首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors report 5 cases of congenital hydrocephalus due to isolated stenosis of the aqueduct of Sylvius. In the first three cases (2 brothers and 1 sister) ventriculograms showed apparent obstruction of the aqueduct. A valve shunting was necessary at 1 month of age in cases 1 and 2, at 3 years of age in case 3. In cases 4 and 5 (1 brother and 1 sister) ultrasonic prenatal diagnosis showed ventriculomegaly and pregnancies were interrupted respectively at 31 and 28 weeks of gestational age. The pedigree of the families suggests that the inheritance of this abnormality is autosomal recessive. Such an inheritance is very unusual and confirms the difficulty of genetic counseling facing the first occurrence of hydrocephalus with stenosis of the aqueduct of Sylvius in a family. The prenatal diagnosis is based on fetal ultrasonic examination and may be obtained late in the pregnancy leading to therapeutic and ethical tricky decisions.  相似文献   

2.
The present investigation was designed to clarify the role of the subcommissural organ (SCO) in the pathogenesis of hydrocephalus occurring in the HTx rat. The brains of non-affected and hydrocephalic HTx rats from embryonic day 15 (E15) to postnatal day 10 (PN10) were processed for electron microscopy, lectin binding and immunocytochemistry by using a series of antibodies. Cerebrospinal fluid (CSF) samples of non-affected and hydrocephalic HTx rats were collected at PN1, PN7 and PN30 and analysed by one- and two-dimensional electrophoresis, immunoblotting and nanoLC-ESI-MS/MS. A distinct malformation of the SCO is present as early as E15. Since stenosis of the Sylvius aqueduct (SA) occurs at E18 and dilation of the lateral ventricles starts at E19, the malformation of the SCO clearly precedes the onset of hydrocephalus. In the affected rats, the cephalic and caudal thirds of the SCO showed high secretory activity with all methods used, whereas the middle third showed no signs of secretion. At E18, the middle non-secretory third of the SCO progressively fused with the ventral wall of SA, resulting in marked aqueduct stenosis and severe hydrocephalus. The abnormal development of the SCO resulted in the permanent absence of Reissner’s fibre (RF) and led to changes in the protein composition of the CSF. Since the SCO is the source of a large mass of sialilated glycoproteins that form the RF and of those that remain CSF-soluble, we hypothesize that the absence of this large mass of negatively charged molecules from the SA domain results in SA stenosis and impairs the bulk flow of CSF through the aqueduct.  相似文献   

3.
The H-Tx rat has fetal-onset hydrocephalus associated with closure of the cerebral aqueduct and a reduction in the secretory cells of the subcommissural organ (SCO), a circumventricular organ situated in the dorsal wall of the cerebral aqueduct. The objective of this study was to determine the role of the SCO in hydrocephalus pathogenesis. Serial brain sections through aqueduct regions containing the SCO from H-Tx rats, together with non-hydrocephalic Fischer F344 rats, were studied at E16, before hydrocephalus onset, at E17, the beginning of onset, and at P0 when the hydrocephalus was overt. Tissues were immunostained by AFRU, an antibody against the SCO glycoprotein, and for the intermediate filament nestin. The area of SCO cells with AFRU immunostaining and the severity of lateral ventricle dilatation were quantified by image analysis. At E16 all fetuses had distinct SCO ependymal cells, open aqueducts and normal lateral ventricles. The H-Tx fetuses fell into two groups with large areas and small areas of AFRU immunoreactivity, all with a full complement of SCO cells. By E17, fetuses with small areas of immunoreactivity had reduced numbers of tall SCO secretory cells, and most had aqueducts closed posteriorly and dilated ventricles. Three additional fetuses with small areas of immunoreactivity had narrow but patent aqueducts and normal ventricles, and another had an open aqueduct and dilated ventricles. At P0, pups previously identified as hydrocephalic had small areas of AFRU immunoreactivity, an aqueduct that was closed anteriorly but open posteriorly, ventricular dilatation, and an absence of SCO secretory cells. The aqueduct even when closed was lined by typical ependymal cells throughout. Decreased nestin immunostaining accompanied the SCO changes. It is concluded that reduced SCO glycoprotein immunoreactivity precedes both aqueduct closure and expansion of the lateral ventricles in the H-Tx rat.Funding was provided by the National Institutes of Health (NS40359). K.C.S. was supported by the University of Florida Scholars Program and Sigma Xi Grants-in-Aid  相似文献   

