共查询到20条相似文献,搜索用时 0 毫秒
1.
Svetlova M Solovjeva L Nishi K Nazarov I Siino J Tomilin N 《Biochemical and biophysical research communications》2007,358(2):650-654
Double-strand breaks in mammalian DNA lead to rapid phosphorylation of C-terminal serines in histone H2AX (gamma-H2AX) and formation of large nuclear gamma-H2AX foci. After DNA repair these foci disappear, but molecular mechanism of elimination of gamma-H2AX foci remains unclear. H2AX protein can be phosphorylated and dephosphorylated in vitro in the absence of chromatin. Here, we compared global exchange of GFP-H2AX with kinetics of formation and elimination of radiation-induced gamma-H2AX foci. Maximal number of gamma-H2AX foci is observed one hour after irradiation, when approximately 20% of GFP-H2AX is exchanged suggesting that formation of the foci mostly occurs by in situ H2AX phosphorylation. However, slow elimination of gamma-H2AX foci is weakly affected by an inhibitor of protein phosphatases calyculin A which is known as an agent suppressing dephosphorylation of gamma-H2AX. This indicates that elimination of gamma-H2AX foci may be independent of dephosphorylation of H2AX which can occur after its removal from the foci by exchange. 相似文献
2.
3.
Characteristics of gamma-H2AX foci at DNA double-strand breaks sites. 总被引:15,自引:0,他引:15
Duane R Pilch Olga A Sedelnikova Christophe Redon Arkady Celeste Andre Nussenzweig William M Bonner 《Biochimie et biologie cellulaire》2003,81(3):123-129
Phosphorylated H2AX (gamma-H2AX) is essential to the efficient recognition and (or) repair of DNA double strand breaks (DSBs), and many molecules, often thousands, of H2AX become rapidly phosphorylated at the site of each nascent DSB. An antibody to gamma-H2AX reveals that this highly amplified process generates nuclear foci. The phosphorylation site is a serine four residues from the C-terminus which has been evolutionarily conserved in organisms from giardia intestinalis to humans. Mice and yeast lacking the conserved serine residue demonstrate a variety of defects in DNA DSB processing. H2AX Delta/Delta mice are smaller, sensitive to ionizing radiation, defective in class switch recombination and spermatogenesis while cells from the mice demonstrate substantially increased numbers of genomic defects. gamma-H2AX foci formation is a sensitive biological dosimeter and presents new and exciting opportunities to understand important biological processes, human diseases, and individual variations in radiation sensitivity. These potentialities demonstrate the importance of understanding the parameters and functions of gamma-H2AX formation. 相似文献
4.
5.
Phosphorylation of histone H2AX on serine 139 (gamma-H2AX, γH2AX) occurs at sites flanking DNA double-strand breaks (DSBs) and can provide a measure of the number of DSBs within a cell. Here we describe a rapid and simple flow-cytometry-based method, optimized to measure gamma-H2AX in non-fixed peripheral blood cells. No DSB induced signal was observed in H2AX−/− cells indicating that our FACS method specifically recognized gamma-H2AX accumulation. The gamma-H2AX assay was capable of detecting DNA damage at levels 100-fold below the detection limit of the alkaline comet assay. The gamma-H2AX signal was quantitative with a linear increase of the gamma-H2AX signal over two orders of magnitude. We found that all nucleated blood cell types examined, including the short-lived neutrophils induce gamma-H2AX in response to DSBs. Interindividual difference in the gamma-H2AX signal in response to ionizing radiation and the DSB-inducing drug calicheamicin was almost 2-fold in blood cells from patients, indicating that the amount of gamma-H2AX produced in response to a given dose of radiation varies significantly in the human population. This simple method could be used to monitor response to radiation or DNA-damaging drugs. 相似文献
6.
