首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

DNA sequence diversity within the human genome may be more greatly affected by copy number variations (CNVs) than single nucleotide polymorphisms (SNPs). Although the importance of CNVs in genome wide association studies (GWAS) is becoming widely accepted, the optimal methods for identifying these variants are still under evaluation. We have previously reported a comprehensive view of CNVs in the HapMap DNA collection using high density 500 K EA (Early Access) SNP genotyping arrays which revealed greater than 1,000 CNVs ranging in size from 1 kb to over 3 Mb. Although the arrays used most commonly for GWAS predominantly interrogate SNPs, CNV identification and detection does not necessarily require the use of DNA probes centered on polymorphic nucleotides and may even be hindered by the dependence on a successful SNP genotyping assay.

Results

In this study, we have designed and evaluated a high density array predicated on the use of non-polymorphic oligonucleotide probes for CNV detection. This approach effectively uncouples copy number detection from SNP genotyping and thus has the potential to significantly improve probe coverage for genome-wide CNV identification. This array, in conjunction with PCR-based, complexity-reduced DNA target, queries over 1.3 M independent NspI restriction enzyme fragments in the 200 bp to 1100 bp size range, which is a several fold increase in marker density as compared to the 500 K EA array. In addition, a novel algorithm was developed and validated to extract CNV regions and boundaries.

Conclusion

Using a well-characterized pair of DNA samples, close to 200 CNVs were identified, of which nearly 50% appear novel yet were independently validated using quantitative PCR. The results indicate that non-polymorphic probes provide a robust approach for CNV identification, and the increasing precision of CNV boundary delineation should allow a more complete analysis of their genomic organization.  相似文献   

2.
Tsuang DW  Millard SP  Ely B  Chi P  Wang K  Raskind WH  Kim S  Brkanac Z  Yu CE 《PloS one》2010,5(12):e14456

Background

The detection of copy number variants (CNVs) and the results of CNV-disease association studies rely on how CNVs are defined, and because array-based technologies can only infer CNVs, CNV-calling algorithms can produce vastly different findings. Several authors have noted the large-scale variability between CNV-detection methods, as well as the substantial false positive and false negative rates associated with those methods. In this study, we use variations of four common algorithms for CNV detection (PennCNV, QuantiSNP, HMMSeg, and cnvPartition) and two definitions of overlap (any overlap and an overlap of at least 40% of the smaller CNV) to illustrate the effects of varying algorithms and definitions of overlap on CNV discovery.

Methodology and Principal Findings

We used a 56 K Illumina genotyping array enriched for CNV regions to generate hybridization intensities and allele frequencies for 48 Caucasian schizophrenia cases and 48 age-, ethnicity-, and gender-matched control subjects. No algorithm found a difference in CNV burden between the two groups. However, the total number of CNVs called ranged from 102 to 3,765 across algorithms. The mean CNV size ranged from 46 kb to 787 kb, and the average number of CNVs per subject ranged from 1 to 39. The number of novel CNVs not previously reported in normal subjects ranged from 0 to 212.

Conclusions and Significance

Motivated by the availability of multiple publicly available genome-wide SNP arrays, investigators are conducting numerous analyses to identify putative additional CNVs in complex genetic disorders. However, the number of CNVs identified in array-based studies, and whether these CNVs are novel or valid, will depend on the algorithm(s) used. Thus, given the variety of methods used, there will be many false positives and false negatives. Both guidelines for the identification of CNVs inferred from high-density arrays and the establishment of a gold standard for validation of CNVs are needed.  相似文献   

