首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The energetically challenging periods of molting and breeding are usually temporally separated in temperate birds, but can occur simultaneously in tropical birds, a condition known as molt–breeding overlap. Here, we document great variation in the timing and duration of molting and breeding, and in the extent of molt–breeding overlap, among 87 species of understory passerines in central Amazonia. We analyzed molt and breeding from 26 871 birds captured over a 30‐yr period near Manaus, Brazil. Although most species typically bred during the late dry season (about October through January), many thamnophilids apparently bred year‐round, whereas a few other species from a variety of families bred mainly during the wet season (about January through May). Of all breeding birds with an active brood patch, 12.7% were simultaneously molting. Molt–breeding overlap was more frequently observed among suboscines (13.3%), especially thamnophilids (23.0%), than oscines (6.4%). Some families had <5% molt–breeding overlap frequency, including Tyrannidae (4.4%), Tityridae (0.0%), Pipridae (1.5%), Turdidae (0.0%), and Thraupidae (0.0%), indicating that not all tropical species exhibit molt–breeding overlap. Among 31 well‐sampled species (n ≥15 brood patches), variation in molt–breeding overlap frequency was positively correlated with each species’ average duration of flight feather replacement (range 98–301 d). We also measured feather growth rates of individual birds in nine species; in five of these, slower‐growing feathers increased with an individual's probability of having molt–breeding overlap. Among furnariids, molt–breeding overlap occurred either at the beginning or end of the molt cycle, suggesting that physiological mechanisms typically separate molting from breeding. Thamnophilids showed a much different pattern; molt–breeding overlap occurred at any stage of feather replacement, apparently not regulated to be independent of breeding. These results reveal substantial life‐history variation among Amazonian birds. Future work to resolve the physiological regulation of molting and breeding in tropical birds will greatly contribute to understanding these patterns and their relevance to avian diversity.  相似文献   

2.
Molt is critical for birds as it replaces damaged feathers and worn plumage, enhancing flight performance, thermoregulation, and communication. In passerines, molt generally occurs on the breeding grounds during the postbreeding period once a year. However, some species of migrant passerines that breed in the Nearctic and Western Palearctic regions have evolved different molting strategies that involve molting on the overwintering grounds. Some species forego molt on the breeding grounds and instead complete their prebasic molt on the overwintering grounds. Other species molt some or all feathers a second time (prealternate molt) during the overwintering period. Using phylogenetic analyses, we explored the potential drivers of the evolution of winter molts in Nearctic and Western Palearctic breeding passerines. Our results indicate an association between longer photoperiods and the presence of prebasic and prealternate molts on the overwintering grounds for both Nearctic and Western Palearctic species. We also found a relationship between prealternate molt and generalist and water habitats for Western Palearctic species. Finally, the complete prealternate molt in Western Palearctic passerines was linked to longer days on the overwintering grounds and longer migration distance. Longer days may favor the evolution of winter prebasic molt by increasing the time window when birds can absorb essential nutrients for molt. Alternatively, for birds undertaking a prealternate molt at the end of the overwintering period, longer days may increase exposure to feather‐degrading ultra‐violet radiation, necessitating the replacement of feathers. Our study underlines the importance of the overwintering grounds in the critical process of molt for many passerines that breed in the Nearctic and Western Palearctic regions.  相似文献   

3.
Understanding the annual cycle of migratory birds is imperative for evaluating the evolution of life‐history strategies and developing effective conservation strategies. Yet, we still know little about the annual cycle of migratory birds that breed at south‐temperate latitudes of South America. We aged, sexed, and determined the progression and intensity of body, remige, and rectrix molt of migratory Fork‐tailed Flycatchers (Tyrannus s. savana) at breeding sites in southern South America and at wintering sites in northern South America. Molt of both body and flight feathers occurred primarily during the winter. In early winter, a similar proportion of young and adult flycatchers molted remiges and rectrices, but remige molt intensity (number of remiges molting) was greater and primary molt progression (mean primary feather molting) more advanced in adults. In late winter, remige molt intensity and primary molt progression did not differ between age groups. We found no difference between males and females either in the proportion of individuals molting in winter or in the intensity or progress of remige molt. Our results suggest that the nominate subspecies of Fork‐tailed Flycatcher undergoes one complete, annual molt on the wintering grounds, and represents the first comprehensive evaluation of molt timing of a migratory New World flycatcher that overwinters in the tropics. Given that breeding, molt, and migration represent three key events in the annual cycle of migratory birds, knowledge of the timing of these events is the first step toward understanding the possible tradeoffs migratory birds face throughout the year.  相似文献   