4.
Assignment of X-linked hydrocephalus to Xq28 by linkage analysis   总被引:8,自引:0,他引:8  
X-linked recessive hydrocephalus (HSAS) occurs at a frequency of approximately 1 per 30,000 male births and consists of hydrocephalus, stenosis of the aqueduct of Sylvius, mental retardation, spastic paraparesis, and clasped thumbs. Prenatal diagnosis of affected males by ultrasonographic detection of hydrocephalus is unreliable because hydrocephalus may be absent antenatally. Furthermore, carrier detection in females is not possible because they are asymptomatic. Using four families segregating HSAS, we performed linkage analysis with a panel of X-linked probes that detect restriction fragment length polymorphisms. We report here that HSAS, in all tested families, is closely linked to marker loci mapping in Xq28 (DXS52, lod = 6.52 at theta of 0.03; F8, lod = 4.32 at theta of 0.00; DXS15, lod = 3.40 at theta of 0.00). These data assign HSAS to the gene-dense chromosomal band Xq28 and allow for both prenatal diagnosis and carrier detection by linkage analysis.  相似文献   

5.
The cerebrospinal fluid flow in the third ventricle of the brain and the aqueduct of Sylvius was studied using computational fluid dynamics (CFD) based on subject-specific boundary conditions derived from magnetic resonance imaging (MRI) scans. The flow domain geometry was reconstructed from anatomical MRI scans by manual image segmentation. The movement of the domain boundary was derived from MRI brain motion scans. Velocimetric MRI scans were used to reconstruct the velocity field at the inferior end of the aqueduct of Sylvius based on the theory of pulsatile flow in pipes. A constant pressure boundary condition was assigned at the foramina of Monro. Three main flow features were observed: a fluid jet emerging from the aqueduct of Sylvius, a moderately mobile recirculation zone above the jet and a mobile recirculation below the jet. The flow in the entire domain was laminar with a maximum Reynolds number of 340 in the aqueduct. The findings demonstrate that by combining MRI scans and CFD simulations, subject-specific detailed quantitative information of the flow field in the third ventricle and the aqueduct of Sylvius can be obtained.  相似文献   

6.
Hydrocephalus is a severe disorder of the central nervous system characterized by absorption blockage of the cerebral spinal fluid (CSF). The archaeological record of the condition ranges in time from 10,000 B.C. to 1670 A.D. and consists of 30 possible cases worldwide. A review of this material reveals that diagnostic criteria which fully delineate the condition have not been established. Previously, no attempt has been made to differentiate the two major categories of hydrocephalus and their subgroupings, or to identify other conditions which might result in similar morphologies. A partial child's skeleton from the Middle Period (ca. 2500 B.C. to 500 A.D.) of Central California Prehistory is described in light of an extensive clinical literature. Examination of this individual reveals a unique craniofacial configuration and malformed postcrania. Bony criteria for a differential diagnosis of hydrocephalus are established and applied to this individual. Based on these criteria, the individual is diagnosed as having a chronic form of noncommunicating hydrocephalus. Blockage of the CSF pathway most likely occurred in the aqueduct of Sylvius with a partial occlusion of the foramen of Monro or a frontal cyst. In addition, femoral development is suggestive of partial paralysis.  相似文献   

7.
X-linked hydrocephalus is a well-defined disorder which accounts for > or = 7% of hydrocephalus in males. Pathologically, the condition is characterized by stenosis or obliteration of the aqueduct of Sylvius. Previous genetic linkage studies have suggested the likelihood of genetic homogeneity for this condition, with close linkage to the DXS52 and F8C markers in Xq28. We have investigated a family with typical X-linked aqueductal stenosis, in which no linkage to these markers was present. In this family, close linkage was established to the DXS548 and FRAXA loci in Xq27.3. Our findings demonstrate that X-linked aqueductal stenosis may result from mutations at two different loci on the X chromosome. Caution is indicated in using linkage for the prenatal diagnosis of X-linked hydrocephalus.  相似文献   

