首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The ontogenetical development of the subcommissural organ (SCO) was investigated in chick embryos collected daily from the 1st to the 21st day of incubation. Some duck embryos, and adult chickens and ducks were also studied. Immunocytochemistry using an anti-Reissner's fiber (RF) serum as the primary antibody was the principal method used.In the chick embryos the events occurring at different days of incubation were: day 3 morphologically undifferentiated cells in the dorsal diencephalon displayed immunoreactive material (IRM); days 4 to 6 immunoreactive cells proliferated, formed a multilayered structure and developed processes which traversed the growing posterior commissure and ended at the brain surface; day 7 i) blood vessels penetrated the SCO, ii) scarce hypendymal cells appeared, iii) the first signs of ventricular release of IRM were noticed, iv) appearance of IRM bound to cells of the floor of the Sylvius aqueduct; day 7 to 10 the number of apical granules and amount of extracellular IRM increased progressively; day 11 RF was observed along the Sylvian aqueduct; day 12 RF was present in the lumbar spinal cord; day 13 IRM on the aqueductal floor disappeared; days 10 to 21 i) hypendymal cells proliferated, developed processes and migrated dorsally, ii) ependymal processes elongated and their endings covered the external limiting membrane. In adult specimens the ependymal cells lacked basal processes and the external membrane was contacted by hypendymal cells. The duck SCO appears to follow a similar pattern of development.Supported by Grant I/60 935 from the Stiftung Volkswagenwerk, Federal Republic of Germany, and Grant RS-82-18 from the Dirección de Investigaciones, Universidad Austral de Chile. M.H. was recipient of a personal grant from JNO (29-5-54), which is gratefully acknowledged  相似文献   

3.
The H-Tx rat has fetal-onset hydrocephalus associated with closure of the cerebral aqueduct and a reduction in the secretory cells of the subcommissural organ (SCO), a circumventricular organ situated in the dorsal wall of the cerebral aqueduct. The objective of this study was to determine the role of the SCO in hydrocephalus pathogenesis. Serial brain sections through aqueduct regions containing the SCO from H-Tx rats, together with non-hydrocephalic Fischer F344 rats, were studied at E16, before hydrocephalus onset, at E17, the beginning of onset, and at P0 when the hydrocephalus was overt. Tissues were immunostained by AFRU, an antibody against the SCO glycoprotein, and for the intermediate filament nestin. The area of SCO cells with AFRU immunostaining and the severity of lateral ventricle dilatation were quantified by image analysis. At E16 all fetuses had distinct SCO ependymal cells, open aqueducts and normal lateral ventricles. The H-Tx fetuses fell into two groups with large areas and small areas of AFRU immunoreactivity, all with a full complement of SCO cells. By E17, fetuses with small areas of immunoreactivity had reduced numbers of tall SCO secretory cells, and most had aqueducts closed posteriorly and dilated ventricles. Three additional fetuses with small areas of immunoreactivity had narrow but patent aqueducts and normal ventricles, and another had an open aqueduct and dilated ventricles. At P0, pups previously identified as hydrocephalic had small areas of AFRU immunoreactivity, an aqueduct that was closed anteriorly but open posteriorly, ventricular dilatation, and an absence of SCO secretory cells. The aqueduct even when closed was lined by typical ependymal cells throughout. Decreased nestin immunostaining accompanied the SCO changes. It is concluded that reduced SCO glycoprotein immunoreactivity precedes both aqueduct closure and expansion of the lateral ventricles in the H-Tx rat.Funding was provided by the National Institutes of Health (NS40359). K.C.S. was supported by the University of Florida Scholars Program and Sigma Xi Grants-in-Aid  相似文献   

4.
The present investigation was designed to clarify the role of the subcommissural organ (SCO) in the pathogenesis of hydrocephalus occurring in the HTx rat. The brains of non-affected and hydrocephalic HTx rats from embryonic day 15 (E15) to postnatal day 10 (PN10) were processed for electron microscopy, lectin binding and immunocytochemistry by using a series of antibodies. Cerebrospinal fluid (CSF) samples of non-affected and hydrocephalic HTx rats were collected at PN1, PN7 and PN30 and analysed by one- and two-dimensional electrophoresis, immunoblotting and nanoLC-ESI-MS/MS. A distinct malformation of the SCO is present as early as E15. Since stenosis of the Sylvius aqueduct (SA) occurs at E18 and dilation of the lateral ventricles starts at E19, the malformation of the SCO clearly precedes the onset of hydrocephalus. In the affected rats, the cephalic and caudal thirds of the SCO showed high secretory activity with all methods used, whereas the middle third showed no signs of secretion. At E18, the middle non-secretory third of the SCO progressively fused with the ventral wall of SA, resulting in marked aqueduct stenosis and severe hydrocephalus. The abnormal development of the SCO resulted in the permanent absence of Reissner’s fibre (RF) and led to changes in the protein composition of the CSF. Since the SCO is the source of a large mass of sialilated glycoproteins that form the RF and of those that remain CSF-soluble, we hypothesize that the absence of this large mass of negatively charged molecules from the SA domain results in SA stenosis and impairs the bulk flow of CSF through the aqueduct.  相似文献   

