首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In considerations of sexual floral size dimorphism, there is a conflict between sexual selection theory, which predicts that larger floral displays attract more pollinators, and optimality theory—particularly the ideal free distribution—which predict that pollinators' visits should match nutritional rewards. As an alternate explanation of this dimorphism, Müller reported that pollinators tend to visit larger male flowers before visiting smaller female flowers, thereby promoting effective pollination. To investigate optimality predictions, I offered pollinators a choice between smaller, less numerous, but more rewarding flowers; and larger, more numerous, but less rewarding flowers. Foragers initially favored the larger and more numerous flowers, but rapidly shifted preferences to conform with the predictions of the ideal free distribution. To test Müller's hypothesis, I offered pollinators choices between larger and smaller corollas of equal caloric reward. Results showed that although pollinators tended to visit larger corollas first, they did not visit them more often. These experiments highlight the need for further investigation into the tradeoff between natural and sexual selection, and their respective influences in pollination ecology.  相似文献   

2.
Rensch’s rule refers to a pattern in sexual size dimorphism (SSD) in which SSD increases with body size when males are the larger sex and decreases with body size when females are the larger sex. Using data on body size from 40 populations and age from 31 populations of the rice frog Rana limnochari with female-biased size dimorphism, I tested the consistency of allometric relationships between males and females with Rensch’s rule and evaluated the hypothesis that SSD was largely a function of age differences between the sexes. Statistical comparisons of body sizes between the sexes showed the evidence for the inverse of Rensch’s rule, indicating the level of SSD increased with increasing mean body size. One of the explanations for the occurrence of the inverse of Rensch’s rule may be the fecundity selection hypothesis assuming increased reproductive output in large females. However, differences in age between males and females among populations could explain mildly the variation in SSD.  相似文献   

3.
Sexual dimorphism in body size (sexual size dimorphism) is common in many species. The sources of selection that generate the independent evolution of adult male and female size have been investigated extensively by evolutionary biologists, but how and when females and males grow apart during ontogeny is poorly understood. Here we use the hawkmoth, Manduca sexta, to examine when sexual size dimorphism arises by measuring body mass every day during development. We further investigated whether environmental variables influence the ontogeny of sexual size dimorphism by raising moths on three different diet qualities (poor, medium and high). We found that size dimorphism arose during early larval development on the highest quality food treatment but it arose late in larval development when raised on the medium quality food. This female-biased dimorphism (females larger) increased substantially from the pupal-to-adult stage in both treatments, a pattern that appears to be common in Lepidopterans. Although dimorphism appeared in a few stages when individuals were raised on the poorest quality diet, it did not persist such that male and female adults were the same size. This demonstrates that the environmental conditions that insects are raised in can affect the growth trajectories of males and females differently and thus when dimorphism arises or disappears during development. We conclude that the development of sexual size dimorphism in M. sexta occurs during larval development and continues to accumulate during the pupal/adult stages, and that environmental variables such as diet quality can influence patterns of dimorphism in adults.  相似文献   

4.
The Rensch’s rule predicts that male-biased sexual size dimorphism (SSD) increases with body size, while female-biased SSD (FBSSD) decreases. In insects, many groups follow this rule, but the evidence suggests that it is taxon dependent and that the inverse of the rule can occur in species with FBSSD. Therefore, we conducted this study with Gripopterygidae stoneflies (Plecoptera) to describe their pattern of SSD and determine if they follow the Rensch’s rule. Our data suggest that stoneflies exhibit FBSSD and do not follow the rule, but a reverse pattern. Our results corroborate other studies that suggest that the Rensch’s rule is taxon based and that groups with FBSSD usually fail to obey the rule.  相似文献   

5.
Sexual size dimorphism (SSD) is widespread in nature and may result from selection operating differentially on males and females. Rensch’s rule, the increase of SSD with body size in male-biased-SSD species (or decrease in female-biased-SSD species), is documented in invertebrates and vertebrates. In turtles, evidence for Rensch’s rule is inconclusive and thus the forces underlying body size evolution remain obscure. Using a phylogenetic approach on 138 turtle species from 9 families, we found that turtles overall and three families follow Rensch’s rule, five families display isometry of SSD with body size, while Podocnemididae potentially follows a pattern opposite to Rensch’s rule. Furthermore, male size evolves at faster rates than female size. Female-biased-SSD appears ancestral in turtles while male-biased-SSD evolved in every polytypic family at least once. Body size follows an Ornstein–Uhlenbeck evolutionary model in both sexes and SSD types, ruling out drift as a driving process. We explored whether habitat type or sex determination might be general drivers of turtle body size evolution using a phylogenetic context. We found that males are proportionally larger in terrestrial habitats and smaller in more aquatic habitats, while the sex-determining mechanism had no influence on body size evolution. Together, our data indicate that Rensch’s rule is not ubiquitous across vertebrates, but rather is prevalent in some lineages and not driven by a single force. Instead, our findings are consistent with the hypotheses that fecundity-selection might operate on females and ecological-selection on males; and that SSD and sex-determining mechanism evolve independently in these long-lived vertebrates.  相似文献   