DNA polymerase eta reduces the gamma-H2AX response to psoralen interstrand crosslinks in human cells 总被引:1,自引:0,他引:1
DNA interstrand crosslinks are processed by multiple mechanisms whose relationships to each other are unclear. Xeroderma pigmentosum-variant (XP-V) cells lacking DNA polymerase eta are sensitive to psoralen photoadducts created under conditions favoring crosslink formation, suggesting a role for translesion synthesis in crosslink repair. Because crosslinks can lead to double-strand breaks, we monitored phosphorylated H2AX (gamma-H2AX), which is typically generated near double-strand breaks but also in response to single-stranded DNA, following psoralen photoadduct formation in XP-V fibroblasts to assess whether polymerase eta is involved in processing crosslinks. In contrast to conditions favoring monoadducts, conditions favoring psoralen crosslinks induced gamma-H2AX levels in both XP-V and nucleotide excision repair-deficient XP-A cells relative to control repair-proficient cells; ectopic expression of polymerase eta in XP-V cells normalized the gamma-H2AX response. In response to psoralen crosslinking, gamma-H2AX as well as 53BP1 formed coincident foci that were more numerous and intense in XP-V and XP-A cells than in controls. Psoralen photoadducts induced gamma-H2AX throughout the cell cycle in XP-V cells. These results indicate that polymerase eta is important in responding to psoralen crosslinks, and are consistent with a model in which nucleotide excision repair and polymerase eta are involved in processing crosslinks and avoiding gamma-H2AX associated with double-strand breaks and single-stranded DNA in human cells. 相似文献
7.
Kobayashi J Tauchi H Sakamoto S Nakamura A Morishima K Matsuura S Kobayashi T Tamai K Tanimoto K Komatsu K 《Current biology : CB》2002,12(21):1846-1851
DNA double-strand breaks represent the most potentially serious damage to a genome; hence, many repair proteins are recruited to nuclear damage sites by as yet poorly characterized sensor mechanisms. Here, we show that NBS1, the gene product defective in Nijmegen breakage syndrome (NBS), physically interacts with histone, rather than damaged DNA, by direct binding to gamma-H2AX. We also demonstrate that NBS1 binding can occur in the absence of interaction with hMRE11 or BRCA1. Furthermore, this NBS1 physical interaction was reduced when anti-gamma-H2AX antibody was introduced into normal cells and was also delayed in AT cells, which lack the kinase activity for phosphorylation of H2AX. NBS1 has no DNA binding region but carries a combination of the fork-head associated (FHA) and the BRCA1 C-terminal domains (BRCT). We show that the FHA/BRCT domain of NBS1 is essential for this physical interaction, since NBS1 lacking this domain failed to bind to gamma-H2AX in cells, and a recombinant FHA/BRCT domain alone can bind to recombinant gamma-H2AX. Consequently, the FHA/BRCT domain is likely to have a crucial role for both binding to histone and for relocalization of hMRE11/hRAD50 nuclease complex to the vicinity of DNA damage. 相似文献
8.
We developed a biochemical kinetics approach to describe the repair of double-strand breaks (DSBs) produced by low-LET radiation by modeling molecular events associated with non-homologous end joining (NHEJ). A system of coupled nonlinear ordinary differential equations describes the induction of DSBs and activation pathways for major NHEJ components including Ku70/80, DNA-PKcs, and the ligase IV-XRCC4 heterodimer. The autophosphorylation of DNA-PKcs and subsequent induction of gamma-H2AX foci observed after ionizing radiation exposure were modeled. A two-step model of regulation of repair by DNA-PKcs was developed with an initial step allowing access of other NHEJ components to breaks and a second step limiting access to ligase IV-XRCC4. Our model assumes that the transition from the first to the second step depends on DSB complexity, with a much slower rate for complex DSBs. The model faithfully reproduced several experimental data sets, including DSB rejoining as measured by pulsed-field gel electrophoresis (PFGE) at 10 min postirradiation or longer and quantification of the induction of gamma-H2AX foci. A process that is independent of DNA-PKcs is required for the model to reproduce experimental data for rejoining before 10 min postirradiation. Predictions are made for the behaviors of NHEJ components at low doses and dose rates, and a steady state is found at dose rates of 0.1 Gy/h or lower. 相似文献
9.
