudinal axis is reduced, which explains the short leaf sheaths. Transverse sections of the leaf blades revealed enlargement of the motor cells along the dorsal-ventral axis, which explains the curled and frizzled leaf blades. In addition, the number of crown roots was smaller and the growth of branch roots was weaker than those in the wild-type plant. Because exogenously supplied brassinolide considerably restored the normal phenotypes, we designated the mutant brassinosteroid-dependent 1 (brd1). Further, under darkness, brd1 showed constitutive photomorphogenesis. Quantitative analyses of endogenous sterols and brassinosteroids (BRs) indicated that BR-6-oxidase, a BR biosynthesis enzyme, would be defective. In fact, a 0.2-kb deletion was detected in the genomic region of OsBR6ox (a rice BR-6-oxidase gene) in the brd1 mutant. These results indicate that BRs are involved in many morphological and physiological processes in rice, including the elongation and unrolling of leaves, development of tillers, skotomorphogenesis, root differentiation, and reproductive growth, and that the defect of BR-6-oxidase caused the brd1 phenotype.  相似文献   

10.
To gain a better understanding of brassinosteroid biosynthesis, the levels of brassinosteroids and sterols related to brassinolide biosynthesis in Arabidopsis, pea, and tomato plants were quantified by gas chromatography-selected ion monitoring. In these plants, the late C-6 oxidation pathway was found to be the predominant pathway in the synthesis of castasterone. Furthermore, all these plant species had similar BR profiles, suggesting the presence of common biosynthetic control mechanisms. The especially high levels of 6-deoxocathasterone and 6-deoxocastasterone may indicate that their respective conversions to 6-deoxoteasterone and castasterone are regulated in planta and hence are important rate-limiting steps in brassinosteroid biosynthesis. Other possible rate-limiting reactions, including the conversion of campestanol to 6-deoxocathasteonre. are also discussed. Tomato differs from Arabidopsis and pea in that tomato contains 28-norcastasterone as a biologically active brassinosteroid, and that its putative precursors, cholesterol and its relatives are the major sterols.  相似文献   

11.
Since the isolation and characterization of dwarf1-1 (dwf1-1) from a T-DNA insertion mutant population, phenotypically similar mutants, including deetiolated2 (det2), constitutive photomorphogenesis and dwarfism (cpd), brassinosteroid insensitive1 (bri1), and dwf4, have been reported to be defective in either the biosynthesis or the perception of brassinosteroids. We present further characterization of dwf1-1 and additional dwf1 alleles. Feeding tests with brassinosteroid-biosynthetic intermediates revealed that dwf1 can be rescued by 22alpha-hydroxycampesterol and downstream intermediates in the brassinosteroid pathway. Analysis of the endogenous levels of brassinosteroid intermediates showed that 24-methylenecholesterol in dwf1 accumulates to 12 times the level of the wild type, whereas the level of campesterol is greatly diminished, indicating that the defective step is in C-24 reduction. Furthermore, the deduced amino acid sequence of DWF1 shows significant similarity to a flavin adenine dinucleotide-binding domain conserved in various oxidoreductases, suggesting an enzymatic role for DWF1. In support of this, 7 of 10 dwf1 mutations directly affected the flavin adenine dinucleotide-binding domain. Our molecular characterization of dwf1 alleles, together with our biochemical data, suggest that the biosynthetic defect in dwf1 results in reduced synthesis of bioactive brassinosteroids, causing dwarfism.  相似文献   

12.
Isidro J  Knox R  Singh A  Clarke F  Krishna P  DePauw R  Clarke J  Somers D 《Planta》2012,236(1):273-281
Brassinosteroids are a newly reported class of plant growth phytohormones found in plants throughout the plant kingdom. Functioning at very low concentrations, they play an essential role in improving biomass yield and stress tolerance. There are no reports in the literature of the genetic variability of responsiveness of brassinosteroids in wheat; most studies on brassinosteroids have focused on the physiological effects of exogenous addition of brassinosteroids. Our aim was to study the genetic variation in the responsiveness of a doubled haploid durum wheat population to three brassinosteroid concentrations using the leaf unrolling test, which is a simple bioassay to test brassinosteroid activity. An F1-derived doubled haploid population of 77 individuals from the cross Strongfield/Blackbird was used to construct a genetic map of 427 molecular marker loci. The leaf unrolling test was performed on the parents and doubled haploid genotypes of the population using 0.2, 2 and 20 nM brassinosteroid concentrations. The results indicated significant differences in leaf unrolling between the two parents, doubled haploid genotypes, treatments and genotype-by-treatment combinations. Transgressive segregation beyond Strongfield of leaf unrolling was observed for all concentrations, with the strongest response at 20 nM. Putative quantitative trait loci were revealed in the intervals Xgwm2Xbarc45 on chromosome 3A and Xwmc643aXwmc625a on chromosome 3B. Additional quantitative trait loci were associated with markers Xwmc48a, Xwmc511, Xwmc89a and Xgwmc692 on chromosome 4B, and Xwmc17 on chromosome 7A. This work should enhance the understanding of the relationship between stress tolerance and productivity, and responsiveness to brassinosteroids.  相似文献   