8.
Ventriculomegaly induced by the abnormal accumulation of cerebrospinal fluid (CSF) leads to hydrocephalus, which is accompanied by neuroinflammation and mitochondrial oxidative stress. The mitochondrial stress activates mitochondrial unfolded protein response (UPRmt), which is essential for mitochondrial protein homeostasis. However, the association of inflammatory response and UPRmt in the pathogenesis of hydrocephalus is still unclear. To assess their relevance in the pathogenesis of hydrocephalus, we established a kaolin-induced hydrocephalus model in 8-week-old male C57BL/6J mice and evaluated it over time. We found that kaolin-injected mice showed prominent ventricular dilation, motor behavior defects at the 3-day, followed by the activation of microglia and UPRmt in the motor cortex at the 5-day. In addition, PARP-1/NF-κB signaling and apoptotic cell death appeared at the 5-day. Taken together, our findings demonstrate that activation of microglia and UPRmt occurs after hydrocephalic ventricular expansion and behavioral abnormal-ities which could be lead to apoptotic neuronal cell death, providing a new perspective on the pathogenic mechanism of hydrocephalus.  相似文献   

9.
X-linked hydrocephalus (HSAS) is the most common form of inherited hydrocephalus characterized by hydrocephalus due to stenosis of the aqueduct of Sylvius, mental retardation, clasped thumbs, and spastic paraparesis. MASA syndrome (mental retardation, aphasia, shuffling gait and adducted thumbs) and SPG1 (X-linked complicated spastic paraplegia) are also X-linked disorders with overlapping clinical signs. Linkage analysis studies implicated the neural cell adhesion molecule L1 (LICAM) gene as a candidate gene for these X-linked disorders. This genetic study analyzes the LICAM gene in a Japanese family with members suffering from HSAS, and describes a deletion of five nucleotides in exon 8. Screening byBg1I digestion of polymerase chain reaction (PCR) products revealed that two siblings have the same mutation and a sister was identified as a heterozygous carrier. The 5 nucleotide deletion causes a shift of the reading frame and introduces a premature stop codon 72 nucleotides downstream, which might result in a truncated protein. The mutation identified herein is a novel L1 CAM mutation, which triggers hydrocephalus. We report a unique LlCAM mutation that causes HSAS: the first report of such a mutation in a Japanese family.  相似文献   

10.
It has been assumed that the pathogenesis of hydrocephalus includes a cerebrospinal fluid (CSF) absorption deficit. Because a significant portion of CSF absorption occurs into extracranial lymphatics located in the olfactory turbinates, the purpose of this study was to determine whether CSF transport was compromised at this location in a kaolin-induced communicating (extraventricular) hydrocephalus model in rats. Under 1-3% halothane anesthesia, kaolin (n = 10) or saline (n = 9) was introduced into the basal cisterns of Sprague-Dawley rats, and the development of hydrocephalus was assessed 1 wk later using MRI. After injection of human serum albumin ((125)I-HSA) into a lateral ventricle, the tracer enrichment in the olfactory turbinates 30 min postinjection provided an estimate of CSF transport through the cribriform plate into nasal lymphatics. Lateral ventricular volumes in the kaolin group (0.073 +/- 0.014 ml) were significantly greater than those in the saline-injected animals (0.016 +/- 0.001 ml; P = 0.0014). The CSF tracer enrichment in the olfactory turbinates (expressed as percent injected/g tissue) in the kaolin rats averaged 0.99 +/- 0.39 and was significantly lower than that measured in the saline controls (5.86 +/- 0.32; P < 0.00001). The largest degree of ventriculomegaly was associated with the lowest levels of lymphatic CSF uptake with lateral ventricular expansion occurring only when almost all of the lymphatic CSF transport capacity had been compromised. We conclude that lymphatic CSF absorption is impaired in a kaolin-communicating hydrocephalus model and that the degree of this impediment may contribute to the severity of the induced disease.  相似文献   