3.
Human gene copy number spectra analysis in congenital heart malformations   总被引:1,自引:0,他引:1  
The clinical significance of copy number variants (CNVs) in congenital heart disease (CHD) continues to be a challenge. Although CNVs including genes can confer disease risk, relationships between gene dosage and phenotype are still being defined. Our goal was to perform a quantitative analysis of CNVs involving 100 well-defined CHD risk genes identified through previously published human association studies in subjects with anatomically defined cardiac malformations. A novel analytical approach permitting CNV gene frequency "spectra" to be computed over prespecified regions to determine phenotype-gene dosage relationships was employed. CNVs in subjects with CHD (n = 945), subphenotyped into 40 groups and verified in accordance with the European Paediatric Cardiac Code, were compared with two control groups, a disease-free cohort (n = 2,026) and a population with coronary artery disease (n = 880). Gains (≥200 kb) and losses (≥100 kb) were determined over 100 CHD risk genes and compared using a Barnard exact test. Six subphenotypes showed significant enrichment (P ≤ 0.05), including aortic stenosis (valvar), atrioventricular canal (partial), atrioventricular septal defect with tetralogy of Fallot, subaortic stenosis, tetralogy of Fallot, and truncus arteriosus. Furthermore, CNV gene frequency spectra were enriched (P ≤ 0.05) for losses at: FKBP6, ELN, GTF2IRD1, GATA4, CRKL, TBX1, ATRX, GPC3, BCOR, ZIC3, FLNA and MID1; and gains at: PRKAB2, FMO5, CHD1L, BCL9, ACP6, GJA5, HRAS, GATA6 and RUNX1. Of CHD subjects, 14% had causal chromosomal abnormalities, and 4.3% had likely causal (significantly enriched), large, rare CNVs. CNV frequency spectra combined with precision phenotyping may lead to increased molecular understanding of etiologic pathways.  相似文献   

4.
Accurate and efficient genome-wide detection of copy number variants (CNVs) is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH), Single Nucleotide Polymorphism (SNP) genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications.  相似文献   

5.
Epidemiological and genetic studies suggest that schizophrenia and autism may share genetic links. Besides common single nucleotide polymorphisms, recent data suggest that some rare copy number variants (CNVs) are risk factors for both disorders. Because we have previously found that schizophrenia and psychosis in Alzheimer''s disease (AD+P) share some genetic risk, we investigated whether CNVs reported in schizophrenia and autism are also linked to AD+P. We searched for CNVs associated with AD+P in 7 recurrent CNV regions that have been previously identified across autism and schizophrenia, using the Illumina HumanOmni1-Quad BeadChip. A chromosome 16p11.2 duplication CNV (chr16: 29,554,843-30,105,652) was identified in 2 of 440 AD+P subjects, but not in 136 AD subjects without psychosis, or in 593 AD subjects with intermediate psychosis status, or in 855 non-AD individuals. The frequency of this duplication CNV in AD+P (0.46%) was similar to that reported previously in schizophrenia (0.46%). This duplication CNV was further validated using the NanoString nCounter CNV Custom CodeSets. The 16p11.2 duplication has been associated with developmental delay, intellectual disability, behavioral problems, autism, schizophrenia (SCZ), and bipolar disorder. These two AD+P patients had no personal of, nor any identified family history of, SCZ, bipolar disorder and autism. To the best of our knowledge, our case report is the first suggestion that 16p11.2 duplication is also linked to AD+P. Although rare, this CNV may have an important role in the development of psychosis.  相似文献   

6.
ABSTRACT: BACKGROUND: Btau_4.0 and UMD3.1 are two distinct cattle reference genome assemblies. In our previous study using the low density BovineSNP50 array, we reported a copy number variation (CNV) analysis on Btau_4.0 with 521 animals of 21 cattle breeds, yielding 682 CNV regions with a total length of 139.8 megabases. RESULTS: In this study using the high density BovineHD SNP array, we performed high resolution CNV analyses on both Btau_4.0 and UMD3.1 with 674 animals of 27 cattle breeds. We first compared CNV results derived from these two different SNP array platforms on Btau_4.0. With two thirds of the animals shared between studies, on Btau_4.0 we identified 3,346 candidate CNV regions representing 142.7 megabases (~4.70%) of the genome. With a similar total length but 5 times more event counts, the average CNVR length of current Btau_4.0 dataset is significantly shorter than the previous one (42.7kb vs. 205 kb). Although subsets of these two results overlapped, 64% (91.6 megabases) of current dataset was not present in the previous study. We also performed similar analyses on UMD3.1 using these BovineHD SNP array results. Approximately 50% more and 20% longer CNVs were called on UMD3.1 as compared to those on Btau_4.0. However, a comparable result of CNVRs (3,438 regions with a total length 146.9 megabases) was obtained. We suspect that these results are due to that UMD3.1's efforts of placing unplaced contigs and removing unmerged alleles. Selected CNVs were further experimentally validated, achieving a 73% PCR validation rate, which is considerably higher than the previous validation rate. About 20-45% of CNV regions overlapped with cattle RefSeq genes and Ensembl genes. Panther and IPA analyses indicated that these genes provide a wide spectrum of biological processes involving immune system, lipid metabolism, cell, organism and system development. CONCLUSION: We present a comprehensive result of cattle CNVs at a higher resolution and sensitivity. We identified over 3,000 candidate CNV regions on both Btau_4.0 and UMD3.1, further compared current datasets with previous results, and examined the impacts of genome assemblies on CNV calling.  相似文献   