6.
Reciprocal interactions between the host circadian clock and the microbiota are evidenced by recent literature. Interestingly, dysregulation of either the circadian clock or microbiota is associated with common human pathologies such as obesity, type 2 diabetes, or neurological disorders. However, it is unclear to what extent a perturbation of pathways regulated by both the circadian clock and microbiota is involved in the development of these disorders. It is speculated that these perturbations are associated with impaired growth hormone (GH) secretion and sexual development. The GH axis is a broadly neglected pathway and could be the main converging point for the interaction of both circadian clock and microbiota. Here, the links between the circadian clock and microbiota are reviewed. Finally, the effects of chronodisruption and dysbiosis on physiology and pathology are discussed and it is speculated whether a common deregulation of the GH pathway could mediates those effects.  相似文献   

7.
Sexual size dimorphism (SSD) is widespread within the animal kingdom. Rensch’s rule describes a relationship between SSD and body size: SSD increases with body size when males are the larger sex, and decreases with body size when females are the larger sex. Rensch’s rule is well supported for taxa that exhibit male-biased SSD but patterns of allometry among taxa with female-biased size dimorphism are mixed, there is evidence both for and against the rule. Furthermore, most studies have investigated Rensch’s rule across a variety of taxa; but among-population studies supporting Rensch’s rule are lacking, especially in taxa that display only slight SSD. Here, we tested whether patterns of intraspecific variation in SSD in greater horseshoe bats conform to Rensch’s rule, and evaluated the contribution of latitude to Rensch’s rule. Our results showed SSD was consistently female-biased in greater horseshoe bats, although female body size was only slightly larger than male body size. The slope of major axis regression of log10 (male) on log10 (female) was significantly different from 1. Forearm length for both sexes of greater horseshoe bats was significantly negatively correlated with latitude, and males displayed a slightly but nonsignificant steeper latitudinal cline in body size than females. We suggest that variation in patterns of SSD among greater horseshoe bat populations is consistent with Rensch’s rule indicating that males were the more variable sex. Males did not have a steeper body size–latitude relationship than females suggesting that sex-specific latitudinal variation in body size may not be an important contributing factor to Rensch’s rule. Future research on greater horseshoe bats might best focus on more comprehensive mechanisms driving the pattern of female-biased SSD variation.  相似文献   

8.
9.
Male-biased sexual dimorphism in hind limb muscles is widespread in anuran species where scramble competition is common among males. Such sexual difference is thought to result from sexual selection. In this view, we tested the differences in muscle mass between the sexes and between amplectant and non-amplectant males by quantifying the mass of four hindlimb muscles (triceps femoris, sartorius, gracilis and plantaris longus) of females and males of Odorrana schmackeri. The results showed that females significantly exceeded males for muscle triceps femoris, gracilis, plantaris longus and total mass when controlled for body size. There are no significant differences between amplectant and non-amplectant males. It is probable that the maintenance of the amplectant position in O. schmackeri may depend on the strength of hindlimb muscles in females to support the pair.  相似文献   

10.
Marijuana is the most widely used illicit drug in the U.S., and marijuana use by women is on the rise. Women have been found to be more susceptible to the development of cannabinoid abuse and dependence, have more severe withdrawal symptoms, and are more likely to relapse than men. The majority of research in humans suggests that women are more likely to be affected by cannabinoids than men, with reports of enhanced and decreased performance on various tasks. In rodents, females are more sensitive than males to effects of cannabinoids on tests of antinociception, motor activity, and reinforcing efficacy. Studies on effects of cannabinoid exposure during adolescence in both humans and rodents suggest that female adolescents are more likely than male adolescents to be deleteriously affected by cannabinoids. Sex differences in response to cannabinoids appear to be due to activational and perhaps organizational effects of gonadal hormones, with estradiol identified as the hormone that contributes most to the sexually dimorphic effects of cannabinoids in adults. Many, but not all sexually dimorphic effects of exogenous cannabinoids can be attributed to a sexually dimorphic endocannabinoid system in rodents, although the same has not yet been established firmly for humans. A greater understanding of the mechanisms underlying sexually dimorphic effects of cannabinoids will facilitate development of sex-specific approaches to treat marijuana dependence and to use cannabinoid-based medications therapeutically.  相似文献   