11.
12.
摘要 目的:分析磁共振三维稳态进动快速成像(3D-FIESTA)序列诊断脑积水的临床价值。方法:选择我院2015年3月~2016年3月收治的手术病理确诊的120例脑积水患者,术前均行磁共振常规序列及3D-FIESYA序列扫描,比较其检查结果。结果:磁共振常规序列提示有23例交通性脑积水,有73例梗阻性脑积水,其中有24例中脑导水管完全梗阻,有20例中脑导水管狭窄,有16例四脑室流出道梗阻,有13例桥前池囊肿阻塞双侧室间孔,有24例未检出。3D-FIESTA序列提示有34例交通性脑积水,有83例梗阻性脑积水,其中有34例中脑导水管完全梗阻,有19例中脑导水管狭窄,有18例四脑室流出道梗阻,有12例桥前池囊肿阻塞双侧室间孔,有3例未检出。3D-FIESTA序列对脑积水的检出率高于磁共振常规序列,差异有统计学意义(P<0.05)。结论:3D-FIESTA序列能够客观反映脑脊液循环通路的状态,利于脑积水类型的鉴别,为临床治疗提供更全面、确切的影像学参考。  相似文献   

13.
Large cerebral ventricles are a frequent finding in brains of dogs with brachycephalic skull conformation, in comparison with mesaticephalic dogs. It remains unclear whether oversized ventricles represent a normal variant or a pathological condition in brachycephalic dogs. There is a distinct relationship between white matter and grey matter in the cerebrum of all eutherian mammals. The aim of this study was to determine if this physiological proportion between white matter and grey matter of the forebrain still exists in brachycephalic dogs with oversized ventricles. The relative cerebral grey matter, white matter and cerebrospinal fluid volume in dogs were determined based on magnetic-resonance-imaging datasets using graphical software. In an analysis of covariance (ANCOVA) using body mass as the covariate, the adjusted means of the brain tissue volumes of two groups of dogs were compared. Group 1 included 37 mesaticephalic dogs of different sizes with no apparent changes in brain morphology, and subjectively normal ventricle size. Group 2 included 35 brachycephalic dogs in which subjectively enlarged cerebral ventricles were noted as an incidental finding in their magnetic-resonance-imaging examination. Whereas no significant different adjusted means of the grey matter could be determined, the group of brachycephalic dogs had significantly larger adjusted means of lateral cerebral ventricles and significantly less adjusted means of relative white matter volume. This indicates that brachycephalic dogs with subjective ventriculomegaly have less white matter, as expected based on their body weight and cerebral volume. Our study suggests that ventriculomegaly in brachycephalic dogs is not a normal variant of ventricular volume. Based on the changes in the relative proportion of WM and CSF volume, and the unchanged GM proportions in dogs with ventriculomegaly, we rather suggest that distension of the lateral ventricles might be the underlying cause of pressure related periventricular loss of white matter tissue, as occurs in internal hydrocephalus.  相似文献   

14.
The ontogenetical development of the subcommissural organ (SCO) was investigated in chick embryos collected daily from the 1st to the 21st day in incubation. Some duck embryos, and adult chickens and ducks were also studied. Immunocytochemistry using an anti-Reissner's fiber (RF) serum as the primary antibody was the principal method used. In the chick embryos the events occurring at different days of incubation were: day 3 morphologically undifferentiated cells in the dorsal diencephalon displayed immunoreactive material (IRM); days 4 to 6 immunoreactive cells proliferated, formed a multilayered structure and developed processes which traversed the growing posterior commissure and ended at the brain surface; day 7 blood vessels penetrated the SCO, scarce hypendymal cells appeared, the first signs of ventricular release of IRM were noticed, appearance of IRM bound to cells of the floor of the Sylvius aqueduct; day 7 to 10 the number of apical granules and amount of extracellular IRM increased progressively; day 11 RF was observed along the Sylvian aqueduct, day 12 RF was present in the lumbar spinal cord; day 13 IRM on the aqueductal floor disappeared; days 10 to 21 hypendymal cells proliferated, developed processes and migrated dorsally, ependymal processes elongated and their endings covered the external limiting membrane. In adult specimens the ependymal cells lacked basal processes and the external membrane was contacted by hypendymal cells. the duck SCO appears to follow a similar pattern of development.  相似文献   