7.
Bipolar disorder (BPD) is a common psychiatric illness with a complex mode of inheritance. Besides traditional linkage and association studies, which require large sample sizes, analysis of common and rare chromosomal copy number variants (CNVs) in extended families may provide novel insights into the genetic susceptibility of complex disorders. Using the Illumina HumanHap550 BeadChip with over 550,000 SNP markers, we genotyped 46 individuals in a three-generation Old Order Amish pedigree with 19 affected (16 BPD and three major depression) and 27 unaffected subjects. Using the PennCNV algorithm, we identified 50 CNV regions that ranged in size from 12 to 885 kb and encompassed at least 10 single nucleotide polymorphisms (SNPs). Of 19 well characterized CNV regions that were available for combined genotype-expression analysis 11 (58%) were associated with expression changes of genes within, partially within or near these CNV regions in fibroblasts or lymphoblastoid cell lines at a nominal P value <0.05. To further investigate the mode of inheritance of CNVs in the large pedigree, we analyzed a set of four CNVs, located at 6q27, 9q21.11, 12p13.31 and 15q11, all of which were enriched in subjects with affective disorders. We additionally show that these variants affect the expression of neuronal genes within or near the rearrangement. Our analysis suggests that family based studies of the combined effect of common and rare CNVs at many loci may represent a useful approach in the genetic analysis of disease susceptibility of mental disorders.  相似文献   

8.
Copy number variation (CNV), an essential form of genetic variation, has been increasingly recognized as one promising genetic marker in the analysis of animal genomes. Here, we used the Equine 70K single nucleotide polymorphism genotyping array for the genome‐wide detection of CNVs in 96 horses from three diverse Chinese breeds: Debao pony (DB), Mongolian horse (MG) and Yili horse (YL). A total of 287 CNVs were determined and merged into 122 CNV regions (CNVRs) ranging from 199 bp to 2344 kb in size and distributed in a heterogeneous manner on chromosomes. These CNVRs were integrated with seven existing reports to generate a composite genome‐wide dataset of 1558 equine CNVRs, revealing 69 (56.6%) novel CNVRs. The majority (69.7%) of the 122 CNVRs overlapped with 438 genes, whereas 30.3% were located in intergenic regions. Most of these genes were associated with common CNVRs, which were shared by divergent horse breeds. As many as 60, 42 and 91 genes overlapping with the breed‐specific ss were identified in DB, MG and YL respectively. Among these genes, FGF11, SPEM1, PPARG, CIDEB, HIVEP1 and GALR may have potential relevance to breed‐specific traits. These findings provide valuable information for understanding the equine genome and facilitating association studies of economically important traits with equine CNVRs in the future.  相似文献   