4.
The functional life span of feathers is always much less than the potential life span of birds, so feathers must be renewed regularly. But feather renewal entails important energetic, time and performance costs that must be integrated into the annual cycle. Across species the time required to replace flight feather increases disproportionately with body size, resulting in complex, multiple waves of feather replacement in the primaries of many large birds. We describe the rules of flight feather replacement for Hemiprocne mystacea, a small, 60g tree swift from the New Guinea region. This species breeds and molts in all months of the year, and flight feather molt occurs during breeding in some individuals. H. mystacea is one to be the smallest species for which stepwise replacement of the primaries and secondaries has been documented; yet, primary replacement is extremely slow in this aerial forager, requiring more than 300 days if molt is not interrupted. We used growth bands to show that primaries grow at an average rate of 2.86 mm/d. The 10 primaries are a single molt series, while the 11 secondaries and five rectrices are each broken into two molt series. In large birds stepwise replacement of the primaries serves to increase the rate of primary replacement while minimizing gaps in the wing. But stepwise replacement of the wing quills in H. mystacea proceeds so slowly that it may be a consequence of the ontogeny of stepwise molting, rather than an adaptation, because the average number of growing primaries is probably lower than 1.14 feathers per wing.  相似文献   

5.
Migratory species employ a variety of strategies to meet energetic demands of postbreeding molt. As such, at least a few species of western Neotropical migrants are known to undergo short‐distance upslope movements to locations where adults molt body and flight feathers (altitudinal molt migration). Given inherent difficulties in measuring subtle movements of birds occurring in western mountains, we believe that altitudinal molt migration may be a common yet poorly documented phenomenon. To examine prevalence of altitudinal molt migration, we used 29 years of bird capture data in a series of linear mixed‐effect models for nine commonly captured species that breed in northern California and southern Oregon. Candidate models were formulated a priori to examine whether elevation and distance from the coast can be used to predict abundance of breeding and molting birds. Our results suggest that long‐distance migrants such as Orange‐crowned Warbler (Oreothlypis celata) moved higher in elevation and Audubon's Warbler (Setophaga coronata) moved farther inland to molt after breeding. Conversely, for resident and short‐distance migrants, we found evidence that birds either remained on the breeding grounds until they finished molting, such as Song Sparrow (Melospiza melodia) or made small downslope movements, such as American Robin (Turdus migratorius). We conclude that altitudinal molt migration may be a common, variable, and complex behavior among western songbird communities and is related to other aspects of a species’ natural history, such as migratory strategy.  相似文献   

6.
Molt strategies have received relatively little attention in current ornithology, and knowledge concerning the evolution, variability and extent of molt is sparse in many bird species. This is especially true for East Asian Locustella species where assumptions on molt patterns are based on incomplete information. We provide evidence indicating a complex postbreeding molt strategy and variable molt extent among the Pallas's Grasshopper Warbler Locustella certhiola, based on data from six ringing sites situated along its flyway from the breeding grounds to the wintering areas. Detailed study revealed for the first time that in most individuals wing feather molt proceeds from the center both toward the body and the wing‐tip, a molt pattern known as divergent molt (which is rare among Palearctic passerines). In the Russian Far East, where both breeding birds and passage migrants occur, a third of the adult birds were molting in late summer. In Central Siberia, at the northwestern limit of its distribution, adult individuals commenced their primary molt partly divergently and partly with unknown sequence. During migration in Mongolia, only descendantly (i.e., from the body toward the wing‐tip) molting birds were observed, while further south in Korea, Hong Kong, and Thailand the proportion of potential eccentric and divergent feather renewal was not identifiable since the renewed feathers were already fully grown as expected. We found an increase in the mean number of molted primaries during the progress of the autumn migration. Moderate body mass levels and low‐fat and muscle scores were observed in molting adult birds, without any remarkable increase in the later season. According to optimality models, we suggest that an extremely short season of high food abundance in tall grass habitats and a largely overland route allow autumn migration with low fuel loads combined with molt migration in at least a part of the population. This study highlights the importance of further studying molt strategy as well as stopover behavior decisions and the trade‐offs among migratory birds that are now facing a panoply of anthropogenic threats along their flyways.  相似文献   