15.
Nitric oxide (NO) has been implicated in the pathogenesis of migraine and treatment with its exogenous donor glyceryl trinitrate (GTN) represents widely accepted experimental "migraine model". In this study, glyceryl trinitrate was administered intraperitoneally to carps, serum nitrite and nitrate levels were determined, permeability of blood-brain barrier was investigated, and histological changes of brain tissue were analyzed. Serum nitrite and nitrate levels displayed characteristic biphasic pattern with moderate initial increase and maximal terminal increase, suggesting the GTN-induced endogenous NO synthesis. Increased permeability of the blood-brain barrier in GTN-treated animals was determined based on Evans blue capillary leakage into the brain tissue. Histological analysis revealed changes consistent with vasodilatation and oedema. Our study strongly supports the importance of the NO role in the pathogenesis of migraine attacks and increase in blood-brain barrier permeability during the attack. The study has also provided evidence that this mechanism of action is conserved to the lower vertebrate.  相似文献   

16.
Normal pressure hydrocephalus (NPH) is the most frequent form of chronic hydrocephalus in adults. NPH remains underdiagnosed although between 5% and 10% of all demented patients may suffer from this disorder. As dementia is an increasing demographic problem, treatable forms such as in NPH have become a central issue in neurology. Despite the traditional perception of hydrocephalus being a disorder of disturbed CSF dynamics, in NPH metabolic impairment seems at least as important. So far, the only valid animal model of NPH is chronic adult kaolin hydrocephalus. In this model, opening of alternative CSF outflow pathways leads to normal or near-normal intracranial pressure and CSF outflow resistance. Yet, various metabolic disturbances cause ongoing ventricular enlargement and characteristic symptoms including cognitive decline and gait ataxia. Delayed hippocampal neuronal death, accumulation of beta-amyloid and disturbed cholinergic neurotransmission may contribute to memory dysfunction. Compromised periventricular blood flow, decreased dopamine levels in the substantia nigra and damaged striatal GABAergic interneurons may reflect basal ganglia symptoms. At least in human hydrocephalus cerebrovascular co-morbidity of the white matter plays an important role as well. It seems that in hydrocephalus from a certain 'point of no return' metabolic impairment becomes decoupled from CSF dynamics and, at least partly, self-sustained. This is probably the reason why despite restored CSF circulation by shunting many patients with chronic hydrocephalus still suffer from severe neurological deficits. The present paper offers a comprehensive review of the experimental and clinical data suggesting metabolic disturbances in chronic hydrocephalus.  相似文献   

17.
Adherens junctions (AJs) play a role in mechanically connecting adjacent cells to maintain tissue structure, particularly in epithelial cells. The major cell–cell adhesion molecules at AJs are cadherins and nectins. Afadin binds to both nectins and α-catenin and recruits the cadherin-β-catenin complex to the nectin-based cell–cell adhesion site to form AJs. To explore the role of afadin in radial glial and ependymal cells in the brain, we generated mice carrying a nestin-Cre-mediated conditional knockout (cKO) of the afadin gene. Newborn afadin-cKO mice developed hydrocephalus and died neonatally. The afadin-cKO brain displayed enlarged lateral ventricles and cerebral aqueduct, resulting from stenosis of the caudal end of the cerebral aqueduct and obliteration of the ventral part of the third ventricle. Afadin deficiency further caused the loss of ependymal cells from the ventricular and aqueductal surfaces. During development, radial glial cells, which terminally differentiate into ependymal cells, scattered from the ventricular zone and were replaced by neurons that eventually covered the ventricular and aqueductal surfaces of the afadin-cKO midbrain. Moreover, the denuded ependymal cells were only occasionally observed in the third ventricle and the cerebral aqueduct of the afadin-cKO midbrain. Afadin was co-localized with nectin-1 and N-cadherin at AJs of radial glial and ependymal cells in the control midbrain, but these proteins were not concentrated at AJs in the afadin-cKO midbrain. Thus, the defects in the afadin-cKO midbrain most likely resulted from the destruction of AJs, because AJs in the midbrain were already established before afadin was genetically deleted. These results indicate that afadin is essential for the maintenance of AJs in radial glial and ependymal cells in the midbrain and is required for normal morphogenesis of the cerebral aqueduct and ventral third ventricle in the midbrain.  相似文献   