5.
Freeze-fracture studies on the tight junction of ependymal cells in the gerbil and mouse subcommissural organ (SCO) show an obvious species-specific variation. The tight junctional structure of the mouse SCO is composed of several strands (7.03 +/- 2.09 strands/cell) and occupies a total depth of 0.88 +/- 0.16 micron with a linear density of 7.12 +/- 2.11 strands/micron. The tight junction of the gerbil SCO is composed of three regions: (1) an apical region: made of 4 to 6 strands, oriented parallel to the free surface, with a high linear density (21.78 +/- 3.98 strands/micron) and small depth (0.049 +/- 0.009 micron); (2) a rather smooth and/or empty intermediate region, and (3) a basal region similar in morphology and morphometry to the junctional area of mouse SCO. These data indicate that the main difference in the SCO tight junction between the gerbil and the mouse is the presence of an apical region of high strand density in the former. We speculate that this apical region may play a role in maintaining the homeostasis of this CNS region in gerbils and possibly other desert animals, and may be part of a mechanism for survival in an extremely dry environment.  相似文献   

6.
Some histochemical and particularly histoenzymological tests are performed on the subcommissural organ of chick embryos. A secretory activity appears about the 7th day. In 10 days old embryos and new hatched chicken the enzyme activities are of rather low intensity. Compared with the 10 days embryos, the newborn show some increase, but compared with the adult birds the activities remain weak. However the acid phosphatase activity is higher in the subcommissural organ than in the ependyma even in 10 days embryos.  相似文献   

7.
Analysis of organ physiology in transgenic mice   总被引:1,自引:0,他引:1  
Theincreasing availability of transgenic mouse models of gene deletion andhuman disease has mandated the development of creative approaches tocharacterize mouse phenotype. The mouse presents unique challenges tophenotype analysis because of its small size, habits, and inability toverbalize clinical symptoms. This review describes strategies to studymouse organ physiology, focusing on the cardiovascular, pulmonary,renal, gastrointestinal, and neurobehavioral systems. General concernsabout evaluating mouse phenotype studies are discussed. Monitoring andanesthesia methods are reviewed, with emphasis on the feasibility andlimitations of noninvasive and invasive procedures to monitorphysiological parameters, do cannulations, and perform surgicalprocedures. Examples of phenotype studies are cited to demonstrate thepractical applications and limitations of the measurement methods. Therepertoire of phenotype analysis methods reviewed here should be usefulto investigators involved in or contemplating the use of mouse models.

  相似文献   

8.
The subcommissural organ (SCO) is an ependymal differentiation located in the diencephalon under the posterior commissure (PC). SCO-spondin, a glycoprotein released by the SCO, belongs to the thrombospondin superfamily and shares molecular domains with axonal pathfinding molecules. Several lines of evidence suggest a relationship between the SCO and the development of the PC in the chick: (1) their close location to each other, (2) their differentiation at the same developmental stage in the chick, (3) the abnormal PC found in null mutants lacking an SCO and (4) the release by the SCO of SCO-spondin. By application of DiI crystals in the PC of chick embryos, we have identified the neurons that give rise to the PC. Labelling is confined to the magnocellular nucleus of the PC (MNPC). To gain insight into the role of the SCO in PC development, coculture experiments of explants of the MNPC region (MNPCr) from embryos at embryonic day 4 (E4) with SCO explants from E4 or E13 embryos have been performed and the neurite outgrowth from the MNPCr explants has been analysed. In the case of coculture of E4 MNPCr with E4 SCO, the number of neurites growing from the MNPCr is higher at the side facing the SCO. However, when E4 MNPCr and E13 SCO are cocultured, the neurites grow mostly at the side opposite to the SCO. These data suggest that, at early stages of development, the SCO releases some attractive or permissive molecule(s) for the growing of the PC, whereas at later stages, the SCO has a repulsive effect over neurites arising from MNPCr.  相似文献   