9.
Copy number variants (CNVs) are genomic rearrangements resulting from gains or losses of DNA segments. Typically, the term refers to rearrangements of sequences larger than 1 kb. This type of polymorphism has recently been shown to be a key contributor to intra-species genetic variation, along with single-nucleotide polymorphisms and short insertion-deletion polymorphisms. Over the last decade, a growing number of studies have highlighted the importance of copy number variation (CNV) as a factor affecting human phenotype and individual CNVs have been linked to risks for severe diseases. In plants, the exploration of the extent and role of CNV is still just beginning. Initial genomic analyses indicate that CNVs are prevalent in plants and have greatly affected plant genome evolution. Many CNV events have been observed in outcrossing and autogamous species. CNVs are usually found on all chromosomes, with CNV hotspots interspersed with regions of very low genetic variation. Although CNV is mainly associated with intergenic regions, many CNVs encompass protein-coding genes. The collected data suggest that CNV mainly affects the members of large families of functionally redundant genes. Thus, the effects of individual CNV events on phenotype are usually modest. Nevertheless, there are many cases in which CNVs for specific genes have been linked to important traits such as flowering time, plant height and resistance to biotic and abiotic stress. Recent reports suggest that CNVs may form rapidly in response to stress.  相似文献   

10.
The genome-wide presence of copy number variations (CNVs), which was shown to affect the expression and function of genes, has been recently suggested to confer risk for various human disorders, including Amyotrophic Lateral Sclerosis (ALS). We have performed a genome-wide CNV analysis using PennCNV tool and 733K GWAS data of 117 Turkish ALS patients and 109 matched healthy controls. Case-control association analyses have implicated the presence of both common (>5%) and rare (<5%) CNVs in the Turkish population. In the framework of this study, we identified several common and rare loci that may have an impact on ALS pathogenesis. None of the CNVs associated has been implicated in ALS before, but some have been reported in different types of cancers and autism. The most significant associations were shown for 41 kb and 15 kb intergenic heterozygous deletions (Chr11: 50,545,009–50,586,426 and Chr19: 20,860,930–20,875,787) both contributing to increased risk for ALS. CNVs in coding regions of the MAP4K3, HLA-B, EPHA3 and DPYD genes were detected however, after validation by Log R Ratio (LRR) values and TaqMan CNV genotyping, only EPHA3 deletion remained as a potential protective factor for ALS (p = 0.0065024). Based on the knowledge that EPHA4 has been previously shown to rescue SOD1 transgenic mice from ALS phenotype and prolongs survival, EPHA3 may be a promising candidate for therepuetic interventions.  相似文献   

11.
Chromosome microarray analysis (CMA) has proven to be a powerful tool in postnatal patients with intellectual disabilities. However, the diagnostic capability of CMA in patients with congenital oral clefts remain mysterious. Here, we present our clinical experience in implementing whole-genome high-resolution SNP arrays to investigate 33 patients with syndromic and nonsyndromic oral clefts in whom standard karyotyping analyses showed normal karyotypes. We aim to identify the genomic aetiology and candidate genes in patients with congenital oral clefts. CMA revealed copy number variants (CNVs) in every patient, which ranged from 2 to 9 per sample. The size of detected CNVs varied from 100 to 3.2 Mb. In 33 patients, we identified six clinically significant CNVs. The incidence of clinically significant CNVs was 18.2% (6/33). Three of these six CNVs were detected in patients with nonsyndromic clefts, including one who presented with isolated cleft lip with cleft palate (CLP) and two with cleft palate only (CPO). The remaining three CNVs were detected in patients with syndromic clefts. However, no CNV was detected in patients with cleft lip only (CLO). The six clinically significant CNVs were as follows: 8p23.1 microduplication (198 kb); 10q22.2-q22.3 microdeletion (1766 kb); 18q12.3 microduplication (638 kb); 20p12.1 microdeletion (184 kb); 6q26 microdeletion (389 kb); and 22q11.21-q11.23 microdeletion (3163 kb). In addition, two novel candidate genes for oral clefts, KAT6B and MACROD2, were putatively identified. We also found a CNV of unknown clinical significance with a detection rate of 3.0% (1/33). Our results further support the notion that CNVs significantly contributed to the genetic aetiology of oral clefts and emphasize the efficacy of whole-genome high-resolution SNP arrays to detect novel candidate genes in patients with syndromic and nonsyndromic clefts.  相似文献   