7.
Feather molting and bill-late shedding were studied because of the unique features of the whiskered auklet biology; i.e., they continue to visit the colony after departure of their young. Like other auklets, the whiskered auklets begin to molt during breeding and do not lose their capacity for flight. The molt pattern of different wing feathers is adaptive and allows new feathers to be protected (when they are soft and could be easily injured) by old or full-grown new feathers during flight or feeding (diving) due to the different timing of the molt of primary feathers and their coverts. The possibility of combining breeding with molt appears to be related to the feeding features of the species. The species that feed on abundant and highly aggregated plankton are able to molt during breeding. The pattern of bill-plate shedding in the whiskered auklet is similar to that in the crested auklet.  相似文献   

8.
Avian feathers need to be replaced periodically to fulfill their functions, with natural, social, and sexual selection presumably driving the evolution of molting strategies. In temperate birds, a common pattern is to molt feathers immediately after the breeding season, the pre‐basic molt. However, some species undergo another molt in winter‐spring, the pre‐alternate molt. Using a sample of 188 European passerine species, Bayesian phylogenetic mixed models, and correlated evolution analyses, we tested whether the occurrence of the pre‐alternate molt was positively associated with proxies for sexual selection (sexual selection hypothesis) and nonsexual social selection (social selection hypothesis), and with factors related to feather wear (feather wear hypothesis) and time constraints on the pre‐basic molt (time constraints hypothesis). We found that the pre‐alternate molt was more frequent in migratory and less gregarious species inhabiting open/xeric habitats and feeding on the wing, and marginally more frequent in species with strong sexual selection and those showing a winter territorial behavior. Moreover, an increase in migratory behavior and sexual selection intensity preceded the acquisition of the pre‐alternate molt. These results provide support for the feather wear hypothesis, partial support for the sexual selection and time constraints hypotheses, and no support for the social selection hypothesis.  相似文献   

9.
The effects of environmental perturbations or stressors on individual states can be carried over to subsequent life stages and ultimately affect survival and reproduction. The concentration of corticosterone (CORT) in feathers is an integrated measure of hypothalamic–pituitary–adrenal activity during the molting period, providing information on the total baseline and stress-induced CORT secreted during the period of feather growth. Common eiders and greater snow geese replace all flight feathers once a year during the pre-basic molt, which occurs following breeding. Thus, CORT contained in feathers of pre-breeding individuals sampled in spring reflects the total CORT secreted during the previous molting event, which may provide insight into the magnitude or extent of stress experienced during this time period. We used data from multiple recaptures to disentangle the contribution of individual quality vs. external factors (i.e., breeding investment or environmental conditions) on feather CORT in arctic-nesting waterfowl. Our results revealed no repeatability of feather CORT within individuals of either species. In common eiders, feather CORT was not affected by prior reproductive investment, nor by pre-breeding (spring) body condition prior to the molting period. Individual feather CORT greatly varied according to the year, and August-September temperatures explained most of the annual variation in feather CORT. Understanding mechanisms that affect energetic costs and stress responses during molting will require further studies either using long-term data or experiments. Although our study period encompassed only five years, it nonetheless provides evidence that CORT measured in feathers likely reflects responses to environmental conditions experienced by birds during molt, and could be used as a metric to study carry-over effects.  相似文献   

10.
ABSTRACT Avian age‐class discrimination is typically based on the completeness of the first prebasic molt. In several calidrid sandpiper species, juvenal flight feathers grown on Arctic breeding grounds are retained through the first three migrations. Thereafter, flight feathers are grown annually at temperate migratory stopover sites during the fall or on the subtropical wintering grounds. Standard methods for distinguishing age classes of sandpipers rely on a combination of traits, including body plumage, coloration of protected inner median covert edges, and extent of flight feather wear. We tested the ability of stable hydrogen isotope ratios in flight feathers (δDf) to distinguish young birds in their first winter through second fall from older adults in three calidrid sandpiper species, Western (Calidris mauri), Least (C. minutilla), and Semipalmated (C. pusilla) sandpipers. We compared the apparent reliability of the isotope approach to that of plumage‐based aging. The large expected differences in δDf values of flight feathers grown at Arctic versus non‐Arctic latitudes enabled use of this technique to discriminate between age‐classes. We determined δDf values of known Arctic‐grown feathers from juveniles that grew their flight feathers on the breeding grounds. Flight feather δDf values of southward‐migrating adults showed bimodal distributions for all three species. Negative values overlapped with species‐specific juvenile values, identifying putative second fall birds with high‐latitude grown juvenal feathers retained from the previous year. The more positive values identified older adults who grew their feathers at mid‐ and low latitudes. Importantly, δDf analysis successfully identified first‐winter and second‐fall birds not detected by plumage‐based aging. Flight feather wear alone was a poor basis for age classification because scores overlapped extensively between putative second fall birds and older adults. Flight feather hydrogen isotope analysis enables more definitive assignment of age classes when standard plumage methods are unreliable.  相似文献   