11.
Adoption is rare in animals and is usually attributed to kin selection. In a 6-year study of eastern grey kangaroos (Macropus giganteus), 11 of 326 juveniles were adopted. We detected eight adoptions by observing behavioural associations and nursing between marked mothers and young and three more by analysing the relatedness of mothers and young using microsatellite DNA. Four adoptions involved reciprocal switches and three were by mothers whose own pouch young were known to subsequently disappear. Adoptive mothers were not closely related to each other or to adoptees but adoptive mothers and young associated as closely as did biological pairs, as measured by half-weight indices. Switch mothers did not associate closely. Maternal age and body condition did not influence the likelihood of adoption but females were more likely to adopt in years with high densities of females with large pouch young. Adoption did not improve juvenile survival. We conclude that adoptions in this wild population were potentially costly and likely caused by misdirected care, suggesting that eastern grey kangaroos may have poorly developed mother-offspring recognition mechanisms.  相似文献   

12.
Obesity prevalence has increased, and increased energy intake or decreased physical activity are the two most obvious contributing factors. The percentage of Americans engaging in exercise has been stable over the past few decades, but decreases in occupation‐related energy expenditure are sufficient to partially explain increased obesity prevalence. Further, the contribution of energy intake and energy expenditure to the obesity epidemic is complicated because they are not independent—they are influenced by each other. For example, Mayer found that low activity levels were marked by higher body weight and higher “unregulated” energy intake levels. Conversely, higher activity levels were marked by lower body weight and energy intake that matched energy expenditure. Consistent with Mayer, we propose that because most Americans have low levels of occupation‐related activity, they do not benefit from the regulation of energy intake achieved at higher activity levels, resulting in weight gain due to energy intake exceeding energy expenditure.  相似文献   

13.
Functional connectivity in human brain can be represented as a network using electroencephalography (EEG) signals. These networks--whose nodes can vary from tens to hundreds--are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which various graph metrics depend upon the network size. To this end, EEGs from 32 normal subjects were recorded and functional networks of three different sizes were extracted. A state-space based method was used to calculate cross-correlation matrices between different brain regions. These correlation matrices were used to construct binary adjacency connectomes, which were assessed with regards to a number of graph metrics such as clustering coefficient, modularity, efficiency, economic efficiency, and assortativity. We showed that the estimates of these metrics significantly differ depending on the network size. Larger networks had higher efficiency, higher assortativity and lower modularity compared to those with smaller size and the same density. These findings indicate that the network size should be considered in any comparison of networks across studies.  相似文献   

14.
Because asymmetric individuals are less attractive and may suffer from reduced fitness, bilateral asymmetry is widely believed to affect human sexual selection. Its evolutionary significance is based on the presumed relationship with developmental instability (DI). Yet, relationships between DI and bilateral asymmetry are often weak and possibly confounded by asymmetric mechanical loadings because of handedness. We related asymmetry in hands and faces to degrees of handedness and sexual behaviour in 100 humans. Handedness correlated to levels of asymmetry, thereby likely invalidating the use of asymmetry to estimate DI. For facial asymmetry, applying existing theoretical models refuted a link between asymmetry and DI. Explicit statistical modelling at the level of DI confirmed the absence of a link between DI and aspects of sexual behaviour. Nevertheless, asymmetries in both hands and face correlated significantly with sexual behaviour. We conclude that bilateral asymmetry per se, rather than its presumed link with DI, more likely relates to measures of human sexual behaviour. Because lateralization of behaviour appears widespread, evaluating the role of DI in evolution and ecology relies on a very critical selection of traits whose asymmetry can reliably reflect DI.  相似文献   

15.
16.

Background

Fungi are asexually and sexually reproducing organisms that can combine the evolutionary advantages of the two reproductive modes. However, for many fungi the sexual cycle has never been observed in the field or in vitro and it remains unclear whether sexual reproduction is absent or cryptic. Nevertheless, there are indirect approaches to assess the occurrence of sex in a species, such as population studies, expression analysis of genes involved in mating processes and analysis of their selective constraints. The members of the Phialocephala fortinii s. l. - Acephala applanata species complex (PAC) are ascomycetes and the predominant dark septate endophytes that colonize woody plant roots. Despite their abundance in many ecosystems of the northern hemisphere, no sexual state has been identified to date and little is known about their reproductive biology, and how it shaped their evolutionary history and contributes to their ecological role in forest ecosystems. We therefore aimed at assessing the importance of sexual reproduction by indirect approaches that included molecular analyses of the mating type (MAT) genes involved in reproductive processes.