12.
We present GStream, a method that combines genome-wide SNP and CNV genotyping in the Illumina microarray platform with unprecedented accuracy. This new method outperforms previous well-established SNP genotyping software. More importantly, the CNV calling algorithm of GStream dramatically improves the results obtained by previous state-of-the-art methods and yields an accuracy that is close to that obtained by purely CNV-oriented technologies like Comparative Genomic Hybridization (CGH). We demonstrate the superior performance of GStream using microarray data generated from HapMap samples. Using the reference CNV calls generated by the 1000 Genomes Project (1KGP) and well-known studies on whole genome CNV characterization based either on CGH or genotyping microarray technologies, we show that GStream can increase the number of reliably detected variants up to 25% compared to previously developed methods. Furthermore, the increased genome coverage provided by GStream allows the discovery of CNVs in close linkage disequilibrium with SNPs, previously associated with disease risk in published Genome-Wide Association Studies (GWAS). These results could provide important insights into the biological mechanism underlying the detected disease risk association. With GStream, large-scale GWAS will not only benefit from the combined genotyping of SNPs and CNVs at an unprecedented accuracy, but will also take advantage of the computational efficiency of the method.  相似文献   

13.
Copy number variation (CNV) is likely to be an important component of heritable variation in livestock. To characterise CNVs in cattle, we performed a genome wide survey to determine the number, location and gene content of these genomic features. A tiling oligonucleotide array with ~385,000 probes was used for comparative genomic hybridisation of both taurine and zebu cattle. Using a conservative set of calling criteria, a total of 51 CNV were detected that collectively spanned approximately half of one percent of the bovine genome. The size of the average CNV within each animal ranged from 213 kb up to 335 kb. Half of the CNV were detected in a single animal only, whilst the remainder was independently identified in multiple individuals. Analysis was performed to determine the gene content for each CNV region. This revealed that the majority of CNV (82%) spanned at least one gene, with a number of CNV containing genes which are known to control aspects of phenotypic variation in cattle. Whilst additional studies are required to determine the impact of individual CNV, this study confirmed them as an important class of genomic variation in cattle.  相似文献   

14.

Background

Unlike Caucasian populations, genetic factors contributing to the risk of type 2 diabetes mellitus (T2DM) are not well studied in Asian populations. In light of this, and the fact that copy number variation (CNV) is emerging as a new way to understand human genomic variation, the objective of this study was to identify type 2 diabetes–associated CNV in a Korean cohort.

Methodology/Principal Findings

Using the Illumina HumanHap300 BeadChip (317,503 markers), genome-wide genotyping was performed to obtain signal and allelic intensities from 275 patients with type 2 diabetes mellitus (T2DM) and 496 nondiabetic subjects (Total n = 771). To increase the sensitivity of CNV identification, we incorporated multiple factors using PennCNV, a program that is based on the hidden Markov model (HMM). To assess the genetic effect of CNV on T2DM, a multivariate logistic regression model controlling for age and gender was used. We identified a total of 7,478 CNVs (average of 9.7 CNVs per individual) and 2,554 CNV regions (CNVRs; 164 common CNVRs for frequency>1%) in this study. Although we failed to demonstrate robust associations between CNVs and the risk of T2DM, our results revealed a putative association between several CNVRs including chr15:45994758–45999227 (P = 8.6E-04, Pcorr = 0.01) and the risk of T2DM. The identified CNVs in this study were validated using overlapping analysis with the Database of Genomic Variants (DGV; 71.7% overlap), and quantitative PCR (qPCR). The identified variations, which encompassed functional genes, were significantly enriched in the cellular part, in the membrane-bound organelle, in the development process, in cell communication, in signal transduction, and in biological regulation.

Conclusion/Significance

We expect that the methods and findings in this study will contribute in particular to genome studies of Asian populations.  相似文献   