18.
The ventricular system carries and circulates cerebral spinal fluid (CSF) and facilitates clearance of solutes and toxins from the brain. The functional units of the ventricles are ciliated epithelial cells termed ependymal cells, which line the ventricles and through ciliary action are capable of generating laminar flow of CSF at the ventricle surface. This monolayer of ependymal cells also provides barrier and filtration functions that promote exchange between brain interstitial fluids (ISF) and circulating CSF. Biochemical changes in the brain are thereby reflected in the composition of the CSF and destruction of the ependyma can disrupt the delicate balance of CSF and ISF exchange. In humans there is a strong correlation between lateral ventricle expansion and aging. Age-associated ventriculomegaly can occur even in the absence of dementia or obstruction of CSF flow. The exact cause and progression of ventriculomegaly is often unknown; however, enlarged ventricles can show regional and, often, extensive loss of ependymal cell coverage with ventricle surface astrogliosis and associated periventricular edema replacing the functional ependymal cell monolayer. Using MRI scans together with postmortem human brain tissue, we describe how to prepare, image and compile 3D renderings of lateral ventricle volumes, calculate lateral ventricle volumes, and characterize periventricular tissue through immunohistochemical analysis of en face lateral ventricle wall tissue preparations. Corresponding analyses of mouse brain tissue are also presented supporting the use of mouse models as a means to evaluate changes to the lateral ventricles and periventricular tissue found in human aging and disease. Together, these protocols allow investigations into the cause and effect of ventriculomegaly and highlight techniques to study ventricular system health and its important barrier and filtration functions within the brain.  相似文献   

19.
G Q Xiao  Y Qu  K Hu  M Boutjdir 《FASEB journal》2001,15(9):1539-1545
Congenital heart block is considered a model of passively acquired autoimmune disease in which the mother generates anti-SSA/Ro and/or anti-SSB/La antibodies that cross the placenta and presumably injure the heart of developing fetus. CHB is accompanied by ECG abnormalities including AV block, sinus bradycardia, and ventricular dysfunction. Our previous data indicate that these abnormalities are caused by maternal autoantibody-mediated disturbance of L-type Ca channels. To investigate the consequence of chronic exposure of L-type Ca channels in newborn pups to maternal autoantibodies during pregnancy, we immunized female rabbits with human 52 kDa-SSA/Ro (Ro52) recombinant protein. ECG revealed that pups from the immunized group had varying degrees of conduction defects. In addition, I(CaL) density and protein were reduced in hearts of pups from the immunized group. Sera and purified IgG from immunized rabbits inhibited I(Ba) recorded from oocytes with expressed alpha(1C) and beta(2a) subunits of L-type Ca channel. Pups born to Ro52 immunized mothers exhibited down-regulation of L-type calcium channels in heart. The data provide new insight into the pathogenesis of congenital heart block.  相似文献   

20.
The junctional adhesion molecule (JAM)-C is a widely expressed adhesion molecule regulating cell adhesion, cell polarity and inflammation. JAM-C expression and function in the central nervous system (CNS) has been poorly characterized to date. Here we show that JAM-C−/− mice backcrossed onto the C57BL/6 genetic background developed a severe hydrocephalus. An in depth immunohistochemical study revealed specific immunostaining for JAM-C in vascular endothelial cells in the CNS parenchyma, the meninges and in the choroid plexus of healthy C57BL/6 mice. Additional JAM-C immunostaining was detected on ependymal cells lining the ventricles and on choroid plexus epithelial cells. Despite the presence of hemorrhages in the brains of JAM-C−/− mice, our study demonstrates that development of the hydrocephalus was not due to a vascular function of JAM-C as endothelial re-expression of JAM-C failed to rescue the hydrocephalus phenotype of JAM-C−/− C57BL/6 mice. Evaluation of cerebrospinal fluid (CSF) circulation within the ventricular system of JAM-C−/− mice excluded occlusion of the cerebral aqueduct as the cause of hydrocephalus development but showed the acquisition of a block or reduction of CSF drainage from the lateral to the 3rd ventricle in JAM-C−/− C57BL/6 mice. Taken together, our study suggests that JAM-C−/− C57BL/6 mice model the important role for JAM-C in brain development and CSF homeostasis as recently observed in humans with a loss-of-function mutation in JAM-C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号