Phosphorylation of histone protein H2AX on serine 139 (gamma-H2AX) occurs at sites flanking DNA double-stranded breaks (DSBs) and can provide a measure of the number of DSBs within a cell. We describe a flow cytometry-based method optimized to measure gamma-H2AX in nonfixed mononuclear blood cells as well as in cultured cells, which is more sensitive and involves less steps compared with protocols involving fixed cells. This method can be used to monitor induction of gamma-H2AX in mononuclear cells from cancer patients undergoing radiotherapy and for detection of gamma-H2AX throughout the cell cycle in cultured cells. The method is based on the fact that H2AX like other histone proteins are retained in the nucleus when cells are lysed at physiological salt concentrations. Cells are therefore added without fixation to a solution containing detergent to lyse the cells along with a fluorescein isothiocyanate-labeled monoclonal gamma-H2AX antibody, DNA staining dye and blocking agents. The stained nuclei can be analyzed by flow cytometry to monitor the level of gamma-H2AX to determine the level of DSBs and DNA content and to determine the cell cycle stage. The omission of fixation simplifies staining and enhances the sensitivity. This protocol can be completed within 4-6 h. 相似文献
10.
Koike M Sugasawa J Yasuda M Koike A 《Biochemical and biophysical research communications》2008,376(1):52-55
Histone H2AX rapidly undergoes phosphorylation at Ser139 (γ-H2AX) in response to DNA double-strand breaks. Although ATM kinase and DNA-PK phosphorylate Ser139 of H2AX in culture cells, the regulatory mechanism of γ-H2AX level remains unclear in vivo. Here, we detected the phosphorylation of H2AX and the elimination of γ-H2AX in the mouse skin after X-irradiation. Furthermore, following X-irradiation, the level of γ-H2AX also increased in mice lacking either ATM or DNA-PK. Although the elimination after X-irradiation was detected in the skin of these mutant mice, the elimination in DNA-PK-deficient mice was slower than that in C3H and ATM knockout mice, suggesting that a fraction of γ-H2AX in the skin is eliminated in a DNA-PK-dependent manner. Although the DNA-PK-dependent elimination of γ-H2AX was also detected in the liver, kidney, and spleen, the DNA-PK-dependent phosphorylation of H2AX was detected in the spleen only. These results suggest that the regulatory mechanism of γ-H2AX level is tissue-specific. 相似文献
11.
H2AX is a histone variant which is present and ubiquitously distributed throughout the genome. An immunocytochemical assay using antibodies capable of recognizing histone H2AX phosphorylated at serine 139 (gammaH2AX) is very sensitive and is a specific indicator for the existence of a DNA double strand break. Although heat stress has been reported to induce the formation of gammaH2AX foci, no gammaH2AX foci formation was observed in several mammalian cell lines after heat shock. Since this was in contrast to earlier reports, the work described here was intended to verify that heat-induced gammaH2AX foci do form in mammalian cell lines other than the cell lines used in earlier reports concerning gammaH2AX foci formation. The cell lines used in this work includes cell lines with differing p53-gene status (H1299, H1299/neo, H1299/mp53 and H1299/wtp53 cells), various cancer cell lines (HeLa, HepG2, U2-OS cells), normal human cells (HEK-293 and AG1522), and cell lines established from other species (MEF normal mouse cells and CHL normal Chinese hamster cells). Exponentially growing cells were exposed to heat shock (42 degrees C for 6 h or 45.5 degrees C for 20 min) or to X-rays (3Gy). The presence of gammaH2AX was examined with immunocytochemistry and flow cytometry. Induction of gammaH2AX foci formation was observed in all of the mammalian cell lines used here after heat-treatment as well as after X-irradiation. However, the intensity of gammaH2AX was different in the different cell lines used. These results confirm that heat can induce gammaH2AX foci formation in many mammalian cell lines. 相似文献
12.