15.
Copy number variation (CNV) is implicated in important traits in multiple crop plants, but can be challenging to genotype using conventional methods. The Rhg1 locus of soybean, which confers resistance to soybean cyst nematode (SCN), is a CNV of multiple 31.2‐kb genomic units each containing four genes. Reliable, high‐throughput methods to quantify Rhg1 and other CNVs for selective breeding were developed. The CNV genotyping assay described here uses a homeologous gene copy within the paleopolyploid soybean genome to provide the internal control for a single‐tube TaqMan copy number assay. Using this assay, CNV in breeding populations can be tracked with high precision. We also show that extensive CNV exists within Fayette, a released, inbred SCN‐resistant soybean cultivar with a high copy number at Rhg1 derived from a single donor parent. Copy number at Rhg1 is therefore unstable within a released variety over a relatively small number of generations. Using this assay to select for individuals with altered copy number, plants were obtained with both increased copy number and increased SCN resistance relative to control plants. Thus, CNV genotyping technologies can be used as a new type of marker‐assisted selection to select for desirable traits in breeding populations, and to control for undesirable variation within cultivars.  相似文献   

16.
ABSTRACT: BACKGROUND: Copy number variants (CNVs) account for substantial variation between genomes and are a major source of normal and pathogenic phenotypic differences. The dog is an ideal model to investigate mutational mechanisms that generate CNVs as its genome lacks a functional ortholog of the PRDM9 gene implicated in recombination and CNV formation in humans. Here we comprehensively assay CNVs using high-density array comparative genomic hybridization in 50 dogs from 17 dog breeds and 3 gray wolves. RESULTS: We use a stringent new method to identify a total of 430 high-confidence CNV loci, that range in size from 9 kb to 1.6 Mb and span 26.4 Mb, or 1.08%, of the assayed dog genome, overlapping 413 annotated genes. 98% of CNVs observed in each breed are also observed in multiple breeds. CNVs predicted to disrupt gene function are significantly less common than expected by chance. We identify a significant overrepresentation of peaks of GC content, previously shown to be enriched in dog recombination hotspots, in the vicinity of CNV breakpoints. CONCLUSIONS: A number of the CNVs identified by this study are candidates for generating breed-specific phenotypes. Purifying selection seems to be a major factor shaping structural variation in the dog genome, suggesting that many CNVs are deleterious. Localized peaks of GC content appear to be novel sites of CNV formation in the dog genome by non-allelic homologous recombination, potentially activated by the loss of PRDM9. These sequence features may have driven genome instability and chromosomal rearrangements throughout canid evolution.  相似文献   

17.
Adenocarcinoma of the pancreas is a significant cause of cancer mortality, and up to 10?% of cases appear to be familial. Heritable genomic copy number variants (CNVs) can modulate gene expression and predispose to disease. Here, we identify candidate predisposition genes for familial pancreatic cancer (FPC) by analyzing germline losses or gains present in one or more high-risk patients and absent in a large control group. A total of 120 FPC cases and 1,194 controls were genotyped on the Affymetrix 500K array, and 36 cases and 2,357 controls were genotyped on the Affymetrix 6.0 array. Detection of CNVs was performed by multiple computational algorithms and partially validated by quantitative PCR. We found no significant difference in the germline CNV profiles of cases and controls. A total of 93 non-redundant FPC-specific CNVs (53 losses and 40 gains) were identified in 50 cases, each CNV present in a single individual. FPC-specific CNVs overlapped the coding region of 88 RefSeq genes. Several of these genes have been reported to be differentially expressed and/or affected by copy number alterations in pancreatic adenocarcinoma. Further investigation in high-risk subjects may elucidate the role of one or more of these genes in genetic predisposition to pancreatic cancer.  相似文献   

18.
Copy number variants (CNVs) are thought to play an important role in the predisposition to autism spectrum disorder (ASD). However, their relatively low frequency and widespread genomic distribution complicates their accurate characterization and utilization for clinical genetics purposes. Here we present a comprehensive analysis of multi-study, genome-wide CNV data from AutDB (http://mindspec.org/autdb.html), a genetic database that accommodates detailed annotations of published scientific reports of CNVs identified in ASD individuals. Overall, we evaluated 4,926 CNVs in 2,373 ASD subjects from 48 scientific reports, encompassing ∼2.12×109 bp of genomic data. Remarkable variation was seen in CNV size, with duplications being significantly larger than deletions, (P  =  3×10−105; Wilcoxon rank sum test). Examination of the CNV burden across the genome revealed 11 loci with a significant excess of CNVs among ASD subjects (P<7×10−7). Altogether, these loci covered 15,610 kb of the genome and contained 166 genes. Remarkable variation was seen both in locus size (20 - 4950 kb), and gene content, with seven multigenic (≥3 genes) and four monogenic loci. CNV data from control populations was used to further refine the boundaries of these ASD susceptibility loci. Interestingly, our analysis indicates that 15q11.2-13.3, a genomic region prone to chromosomal rearrangements of various sizes, contains three distinct ASD susceptibility CNV loci that vary in their genomic boundaries, CNV types, inheritance patterns, and overlap with CNVs from control populations. In summary, our analysis of AutDB CNV data provides valuable insights into the genomic characteristics of ASD susceptibility CNV loci and could therefore be utilized in various clinical settings and facilitate future genetic research of this disorder.  相似文献   