11.
Mercury (Hg) is a well‐known global contaminant that persists in the environment. The organic form, methylmercury (MeHg) has been shown to adversely affect bird immune function, foraging behavior, navigation, and flight ability, which individually or together could reduce migration performance, and ultimately survival. Nestlings grow feathers at their natal site, and in North America many adult passerines undergo a complete feather molt prior to autumn migration at or near their breeding location. Body Hg is redistributed into growing feathers, and remains stable following feather growth. As flight feathers are retained in most species over the non‐breeding season until molt in the following summer, tail feathers can be used at other times and places as indicators of Hg body burden on the breeding grounds. In five migratory passerine species, we compared Hg concentrations in tail feathers that were grown prior to autumn migration and retained until the following spring. We predicted that we would observe a shift in the distribution of species‐specific feather Hg values towards lower means in the spring if Hg reduced survival over the migration and winter periods. We found reductions in mean feather Hg between autumn and spring in two long‐distance migratory insectivores (blackpoll warbler Setophaga striata; American redstart Setophaga ruticilla). Most significantly, spring‐returning blackpoll warblers, a species that undertakes long non‐stop flights to South America during autumn migration, had nearly 50 percent lower Hg concentrations than those that departed in the autumn. Our finding suggests that Hg exposure on the breeding areas could have a carry‐over effect to influence migration success and survival of insectivorous songbirds that undergo extensive and demanding migratory journeys. More investigation is needed to fully understand the relationships among Hg exposure, migration performance, and survival of songbirds.  相似文献   

12.
Analyses of stable isotopes and trace elements in feathers may provide important information about location and habitat use during molt, thereby enabling the investigation of migratory connectivity and its ecological consequences in bird species that breed and winter in different areas. We have compared the conclusions arrived at based on the use of these two methods on the same samples of feathers from two migratory birds, the Sand Martin Riparia riparia and the Barn Swallow Hirundo rustica. We investigated the effects of location, age and sex on stable isotope (δ13C, δ15N, δD) and trace element profiles (As, Cd, Mg, Mn, Mo, Se, Sr, Co, Fe, Zn, Li, P, Ti, V, Ag, Cr, Ba, Hg, Pb, S, Ni and Cu). The feathers of adults at the breeding grounds were removed, forcing in birds to grow new feathers at the breeding grounds; this enabled a comparison of composition of feathers grown in Europe and Africa by the same individual. Stable isotope and trace element profiles varied geographically, even at micro-geographic scales, and also among age classes. The results of both methods suggest that food composition and/or source differs between adults and nestlings in the breeding area and that food and/or molting location changes with the age of individuals in Africa. In an attempt to determine the usefulness of data obtained from composition of feathers, we performed discriminant function analyses on information obtained on stable isotopes and trace elements in order to assess the correctness of the classification of group membership. When feathers molted in Africa were compared to those molted in Europe, trace element profiles of the 22 elements generally had a much greater resolution than the stable isotope profiles based on three stable isotopes. The proportion of correctly classified samples was also greater for analyses based on trace elements than for those based on stable isotopes.  相似文献   

13.
Continent-wide variation in hydrogen isotopic composition of precipitation is incorporated into animal diets, providing an intrinsic marker of geographic location at the time of tissue growth. Feathers from migratory birds are now frequently analyzed for stable-hydrogen isotopes (δD) to estimate the location of individuals during a preceding molt. Using known-origin birds, we tested several assumptions associated with this emerging technique. We examined hydrogen isotopic variation as a function of age, sex, feather type and the timing of molt in a marked population of American redstarts (Setophaga ruticilla) breeding in southeastern Ontario. We measured δD in feathers and blood from individuals that bred or hatched at our study site during the year in which those tissues were grown. Juvenile tissues from 5- to 10-day-old birds had more negative δD values than those from adults, which most likely reflected age-related differences in diet. Within adults, primary feathers had more negative δD values than contour feathers. The mean δD value in adult primary feathers was relatively consistent among years and with the value expected for our study population. However, among-individual variation in δD corresponded to an estimated latitudinal range of 6–8° (650–900 km). We conclude that feathers sampled from recently hatched juveniles may not provide a reliable estimate of expected local isotopic signatures for comparison with adult feathers of unknown origin. Furthermore, we urge researchers to use caution when using δD values in feathers to infer geographic origin, and suggest that the best approach is to assign individuals to broad geographic zones within a species’ potential molting range.  相似文献   

