首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Vaid M  Singh T  Katiyar SK 《PloS one》2011,6(6):e21539
Melanoma is the leading cause of death from skin disease due, in large part, to its propensity to metastasize. We have examined the effect of grape seed proanthocyanidins (GSPs) on melanoma cancer cell migration and the molecular mechanisms underlying these effects using highly metastasis-specific human melanoma cell lines, A375 and Hs294t. Using in vitro cell invasion assays, we observed that treatment of A375 and Hs294t cells with GSPs resulted in a concentration-dependent inhibition of invasion or cell migration of these cells, which was associated with a reduction in the levels of cyclooxygenase (COX)-2 expression and prostaglandin (PG) E(2) production. Treatment of cells with celecoxib, a COX-2 inhibitor, or transient transfection of melanoma cells with COX-2 small interfering RNA, also inhibited melanoma cell migration. Treatment of cells with 12-O-tetradecanoylphorbol-13-acetate, an inducer of COX-2, enhanced the phosphorylation of ERK1/2, a protein of mitogen-activated protein kinase family, and subsequently cell migration whereas both GSPs and celecoxib significantly inhibited 12-O-tetradecanoylphorbol-13-acetate-promoted cell migration as well as phosphorylation of ERK1/2. Treatment of cells with UO126, an inhibitor of MEK, also inhibited the migration of melanoma cells. Further, GSPs inhibited the activation of NF-κB/p65, an upstream regulator of COX-2, in melanoma cells, and treatment of cells with caffeic acid phenethyl ester, an inhibitor of NF-κB, also inhibited cell migration. Additionally, inhibition of melanoma cell migration by GSPs was associated with reversal of epithelial-mesenchymal transition process, which resulted in an increase in the levels of epithelial biomarkers (E-cadherin and cytokeratins) while loss of mesenchymal biomarkers (vimentin, fibronectin and N-cadherin) in melanoma cells. Together, these results indicate that GSPs have the ability to inhibit melanoma cell invasion/migration by targeting the endogenous expression of COX-2 and reversing the process of epithelial-to-mesenchymal transition.  相似文献   

3.
4.
5.
6.
7.
8.
肾细胞癌(RCC)是最常见的恶性癌之一,癌症转移是目前导致肾癌患者死亡的主要原因之一。MMP-9被发现在许多具有侵袭性和转移能力的人类癌症中过表达,其表达和分泌受到NF-κB调控;VEGF在维持原发性癌和转移瘤生长所需的血管生成中发挥重要作用,其表达也受到活化的NF-κB调节。海参的多种活性物质在抗氧化、抗菌和抗癌方面都有出色的作用,而抗癌的主要机制则包括诱导癌细胞凋亡、抑制癌细胞生长、减少癌细胞转移等。本研究通过利用不同浓度的海参多糖处理人肾癌细胞A498,采用MTT细胞增殖实验、粘附实验、迁移实验和小室侵袭实验,研究了海参多糖对A498细胞的生长转移的影响;采用蛋白印记法检测了海参多糖对A498细胞内MMP-9、NF-κBp65和VEGF表达水平的影响。结果表明,海参多糖能够显著抑制A498细胞的增殖活力、粘附能力、迁移能力和侵袭能力,并且全都表现出明显的剂量依赖性;中浓度(100μg/mL)和高浓度(200μg/mL)的海参多糖能够显著下调A498细胞内MMP-9、NF-κBp65和VEGF的表达。这些结果说明海参多糖能有效抑制人肾癌细胞A498的生长、转移和侵袭,可能的机制是通过抑制NF-κB信号通路下调MMP-9和VEGF的表达,从而发挥抗癌细胞转移的作用。  相似文献   