19.
G. Yi  L. Qu  S. Chen  G. Xu  N. Yang 《Animal genetics》2015,46(2):148-157
Phenotypic diversity is a direct consequence resulting mainly from the impact of underlying genetic variation, and recent studies have shown that copy number variation (CNV) is emerging as an important contributor to both phenotypic variability and disease susceptibility. Herein, we performed a genome‐wide CNV scan in 96 chickens from 12 diversified breeds, benefiting from the high‐density Affymetrix 600 K SNP arrays. We identified a total of 231 autosomal CNV regions (CNVRs) encompassing 5.41 Mb of the chicken genome and corresponding to 0.59% of the autosomal sequence. The length of these CNVRs ranged from 2.6 to 586.2 kb with an average of 23.4 kb, including 130 gain, 93 loss and eight both gain and loss events. These CNVRs, especially deletions, had lower GC content and were located particularly in gene deserts. In particular, 102 CNVRs harbored 128 chicken genes, most of which were enriched in immune responses. We obtained 221 autosomal CNVRs after converting probe coordinates to Galgal3, and comparative analysis with previous studies illustrated that 153 of these CNVRs were regarded as novel events. Furthermore, qPCR assays were designed for 11 novel CNVRs, and eight (72.73%) were validated successfully. In this study, we demonstrated that the high‐density 600 K SNP array can capture CNVs with higher efficiency and accuracy and highlighted the necessity of integrating multiple technologies and algorithms. Our findings provide a pioneering exploration of chicken CNVs based on a high‐density SNP array, which contributes to a more comprehensive understanding of genetic variation in the chicken genome and is beneficial to unearthing potential CNVs underlying important traits of chickens.  相似文献   

20.
We describe a 3.5-year-old Iranian female child and her affected 10-month-old brother with a maternally inherited derivative chromosome 9 [der(9)]. The postnatally detected rearrangement was finely characterized by aCGH analysis, which revealed a 15.056 Mb deletion of 9p22.3-p24.3p22.3 encompassing 14 OMIM morbid genes such as DOCK8, KANK1, DMRT1 and SMARCA2, and a gain of 3.309 Mb on 18p11.31-p11.32 encompassing USP14, THOC1, COLEC12, SMCHD1 and LPIN2. We aligned the genes affected by detected CNVs to clinical and functional phenotypic features using PhenogramViz. In this regard, the patient's phenotype and CNVs data were entered into PhenogramViz. For the 9p deletion CNV, 53 affected genes were identified and 17 of them were matched to 24 HPO terms describing the patient's phenotypes. Also, for CNV of 18p duplication, 22 affected genes were identified and six of them were matched to 13 phenotypes. Moreover, we used DECIPHER for in-depth characterization of involved genes in detected CNVs and also comparison of patient phenotypes with 9p and 18p genomic imbalances. Based on our filtration strategy, in the 9p22.3-p24.3 region, approximately 80 pathogenic/likely pathogenic/uncertain overlapping CNVs were in DECIPHER. The size of these CNVs ranged from 12.01 kb to 18.45 Mb and 52 CNVs were smaller than 1 Mb in size affecting 10 OMIM morbid genes. The 18p11.31-p11.32 region overlapped 19 CNVs in the DECIPHER database with the size ranging from 23.42 kb to 1.82 Mb. These CNVs affect eight haploinsufficient genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号