14.
Northern-temperate male birds show seasonal changes in testosterone concentrations with a peak during the breeding season. Many tropical birds express much lower concentrations of testosterone with slight elevations during breeding. Here we describe testosterone and corticosterone concentrations of male stonechats from equatorial Kenya during different substages of breeding and molt. This tropical species has a short breeding season of approximately 3 months. We compare their hormone concentrations to previously published data of males of a northern-temperate relative, the European stonechat, also a seasonal breeder but with a breeding season of approximately 5 months. Equatorial stonechats show a pronounced peak of testosterone during the nest-building and laying stage. During all other stages, testosterone concentrations are low, similar to other year-round territorial tropical bird species. Corticosterone concentrations peak also during the nest-building and laying stage suggesting that this period of maximum female fecundity is a demanding period for the male. Equatorial stonechats have significantly lower concentrations of testosterone than European stonechats during all stages, except during the nest-building and laying stage. During this stage of maximum female fertility, testosterone levels tend to be higher in equatorial than in European stonechats. Our results suggest that equatorial stonechats belong to a group of tropical bird species that are characterized by a short breeding season and a brief high peak of testosterone during the female's fertile period. Such brief, but substantial peaks of testosterone may be common in tropical birds, but they may easily be missed if the exact breeding stage of individual birds is not known.  相似文献   

15.
Corticosterone (CORT) is seasonally modulated in many passerines, with plasma CORT concentrations lowest during the prebasic molt when all feathers are replaced. To explain why, we proposed that the birds downregulate natural CORT release during molt in order to avoid CORT's degradative effects on proteins and its inhibition of protein synthesis. If CORT exerted these effects during molt, it could slow protein deposition during feather production and potentially result in a longer period of degraded flight performance. To test this hypothesis, either empty or CORT-filled silastic implants were inserted into captive European starlings (Sturnus vulgaris) and white-crowned sparrows (Zonotrichia leucophrys) undergoing induced (feather replacement after plucking) and natural molts. We then measured the rate of feather re-growth by regularly measuring the length of primary, secondary, and tail feathers. CORT implanted birds showed a significantly decreased rate of feather growth compared to control animals. Basal CORT concentrations of induced molt and non-molting birds were also compared but no difference was noted. The results suggest a tradeoff; a complete set of new feathers may be more important to the survival of a bird than the ability of CORT to respond maximally to a stressor.  相似文献   

16.
Many species of birds exhibit brilliant ornamental plumage, yet most research on the function and evolution of plumage has been confined to the breeding season. In the American redstart Setophaga ruticilla , a long-distance Neotropical-Nearctic migratory bird, the acquisition of a winter territory in high-quality habitat advances spring departure and subsequent arrival on breeding areas, and increases reproductive success and annual survival. Here, we show that males holding winter territories in high-quality, black mangrove habitats in Jamaica have brighter yellow-orange tail feathers than males occupying territories in poor-quality second-growth scrub habitats. Moreover, males arriving on the breeding grounds from higher-quality winter habitats (inferred by stable-carbon isotopes) also had brighter tail feathers. Because behavioral dominance plays an important role in the acquisition of winter territories, plumage brightness may also be related to fighting ability and the acquisition and maintenance of territories in high-quality habitat. These results highlight the need for further research on the relationships between plumage coloration, behavior, and the ecology of over-wintering migratory birds.  相似文献   