9.
《Cellular signalling》2014,26(3):564-569
Gastric cancer remains the main cause of cancer related deaths all over the world, and upregulated COX2 is a key player in its development. The mechanism as to how COX2 is regulated during the gastric cancer development is largely unknown. In this study, we found that the expression of COX2 was closely correlated with NF-κB activity. Strikingly, NF-κB activity was not absolutely consistent with its nuclear localization. Especially, in some cancer cell lines, such as MKN28, there were abundant nuclear localized NF-κB, while NF-κB luciferase activity in this cell line was relatively low. Furthermore, FOXP3 was found to be abundantly expressed in these cells. When the nuclear localized NF-κB expression was adjusted with the expression of FOXP3, it then correlated well with NF-κB activity. Molecularly, increased FOXP3 expression can interact with NF-κB and thus repress its activity. Knockdown of FOXP3 could increase NF-κB activity, COX2 expression, and cell migration. Taken together, our study revealed that function of FOXP3 as a negative regulator of NF-κB activity and thus plays a tumor suppressor role by reducing cell metastasis.  相似文献   

10.
11.
Liu YQ  Hu XY  Lu T  Cheng YN  Young CY  Yuan HQ  Lou HX 《PloS one》2012,7(5):e38000
Previously, we reported that retigeric acid B (RB), a natural pentacyclic triterpenic acid isolated from lichen, inhibited cell growth and induced apoptosis in androgen-independent prostate cancer (PCa) cells. However, the mechanism of action of RB remains unclear. In this study, we found that using PC3 and DU145 cells as models, RB inhibited phosphorylation levels of IκBα and p65 subunit of NF-κB in a time- and dosage-dependent manner. Detailed study revealed that RB blocked the nuclear translocation of p65 and its DNA binding activity, which correlated with suppression of NF-κB-regulated proteins including Bcl-2, Bcl-x(L), cyclin D1 and survivin. NF-κB reporter assay suggested that RB was able to inhibit both constitutive activated-NF-κB and LPS (lipopolysaccharide)-induced activation of NF-κB. Overexpression of RelA/p65 rescued RB-induced cell death, while knockdown of RelA/p65 significantly promoted RB-mediated inhibitory effect on cell proliferation, suggesting the crucial involvement of NF-κB pathway in this event. We further analyzed antitumor activity of RB in in vivo study. In C57BL/6 mice carrying RM-1 homografts, RB inhibited tumor growth and triggered apoptosis mainly through suppressing NF-κB activity in tumor tissues. Additionally, DNA microarray data revealed global changes in the gene expression associated with cell proliferation, apoptosis, invasion and metastasis in response to RB treatment. Therefore, our findings suggested that RB exerted its anti-tumor effect by targeting the NF-κB pathway in PCa cells, and this could be a general mechanism for the anti-tumor effect of RB in other types of cancers as well.  相似文献   

12.
Interferon γ (IFN-γ), a multifunctional cytokine, was upregulated in the resected gastric cancer tissue. However, whether IFN-γ is involved in the regulation of gastric cancer has not been well elucidated. Herein, we aimed to investigate the effects and mechanism of IFN-γ on gastric cancer. In this study, we found a vital role of IFN-γ in enhancing proliferation, inhibiting apoptosis, and promoting cell migration and invasion in gastric cancer cells SGC-7901 and MGC-803. Additionally, IFN-γ activated nuclear factor κB (NF-κB) signaling pathway by upregulating the phosphorylation expression of p65 and IκBα, and induced the expression of integrin β3 in vitro. Therefore, to further investigate the relationship between IFN-γ and integrin β3, SGC-7901 cells were transfected with integrin β3 siRNA. And then cells expressed lower cell viability, migration, and invasion rates, while cell apoptosis was significantly enhanced. Meanwhile, expression of integrin β3, MMP-2, MMP-9, and NF-κB, including p65 and IκBα, and the nuclear translocation of NF-κB/p65 were dramatically repressed, whereas IFN-γ significantly improved the effects. Moreover, in vivo, the experiment of xenograft model and pulmonary metastasis model also retarded in integrin β3 siRNA group. And the expression of integrin β3, MMP-2, MMP-9, and NF-κB was repressed. However, the treatment with IFN-γ improved tumor volume, lung/total weight, tumor nodules, and the protein expression described above compared with integrin β3 siRNA group. Overall, the results indicated that IFN-γ induces gastric cancer cell proliferation and metastasis partially through the upregulation of integrin β3-mediated NF-κB signaling. Hence, the inhibition of IFN-γ or integrin β3 may be the key for the treatment of gastric cancer.  相似文献   