13.
We have identified a rice (Oryza sativa) brassinosteroid (BR)-deficient mutant, BR-deficient dwarf2 (brd2). The brd2 locus contains a single base deletion in the coding region of Dim/dwf1, a homolog of Arabidopsis thaliana DIMINUTO/DWARF1 (DIM/DWF1). Introduction of the wild-type Dim/dwf1 gene into brd2 restored the normal phenotype. Overproduction and repression of Dim/dwf1 resulted in contrasting phenotypes, with repressors mimicking the brd2 phenotype and overproducers having large stature with increased numbers of flowers and seeds. Although brd2 contains low levels of common 6-oxo-type BRs, the severity of the brd2 phenotype is much milder than brd1 mutants and most similar to d2 and d11, which show a semidwarf phenotype at the young seedling stage. Quantitative analysis suggested that in brd2, the 24-methylene BR biosynthesis pathway is activated and the uncommon BR, dolichosterone (DS), is produced. DS enhances the rice lamina joint bending angle, rescues the brd1 dwarf phenotype, and inhibits root elongation, indicating that DS is a bioactive BR in rice. Based on these observations, we discuss an alternative BR biosynthetic pathway that produces DS when Dim/dwf1 is defective.  相似文献   

14.
15.
Wang L  Xu YY  Ma QB  Li D  Xu ZH  Chong K 《Cell research》2006,16(12):916-922
  相似文献   

16.
Brassinosteroids represent a class of plant hormones. More than 70 compounds have been isolated from plants. Currently 42 brassinosteroid metabolites and their conjugates are known. This review describes the miscellaneous metabolic pathways of brassinosteroids in plants. There are some types of metabolic processes involving brassinosteroids in plants: dehydrogenation, demethylation, epimerization, esterification, glycosylation, hydroxylation, side-chain cleavage and sulfonation. Metabolism of brassinosteroids can be divided into two categories: i) structural changes to the steroidal skeleton; and ii) structural changes to the side-chain.  相似文献   

17.
18.
In order to elucidate the involvement of brassinosteroids in the cell elongation process leading to normal plant morphology, indirect immunofluorescence and molecular techniques were use to study the expression of tubulin genes in the bul1-1 dwarf mutant of Arabidopsis thaliana (L.) Heynh., the characteristics of which are reported in this issue (M. Catterou et al., 2001). Microtubules were studied specifically in the regions of the mutant plant where the elongation zone is suppressed (hypocotyls and petioles), making the reduction in cell elongation evident. Indirect immunofluorescence of α-tubulin revealed that very few microtubules were present in mutant cells, resulting in the total lack of the parallel microtubule organization that is typical of elongating cells in the wild type. After brassinosteroid treatment, microtubules reorganized and became correctly oriented, suggesting the involvement of brassinosteroids in microtubule organization. Molecular analyses showed that the microtubule reorganization observed in brassinosteroid-treated bul1-1 plants did not result either from an activation of tubulin gene expression, or from an increase in tubulin content, suggesting that a brassinosteroid-responsive pathway exists which allows microtubule nucleation/organization and cell elongation without activation of tubulin gene expression. Received: 28 April 2000 / Accepted: 6 October 2000  相似文献   

19.
The current status of physiology and biochemistry of brassinosteroids   总被引:6,自引:0,他引:6  
Brassinolide, first isolated from pollen of rape as a plant growth promoting substance, has been found to be widely distributed in the plant kingdom. Over thirty endogenous analogues, called collectively brassinosteroids, have been isolated and identified. As a new class of plant hormones, brassinosteroids show not only growth promoting activity but also other physiological effects on the growth and development of plants and draw attention as promising chemicals for practical application in agriculture. This review describes the current status of the studies on the natural occurrence, analysis, physiological actions, metabolism and biosynthesis of brassinosteroids.Abbreviations ABA abscisis acid - BR brassinosteroid - GA gibberellin - GC-MS combined gas chromatography-mass spectrometry - GC-SIM combined gas chromatography-selected ion monitoring - HPLC high performance liquid chromatography - IAA indole-3-acetic acid  相似文献   

20.
The growth of leaves in the model plant, Arabidopsis thaliana (L.) Heynh., is determined by the extent of expansion of individual cells and by cell proliferation. Mutants of A. thaliana with known defects in the biosynthesis or perception of brassinosteroids develop small leaves. When the leaves of brassinosteroid-related mutants, det2 (de-etiolated2 = cro1) and dwf1 (dwarf1 = cro2) were compared to wild-type plants, an earlier cessation of leaf expansion was observed; a detailed anatomical analysis further revealed that the mutants had fewer cells per leaf blade. Treatment of the det2 mutants with the brassinosteroid, brassinolide, reversed the mutation and restored the potential for growth to that of the wild type. Restoration of leaf size could not be explained solely on the basis of an increase in individual cell volume, thus suggesting that brassinosteroids play a dual role in regulating cell expansion and proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号