17.
Molt is energetically demanding and various molt strategies (i.e., molt series, duration, intensity, timing, and location) have evolved to reduce the negative fitness consequences of this process. As such, molt varies considerably among species. Identifying where and when specific feathers are molted is also crucial to inform species‐specific studies using stable isotope markers to assign individuals to geographical regions where they molt. Using museum specimens, we examined the molt of three species of migratory swallows in the Americas: Bank Swallows (Riparia riparia), Barn Swallows (Hirundo rustica), and Cliff Swallows (Petrochelidon pyrrhonota). All three species have one primary and two secondary molt series. Bank and Cliff swallows had one rectrix molt series, and Barn Swallows molted the outer rectrix (R6) separately from the inner five rectrices (R1‐5). All three species have a relatively long flight feather molt duration (i.e., 140–183 days) and low molt intensity. Barn Swallows initiated flight feather molt in the fall, about 2 months later than Bank and Cliff swallows. Barn Swallows likely delay molt because of constraints associated with double brooding. For all three species, molt started with the primaries and inner secondaries and was closely followed by the rectrices and, finally, the outer secondaries. For those that began and then interrupted molt either in breeding areas or during fall migration, the first feathers molted were predominantly S8 and P1. All three species underwent body molt throughout the year, but most individuals molted their body plumage in wintering areas. We recommend that the most appropriate feathers for stable isotope research examining migratory connectivity and habitat use are either R2‐R4 or S2‐S4.  相似文献   

18.

Background

The trade-off between current and residual reproductive values is central to life history theory, although the possible mechanisms underlying this trade-off are largely unknown. The ‘molt constraint’ hypothesis suggests that molt and plumage functionality are compromised by the preceding breeding event, yet this candidate mechanism remains insufficiently explored.

Methodology/Principal Findings

The seasonal change in photoperiod was manipulated to accelerate the molt rate. This treatment simulates the case of naturally late-breeding birds. House sparrows Passer domesticus experiencing accelerated molt developed shorter flight feathers with more fault bars and body feathers with supposedly lower insulation capacity (i.e. shorter, smaller, with a higher barbule density and fewer plumulaceous barbs). However, the wing, tail and primary feather lengths were shorter in fast-molting birds if they had an inferior body condition, which has been largely overlooked in previous studies. The rachis width of flight feathers was not affected by the treatment, but it was still condition-dependent.

Conclusions/Significance

This study shows that sedentary birds might face evolutionary costs because of the molt rate–feather quality conflict. This is the first study to experimentally demonstrate that (1) molt rate affects several aspects of body feathers as well as flight feathers and (2) the costly effects of rapid molt are condition-specific. We conclude that molt rate and its association with feather quality might be a major mediator of life history trade-offs. Our findings also suggest a novel advantage of early breeding, i.e. the facilitation of slower molt and the condition-dependent regulation of feather growth.  相似文献   

19.
Ectoparasites, particularly chewing lice in the Phthiraptera (Insecta), affect the ecology of numerous host species. Most lice are highly host-specific, and there are no documented cases of major increases of chewing lice, within populations, over years. During continuous study from 1987-2005 at upper elevation forests on the island of Hawaii, chewing lice were exceedingly rare and, until 2003, were found in just 2 of 12 species of native and introduced birds. From 2003-2005, there was an explosive increase in the prevalence of chewing lice in all host species. There was no change in humidity, or in behavior of hosts, that could have caused an ecological release of existing lice. Based on reduced fat levels and increases in broken wing and tail feathers for most host species, there was apparently a food limitation that preceded the increase. The increase coincided temporally with detection of a nonnative bird that had recently been found in elevations below the study sites. Although there were isolated sightings of this bird on the study sites, seasonal movements and behavior of some species of native birds could also have allowed greater transmission to study sites. Both prevalence and intensity of infection, indexed by number of body regions parasitized, were lower in native species with greater bill overlap, a character that could help birds control lice. Seasonality of prevalence indicated that low prevalence preceded molt and high prevalence occurred after molting of hosts. The number of major fault bars in wing and tail feathers, a sign of nutritive stress, was correlated with intensity of infection, indicating an indirect cost to the hosts of being parasitized. In addition, birds with lice were less likely to be recaptured than birds without lice.  相似文献   

20.
The primary moult of individually colour-ringed, adult yellow-nosed albatrosses at nests on Gough Island was examined in 1983 and related to the status of each bird and its breeding history in the previous year. Adults renew only about half of their primaries each winter and suspend moult while breeding. Birds that bred successfully renewed fewer primaries than did unsuccessful birds or nonbreeders. There were no differences in primary moult between the sexes or in relation to size. Yellow-nosed albatrosses show complex wave moult as an adaptation to slow renewal of flight feathers. The energy, nutrient or time requirements for feather renewal may conflict with breeding annually so that there is a trade-off between the extent of moult desirable to maintain flight efficiency and the benefits of breeding in successive seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号