13.
MVA is an attenuated strain of vaccinia virus (VACV) that is a popular vaccine vector. MVA infection activates NF-κB. For 293T cells, it is known that MVA early gene expression activates extracellular signal-regulated kinase 2 (ERK2), resulting in NF-κB activation. However, other viral and cellular mechanisms responsible for this event are ill defined. The data presented here show that the epidermal growth factor receptor (EGFR) is at least one apical trigger in this pathway: ERK2 and NF-κB activation was diminished when MVA infections occurred in cells devoid of the EGFR (CHO K1 cells) or in the presence of a drug that inhibits EGFR activation (AG1478) in 293T cells. The expression of dominant negative Ras or Raf proteins still permitted NF-κB activation, suggesting that a nonclassical EGFR-based signal transduction pathway triggered ERK2-NF-κB activation. C11R is an early gene present in MVA and other orthopoxviruses. It encodes the soluble, secreted vaccinia virus growth factor (VGF), a protein that binds to and stimulates the EGFR. Here it was observed that NF-κB was activated in 293T cells transfected with a plasmid encoding the C11R gene. Silencing by small interfering RNA (siRNA) or deletion of the C11R gene (MVAΔC11R) reduced both MVA-induced ERK2 and NF-κB activation in 293T cells or the keratinocyte line Hacat, suggesting that this mechanism of MVA-induced NF-κB activation may be common for several cell types.  相似文献   

14.
Dihydroavenanthramide D (DHAvD) is a synthetic analog to naturally occurring avenanthramide, which is the active component of oat. Previous study demonstrates that DHAvD strongly inhibits activation of nuclear factor-kappa B (NF-κB), which is a major component in cancer cell invasion. The present study investigated whether DHAvD can modulate MMP-9 expression and cell invasion in MCF-7 human breast cancer cells. MMP-9 expression and cell invasion in response to 12-O-tetradecanoylphorbol-13-acetate (TPA) was increased, whereas these inductions were muted by DHAvD. DHAvD also suppressed activation of mitogen-activated protein kinase (MAPK), and MAPK-mediated nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1) activations in TPA-treated MCF-7 cells. The results indicate that DHAvD-mediated inhibition of TPA-induced MMP-9 expression and cell invasion involves the suppression of the MAPK/NF-κB and MAPK/AP-1 pathways in MCF-7 cells. DHAvD may have potential value in breast cancer metastasis.  相似文献   

15.
Integrin-linked kinase (ILK) is a ubiquitously expressed serine/threonine protein kinase that has been implicated in cancer development, progression and metastasis. The aim of the present study was to characterize the role of ILK in glioma cell invasion and migration. We generated a recombinant eukaryotic expression vector containing the human ILK gene and transfected it into human glioma SHG-44 cells. Real-time PCR and western blot analysis were used to identify the stable transformants. The wound healing and Transwell invasion assays showed that ectopic overexpression of ILK in SHG-44 cells significantly promoted their migration and invasion capabilities in culture. This was accompanied by a decrease in expression of E-cadherin and an increase in expression of Snail and Slug. Moreover, the decrease in E-cadherin expression induced by ILK overexpression was greatly restored by the nuclear factor-κB (NF-κB) inhibitor BAY 11-7028 or small interfering RNA targeting NF-κB p65, indicating an involvement of NF-κB in ILK-induced down-regulation of E-cadherin. In conclusion, our data underscore a novel role for ILK in glioma invasion and metastasis processes, implicating potential for therapeutic interference.  相似文献   