Human replication protein A (RPA p34), a crucial component of diverse DNA excision repair pathways, is implicated in DNA double-strand break (DSB) repair. To evaluate its role in DSB repair, the intranuclear dynamics of RPA was investigated after DNA damage and replication blockage in human cells. Using two different agents [ionizing radiation (IR) and hydroxyurea (HU)] to generate DSBs, we found that RPA relocated into distinct nuclear foci and colocalized with a well-known DSB binding factor, gamma-H2AX, at the sites of DNA damage in a time-dependent manner. Colocalization of RPA and gamma-H2AX foci peaked at 2 h after IR treatment and subsequently declined with increasing postrecovery times. The time course of RPA and gamma-H2AX foci association correlated well with the DSB repair activity detected by a neutral comet assay. A phosphatidylinositol-3 (PI-3) kinase inhibitor, wortmannin, completely abolished both RPA and gamma-H2AX foci formation triggered by IR. Additionally, radiosensitive ataxia telangiectasia (AT) cells harboring mutations in ATM gene product were found to be deficient in RPA and gamma-H2AX colocalization after IR. Transfection of AT cells with ATM cDNA fully restored the association of RPA foci with gamma-H2AX illustrating the requirement of ATM gene product for this process. The exact coincidence of RPA and gamma-H2AX in response to HU specifically in S-phase cells supports their role in DNA replication checkpoint control. Depletion of RPA by small interfering RNA (SiRNA) substantially elevated the frequencies of IR-induced micronuclei (MN) and apoptosis in human cells suggestive of a role for RPA in DSB repair. We propose that RPA in association with gamma-H2AX contributes to both DNA damage checkpoint control and repair in response to strand breaks and stalled replication forks in human cells. 相似文献
13.
Scherthan H Hieber L Braselmann H Meineke V Zitzelsberger H 《Biochemical and biophysical research communications》2008,371(4):694-697
DNA double strand breaks (DSBs) pose a severe hazard to the genome as erroneous rejoining of DSBs can lead to mutation and cancer. Here, we have investigated the correlation between X irradiation-induced γ-H2AX foci, theoretically induced DSBs, and the minimal number of mis-rejoined DNA breaks (MNB) in irradiated lymphocytes obtained from two healthy humans by painting of the whole chromosome complement by spectral karyotyping. There were less γ-H2AX foci/dose than theoretically expected, while misrepair, as expressed by MNB/γ-H2AX focus, was similar at 0.5 and 1 Gy but 3.6-fold up at 3 Gy. Hence, our results suggest that X-ray-induced γ-H2AX foci in G0 lymphocyte nuclei contain more than one DSB and that the increasing number of DSBs per γ-H2AX repair factory lead to an increased rate of misrepair. 相似文献
14.
DNA double-strand breaks and gamma-H2AX signaling in the testis 总被引:6,自引:0,他引:6
Hamer G Roepers-Gajadien HL van Duyn-Goedhart A Gademan IS Kal HB van Buul PP de Rooij DG 《Biology of reproduction》2003,68(2):628-634
Within minutes of the induction of DNA double-strand breaks in somatic cells, histone H2AX becomes phosphorylated at serine 139 and forms gamma-H2AX foci at the sites of damage. These foci then play a role in recruiting DNA repair and damage-response factors and changing chromatin structure to accurately repair the damaged DNA. These gamma-H2AX foci appear in response to irradiation and genotoxic stress and during V(D)J recombination and meiotic recombination. Independent of irradiation, gamma-H2AX occurs in all intermediate and B spermatogonia and in preleptotene to zygotene spermatocytes. Type A spermatogonia and round spermatids do not exhibit gamma-H2AX foci but show homogeneous nuclear gamma-H2AX staining, whereas in pachytene spermatocytes gamma-H2AX is only present in the sex vesicle. In response to ionizing radiation, gamma-H2AX foci are generated in spermatogonia, spermatocytes, and round spermatids. In irradiated spermatogonia, gamma-H2AX interacts with p53, which induces spermatogonial apoptosis. These events are independent of the DNA-dependent protein kinase (DNA-PK). Irradiation-independent nuclear gamma-H2AX staining in leptotene spermatocytes demonstrates a function for gamma-H2AX during meiosis. gamma-H2AX staining in intermediate and B spermatogonia, preleptotene spermatocytes, and sex vesicles and round spermatids, however, indicates that the function of H2AX phosphorylation during spermatogenesis is not restricted to the formation of gamma-H2AX foci at DNA double-strand breaks. 相似文献
15.