9.
10.
The ontogenetical development of the subcommissural organ (SCO) was investigated in chick embryos collected daily from the 1st to the 21st day in incubation. Some duck embryos, and adult chickens and ducks were also studied. Immunocytochemistry using an anti-Reissner's fiber (RF) serum as the primary antibody was the principal method used. In the chick embryos the events occurring at different days of incubation were: day 3 morphologically undifferentiated cells in the dorsal diencephalon displayed immunoreactive material (IRM); days 4 to 6 immunoreactive cells proliferated, formed a multilayered structure and developed processes which traversed the growing posterior commissure and ended at the brain surface; day 7 blood vessels penetrated the SCO, scarce hypendymal cells appeared, the first signs of ventricular release of IRM were noticed, appearance of IRM bound to cells of the floor of the Sylvius aqueduct; day 7 to 10 the number of apical granules and amount of extracellular IRM increased progressively; day 11 RF was observed along the Sylvian aqueduct, day 12 RF was present in the lumbar spinal cord; day 13 IRM on the aqueductal floor disappeared; days 10 to 21 hypendymal cells proliferated, developed processes and migrated dorsally, ependymal processes elongated and their endings covered the external limiting membrane. In adult specimens the ependymal cells lacked basal processes and the external membrane was contacted by hypendymal cells. the duck SCO appears to follow a similar pattern of development.  相似文献   

11.
12.
13.
The desmoglein 1 (Dsg1) and desmocollin 1 (Dsc1) isoforms of the desmosomal cadherins are expressed in the suprabasal layers of epidermis, whereas Dsg3 and Dsc3 are more strongly expressed basally. This differential expression may have a function in epidermal morphogenesis and/or may regulate the proliferation and differentiation of keratinocytes. To test this hypothesis, we changed the expression pattern by overexpressing human Dsg3 under the control of the keratin 1 (K1) promoter in the suprabasal epidermis of transgenic mice. From around 12 weeks of age, the mice exhibited flaking of the skin accompanied by epidermal pustules and thinning of the hair. Histological analysis of affected areas revealed acanthosis, hypergranulosis, hyperkeratosis, localized parakeratosis, and abnormal hair follicles. This phenotype has some features in common with human ichthyosiform diseases. Electron microscopy revealed a mild epidermal spongiosis. Suprabasally, desmosomes showed incorporation of the exogenous protein by immunogold labeling but were normal in structure. The epidermis was hyperproliferative, and differentiation was abnormal, demonstrated by expression of K14 in the suprabasal layer, restriction of K1, and strong induction of K6 and K16. The changes resembled those found in previous studies in which growth factors, cytokines, and integrins had been overexpressed in epidermis. Thus our data strongly support the view that Dsg3 contributes to the regulation of epidermal differentiation. Our results contrast markedly with those recently obtained by expressing Dsg3 in epidermis under the involucrin promoter. Possible reasons for this difference are considered in this paper.  相似文献   

14.
This study aimed to examine whether the vomeronasal organ (VNO) is a prerequisite in mice to acquire essential information from various social odors and whether long-term VNO dysfunction can elicit behavioral and physiological changes in mice. We used binary choice tests and habituation–dishabituation tests to measure the abilities of male mice to recognize social odors. We found that males with the VNO ablation failed to show olfactory preferences between the odors of mate versus non-mate females, offspring versus non-offspring pups, or opposite-sex conspecifics versus predators (cats or rats), but were capable of discriminating between the two treatments in each of the paired odors, suggesting that male mice with VNO ablation might smell out the chemical differences of the two types of odors, but could not extract the biological information contained in the odors. Furthermore, prolonged VNO deficiency resulted in a reduction in crossing behavior in a light/dark box, the frequency of urine marking, and the time spent in the center in an open field. These results indicate that chronic VNO dysfunction led to anxiety-like or submissive behavior. In addition, males with VNO ablation had atrophic adrenal glands and hypertrophic preputial glands, suggesting that VNO dysfunction could damage the physiological conditions to buffer the stress and that pheromone perception deficiency might enhance self-odor production in mice.  相似文献   

15.
To define the role of TGF alpha in normal tissue function and in pathogenesis, transgenic mice have been generated bearing a fusion gene consisting of the mouse metallothionein 1 promoter and a human TGF alpha cDNA. In these mice, human TGF alpha RNA and protein are abundant in many tissues and TGF alpha is detectable in blood and urine. The effects of TGF alpha overproduction in transgenic mice are pleiotropic and tissue specific. The liver frequently contains multifocal, well-differentiated hepatocellular carcinomas that express enhanced levels of human TGF alpha RNA. The mammary gland exhibits impeded morphogenetic penetration of epithelial duct cells into the stromal fat pad. The pancreas shows progressive interstitial fibrosis and a florid acinoductular metaplasia, during which acinar cells appear to degranulate, dedifferentiate, and assume characteristics of intercalated or centroacinar duct cells. TGF alpha therefore plays an important role in cellular proliferation, organogenesis, and neoplastic transformation.  相似文献   