16.
17.
《Cellular signalling》2014,26(5):1011-1020
The tumor suppressor gene phosphatase and tensin homolog (PTEN) is essential in inhibiting tumor growth and metastasis. However, the mechanism by which PTEN restricts gastric cancer progression and metastasis remains largely elusive. Here we demonstrated that PTEN overexpression or knockdown in gastric cancer cells led to the downregulation or upregulation of focal adhesion kinase (FAK), and decreased or increased cell invasion, respectively. Moreover, FAK overexpression could rescue the inhibition of cell invasion by PTEN. These results were further confirmed in orthotropic gastric cancer nude mice model. In addition, in human gastric cancer tissues, PTEN protein level was conversely correlated with FAK protein level. Mechanistically, we found that PTEN inhibited PI3K/NF-κB pathway and inhibited the DNA binding of NF-κB on FAK promoter. Taken together, our data reveal a novel mechanism that PTEN inhibits the growth and invasion of gastric cancer via the downregulation of FAK expression and suggest that exploiting PTEN/PI3K/NF-κB/FAK axis is a promising approach to treat gastric cancer metastasis.  相似文献   

18.
Acquired chemoresistance not only blunts anticancer therapy but may also promote cancer cell migration and metastasis. Our previous studies have revealed that acquired tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance in lung cancer cells is associated with Akt-mediated stabilization of cellular caspase 8 and Fas-associated death domain (FADD)-like apoptosis regulator-like inhibitory protein (c-FLIP) and myeloid cell leukemia 1 (Mcl-1). In this report, we show that cells with acquired TRAIL resistance have significantly increased capacities in migration and invasion. By gene expression screening, tissue transglutaminase (TGM2) was identified as one of the genes with the highest expression increase in TRAIL-resistant cells. Suppressing TGM2 dramatically alleviated TRAIL resistance and cell migration, suggesting that TGM2 contributes to these two phenotypes in TRAIL-resistant cells. TGM2-mediated TRAIL resistance is likely through c-FLIP because TGM2 suppression significantly reduced c-FLIP but not Mcl-1 expression. The expression of matrix metalloproteinase 9 (MMP-9) was suppressed when TGM2 was inhibited, suggesting that TGM2 potentiates cell migration through up-regulating MMP-9 expression. We found that EGF receptor (EGFR) was highly active in the TRAIL-resistant cells, and suppression of EGFR dramatically reduced TGM2 expression. We further determined JNK and ERK, but not Akt and NF-κB, are responsible for EGFR-mediated TGM2 expression. These results identify a novel pathway that involves EGFR, MAPK (JNK and ERK), and TGM2 for acquired TRAIL resistance and cell migration in lung cancer cells. Because TGM2 couples TRAIL resistance and cell migration, it could be a molecular target for circumventing acquired chemoresistance and metastasis in lung cancer.  相似文献   

19.
Seventeen flavonoids with different substitutions were evaluated for inhibition of nuclear factor-κB (NF-κB) signaling in the invasive breast cancer cell line MDA-MB-231. They were screened using an engineered MDA-MB-231 cell line reporting NF-κB activation. The modulation of expression of two NF-κB regulated genes involved in tumorigenesis, matrix metalloproteinase-9 (MMP-9), and cyclooxygenase-2 (COX-2) were also analyzed in these cells. Among the compounds tested, all except gossypetin and quercetagetin inhibited the activation of NF-κB, and the expression of MMP-9 and COX-2 to different degree. Methylated flavone, chrysoeriol (luteolin-3′-methylether), was found to be the most potent inhibitor of MMP-9 and COX-2 expressions. The effect of chrysoeriol on cell proliferation, cell cycle, apoptosis and metastasis was analyzed by established methods. Chrysoeriol caused cell cycle arrest at G2/M and inhibited migration and invasion of MDA-MB-231 cells. The structure–activity relations amongst the flavonoids as NF-κB signaling inhibitors was studied. The study indicates differences between the actions of various flavonoids on NF-κB activation and on the biological activities of breast cancer cells. Flavones in general, were more active than the corresponding flavonols.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号