A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci 总被引:1,自引:0,他引:1
Riballo E Kühne M Rief N Doherty A Smith GC Recio MJ Reis C Dahm K Fricke A Krempler A Parker AR Jackson SP Gennery A Jeggo PA Löbrich M 《Molecular cell》2004,16(5):715-724
The hereditary disorder ataxia telangiectasia (A-T) is associated with striking cellular radiosensitivity that cannot be attributed to the characterized cell cycle checkpoint defects. By epistasis analysis, we show that ataxia telangiectasia mutated protein (ATM) and Artemis, the protein defective in patients with RS-SCID, function in a common double-strand break (DSB) repair pathway that also requires H2AX, 53BP1, Nbs1, Mre11, and DNA-PK. We show that radiation-induced Artemis hyperphosphorylation is ATM dependent. The DSB repair process requires Artemis nuclease activity and rejoins approximately 10% of radiation-induced DSBs. Our findings are consistent with a model in which ATM is required for Artemis-dependent processing of double-stranded ends with damaged termini. We demonstrate that Artemis is a downstream component of the ATM signaling pathway required uniquely for the DSB repair function but dispensable for ATM-dependent cell cycle checkpoint arrest. The significant radiosensitivity of Artemis-deficient cells demonstrates the importance of this component of DSB repair to survival. 相似文献
16.
Zlobinskaya O Dollinger G Michalski D Hable V Greubel C Du G Multhoff G Röper B Molls M Schmid TE 《Radiation and environmental biophysics》2012,51(1):23-32
In particle tumor therapy including beam scanning at accelerators, the dose per voxel is delivered within about 100 ms. In
contrast, the new technology of laser plasma acceleration will produce ultimately shorter particle packages that deliver the
dose within a nanosecond. Here, possible differences for relative biological effectiveness in creating DNA double-strand breaks
in pulsed or continuous irradiation mode are studied. HeLa cells were irradiated with 1 or 5 Gy of 20-MeV protons at the Munich
tandem accelerator, either at continuous mode (100 ms), or applying a single pulse of 1-ns duration. Cells were fixed 1 h
after 1-Gy irradiation and 24 h after 5-Gy irradiation, respectively. A dose–effect curve based on five doses of X-rays was
taken as reference. The total number of phosphorylated histone H2AX (gamma-H2AX) foci per cell was determined using a custom-made
software macro for gamma-H2AX foci counting. For 1 h after 1-Gy 20-MeV proton exposures, values for the relative biological
effectiveness (RBE) of 0.97 ± 0.19 for pulsed and 1.13 ± 0.21 for continuous irradiations were obtained in the first experiment
1.13 ± 0.09 and 1.16 ± 0.09 in the second experiment. After 5 Gy and 24 h, RBE values of 0.99 ± 0.29 and 0.91 ± 0.23 were
calculated, respectively. Based on the gamma-H2AX foci numbers obtained, no significant differences in RBE between pulsed
and continuous proton irradiation in HeLa cells were detected. These results are well in line with our data on micronucleus
induction in HeLa cells. 相似文献
17.
Heterochromatin is refractory to gamma-H2AX modification in yeast and mammals 总被引:1,自引:0,他引:1
下载免费PDF全文

Double-strand break (DSB) damage in yeast and mammalian cells induces the rapid ATM (ataxia telangiectasia mutated)/ATR (ataxia telangiectasia and Rad3 related)-dependent phosphorylation of histone H2AX (gamma-H2AX). In budding yeast, a single endonuclease-induced DSB triggers gamma-H2AX modification of 50 kb on either side of the DSB. The extent of gamma-H2AX spreading does not depend on the chromosomal sequences. DNA resection after DSB formation causes the slow, progressive loss of gamma-H2AX from single-stranded DNA and, after several hours, the Mec1 (ATR)-dependent spreading of gamma-H2AX to more distant regions. Heterochromatic sequences are only weakly modified upon insertion of a 3-kb silent HMR locus into a gamma-H2AX-covered region. The presence of heterochromatin does not stop the phosphorylation of chromatin more distant from the DSB. In mouse embryo fibroblasts, gamma-H2AX distribution shows that gamma-H2AX foci increase in size as chromatin becomes more accessible. In yeast, we see a high level of constitutive gamma-H2AX in telomere regions in the absence of any exogenous DNA damage, suggesting that yeast chromosome ends are transiently detected as DSBs. 相似文献
18.