16.
Summary In the snake, Natrix maura, and the turtle, Mauremys caspica, the basal processes of the ependymal cells of the subcommissural organ project toward the local blood vessels and the leptomeninges. These processes and their endings were studied using aldehyde-fuchsin (AF), periodicacid Schiff (PAS), periodic-acid silver-methenamine (PASM), concanavalin A (ConA), wheat germ agglutinin (WGA), immunoperoxidase staining (employing an antiserum against bovine Reissner's fiber; AFRU), and conventional transmission electron microscopy. For the purposes of comparison, the ventricular cell pole was also analyzed. The secretory material located in the ventricular cell pole and that present in ependymal endings had only a few staining properties in common, i.e., affinity for AF, ConA, and AFRU at a dilution of 1:1000. On the other hand, PAS, PA-SM, WGA, and AFRU at a dilution of 1:200 000 stained the apical (ventricular) secretory material but not the secretory material of the ependymal processes. The histochemical features of the secretory material located in the terminals of ependymal processes, as well as the presence at these sites of numerous rough-endoplasmic-reticulum cisternae and secretory granules, suggest that secretory material may by synthesized in these terminals. The probable fate of this material, i.e., release to the perivascular and leptomeningeal spaces or transport to the ventricular cell pole, is discussed.This work was partially supported by grants from the Stiftung Volkswagenwork, Federal Republic of Germany (1/38259), from the Dirección de Investigaciones, Universidad Austral de Chile (S-85-39), and from Fondo Nacional de Desarrollo Científico y Tecnológico, Chile (6027; all to E.M.R.)  相似文献   

17.
The NLRP3 inflammasome complex is responsible for maturation of the pro-inflammatory cytokine, IL-1β. Mutations in NLRP3 are responsible for the cryopyrinopathies, a spectrum of conditions including neonatal-onset multisystem inflammatory disease (NOMID). While excessive production of IL-1β and systemic inflammation are common to all cryopyrinopathy disorders, skeletal abnormalities, prominently in the knees, and low bone mass are unique features of patients with NOMID. To gain insights into the mechanisms underlying skeletal abnormalities in NOMID, we generated knock-in mice globally expressing the D301N NLRP3 mutation (ortholog of D303N in human NLRP3). NOMID mice exhibit neutrophilia in blood and many tissues, including knee joints, and high levels of serum inflammatory mediators. They also exhibit growth retardation and severe postnatal osteopenia stemming at least in part from abnormally accelerated bone resorption, attended by increased osteoclastogenesis. Histologic analysis of knee joints revealed abnormal growth plates, with loss of chondrocytes and growth arrest in the central region of the epiphyses. Most strikingly, a tissue "spike" was observed in the mid-region of the growth plate in the long bones of all NOMID mice that may be the precursor to more severe deformations analogous to those observed in NOMID patients. These findings provide direct evidence linking a NOMID-associated NLRP3-activating mutation to abnormalities of postnatal skeletal growth and bone remodeling.  相似文献   

18.
19.
Summary [14C]2-deoxyglucose uptake by neurons located in the octavo-lateralis complex of adult flatfish is asymmetrical on the two sides of the brain. It appears that the neuronal activity on the side oriented upward is higher than that on the side of the brain facing downward. This finding may be significant with respect to the mechanisms of metamorphosis of flatfish and may account for the peculiar fact that these animals swim on one body side during adult live.  相似文献   

20.
Summary The secretory activity in the subcommissural organ (SCO) of the sheep and cow was examined by means of lectin histochemistry and cytochemistry. Among the various lectins tested, Concanavalin A (Con A) revealed glycoproteins rich in mannosyl residues in the rough endoplasmic reticulum of ependymal and hypendymal cells. One of these Con A-positive glycoproteins may represent the precursor of the specific secretory component elaborated in the SCO, giving rise to Reissner's fiber. Lens culinaris agglutinin (LCA) and Phaseolus vulgaris hemagglutinins (E-PHA and L-PHA), known to bind to oligosaccharides, as well as wheat-germ agglutinin (WGA) revealing neuraminic acid, labeled secretory granules located in the apical part of ependymal and hypendymal cells of ruminants, and also Reissner's fiber. Electron-microscopic visualization of WGA-positive material in the Golgi complex shows that complex-type glycoproteins are synthesized in the subcommissural organ of mammals. The electron-dense material is mainly secreted into the ventricular cavity and gives rise to Reissner's fiber. On the basis of lectin affinity for oligosaccharides, a structure of the complex-type oligosaccharide is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号