Results

The study included 19 PAC species and > 3, 000 strains that represented populations from different hosts, continents and ecosystems. Whereas A. applanata had a homothallic (self-fertile) MAT locus structure, all other species were structurally heterothallic (self-sterile). Compatible mating types were observed to co-occur more frequently than expected by chance. Moreover, in > 80% of the populations a 1:1 mating type ratio and gametic equilibrium were found. MAT genes were shown to evolve under strong purifying selection.

Conclusions

The signature of sex was found in worldwide populations of PAC species and functionality of MAT genes is likely preserved by purifying selection. We hypothesize that cryptic sex regularely occurs in the PAC and that further field studies and in vitro crosses will lead to the discovery of the sexual state. Although structurally heterothallic species prevail, it cannot be excluded that homothallism represents the ancestral breeding system in the PAC.  相似文献   

17.
Over the past two decades, neuroscientists have increasingly turned their attention to the question of how the brain implements decisions between differently valued options. This emerging field, called neuroeconomics, has made quick progress in identifying a plethora of brain areas that track or are modulated by reward value. However, it is still unclear how and where in the brain value coding takes place. A primate study by Strait and colleagues in this issue of PLOS Biology finds overlapping signals of value coding in two brain regions central to the valuation process: the ventromedial prefrontal cortex and the ventral striatum. This finding reconciles the primate and rodent literatures, provides valuable insight into the complexity of value computation, and helps set the agenda for future work in this area.  相似文献   

18.
19.
Early workers interested in the mechanisms mediating sex differences in morphology and behavior assumed that differences in behavior that are commonly observed between males and females result from the sex specificity of androgens and estrogens. Androgens were thought to facilitate male-typical traits, and estrogens were thought to facilitate female-typical traits. By the mid-20th century, however, it was apparent that administering androgens to females or estrogens to males was not always effective in sex-reversing behavior and that in some cases a “female” hormone such as an estrogen could produce male-typical behavior and an androgen could induce female-typical behavior. These conceptual difficulties were resolved to a large extent by the seminal paper of C. H. Phoenix, R. W. Goy, A. A. Gerall, and W. C. Young in (1959,Endocrinology65, 369–382) that illustrated that several aspects of sexual behavior are different between males and females because the sexes have been exposed during their perinatal life to a different endocrine milieu that has irreversibly modified their response to steroids in adulthood. Phoenixet al.(1959) therefore formalized a clear dichotomy between the organizational and activational effects of sex steroid hormones. Since this paper, a substantial amount of research has been carried out in an attempt to identify the aspects of brain morphology or neurochemistry that differentiate under the embryonic/neonatal effects of steroids and are responsible for the different behavioral response of males and females to the activation by steroids in adulthood. During the past 25 years, research in behavioral neuroendocrinology has identified many sex differences in brain morphology or neurochemistry; however many of these sex differences disappear when male and female subjects are placed in similar endocrine conditions (e.g., are gonadectomized and treated with the same amount of steroids) so that these differences appear to be of an activational nature and cannot therefore explain sex differences in behavior that are still present in gonadectomized steroid-treated adults. This research has also revealed many aspects of brain morphology and chemistry that are markedly affected by steroids in adulthood and are thought to mediate the activation of behavior at the central level. It has been explicitly, or in some cases, implicitly assumed that the sexual differentiation of brain and behavior driven by early exposure to steroids concerns primarily those neuroanatomical/neurochemical characteristics that are altered by steroids in adulthood and presumably mediate the activation of behavior. Extensive efforts to identify these sexually differentiated brain characteristics over the past 20 years has only met with limited success, however. As regards reproductive behavior, in all model species that have been studied it is still impossible to identify satisfactorily brain characteristics that differentiate under early steroid action and explain the sex differences in behavioral activating effects of steroids. This problem is illustrated by research conducted on Japanese quail (Coturnix japonica), an avian model system that displays prominent sex differences in the sexual behavioral response to testosterone, and in which the endocrine mechanisms that control sexual differentiation of behavior have been clearly identified so that subjects with a fully sex-reversed behavioral phenotype can be easily produced. In this species, studies of sex differences in the neural substrate mediating the action of steroids in the brain, including the activity of the enzymes that metabolize steroids such as aromatase and the distribution of steroid hormone receptors as well as related neurotransmitter systems, did not result in a satisfactory explanation of sex differences in the behavioral effectiveness of testosterone. Possible explanations for the relative failure to identify the organized brain characteristics responsible for behavioral sex differences in the responsiveness to steroids are presented. It is argued that novel research strategies may have to be employed to successfully attack the fundamental question of the hormonal mechanisms regulating sex differences in behavior.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号