Background
There is a crucial shortage of methods capable of determining the extent of accidental exposures of human beings to ionizing radiation. However, knowledge of individual exposures is essential for early triage during radiological incidents to provide optimum possible life-sparing medical procedures to each person.Methods and Findings
We evaluated immunocytofluorescence-based quantitation of γ-H2AX foci as a biodosimeter of total-body radiation exposure (60Co γ-rays) in a rhesus macaque (Macaca mulatta) model. Peripheral blood lymphocytes and plucked hairs were collected from 4 cohorts of macaques receiving total body irradiation doses ranging from 1 Gy to 8.5 Gy. Each cohort consisted of 6 experimental and 2 control animals. Numbers of residual γ-H2AX foci were proportional to initial irradiation doses and statistically significant responses were obtained until 1 day after 1 Gy, 4 days after 3.5 and 6.5 Gy, and 14 days after 8.5 Gy in lymphocytes and until 1 day after 1 Gy, at least 2 days after 3.5 and 6.5 Gy, and 9 days after 8.5 Gy in plucked hairs.Conclusion
These findings indicate that quantitation of γ-H2AX foci may make a robust biodosimeter for analyzing total-body exposure to ionizing radiation in humans. This tool would help clinicians prescribe appropriate types of medical intervention for optimal individual outcome. These results also demonstrate that the use of a high throughput γ-H2AX biodosimeter would be useful for days post-exposure in applications like large-scale radiological events or radiation therapy. In addition, this study validates a possibility to use plucked hair in future clinical trials investigating genotoxic effects of drugs and radiation treatments. 相似文献19.
Gavrilov B Vezhenkova I Firsanov D Solovjeva L Svetlova M Mikhailov V Tomilin N 《Biochemical and biophysical research communications》2006,347(4):1048-1052
Phosphorylation of replacement histone H2AX occurs in megabase chromatin domains around double-strand DNA breaks (DSBs) and this modification (called gamma-H2AX) may serve as a useful marker of genome damage and repair in terminally differentiated cells. Here using immunohistochemistry we studied kinetics of gamma-H2AX formation and elimination in the X-irradiated mouse heart and renal epithelial tissues in situ. Unirradiated tissues have 3-5% gamma-H2AX-positive cells and in tissues fixed 1h after X-irradiation gamma-H2AX-positive nuclei are induced in a dose-dependent manner approaching 20-30% after 3 Gy of IR. Analysis of mouse tissues at different times after 3 Gy of IR showed that maximal induction of gamma-H2AX in heart is observed 20 min after IR and then is decreased slowly with about half remaining 23 h later. In renal epithelium maximum of the gamma-H2AX-positive cells is observed 40 min after IR and then decreases to control values in 23 h. This indicates that there are significant variations between non-proliferating mammalian tissues in the initial H2AX phosphorylation rate as well as in the rate of gamma-H2AX elimination after X-irradiation, which should be taken into account in the analysis of radiation responses. 相似文献
20.
The induction and disappearance of DNA double strand breaks (DSBs) after irradiation of G1 and mitotic cells were compared with the gamma-H2AX foci assay and a gel electrophoresis assay. This is to determine whether cell cycle related changes in chromatin structure might influence the gamma-H2AX assay which depends on extensive phosphorylation and dephosphorylation of the H2AX histone variant surrounding DSBs. The disappearance of gamma-H2AX foci after irradiation was much slower for mitotic than for G1 cells. On the other hand, no difference was seen for the gel electrophoresis assay. Our data may suggest the limited accessibility of dephosphorylation enzyme in irradiated metaphase cells or trapped gamma-H2AX in condensed chromatin. 相似文献