首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Slices of hippocampal area CA1 were employed to test the hypothesis that the release of glutamate and aspartate is regulated by the activation of excitatory amino acid autoreceptors. In the absence of added Mg2+, N-methyl-D-aspartate (NMDA)-receptor antagonists depressed the release of glutamate, aspartate, and gamma-aminobutyrate evoked by 50 mM K+. Conversely, the agonist NMDA selectively enhanced the release of aspartate. The latter action was observed, however, only when the K+ stimulus was reduced to 30 mM. Actions of the competitive antagonists 3-[(+/- )-2-carboxypiperazin-4-yl]-propyl-l-phosphonic acid (CPP) and D-2-amino-5-phosphonovalerate (D-AP5) differed, in that the addition of either 1.2 mM Mg2+ or 0.1 microM tetrodotoxin to the superfusion medium abolished the depressant effect of CPP without diminishing the effect of D-AP5. These results suggest that the activation of NMDA receptors by endogenous glutamate and aspartate enhances the subsequent release of these amino acids. The cellular mechanism may involve Ca2+ influx through presynaptic NMDA receptor channels or liberation of a diffusible neuromodulator linked to the activation of postsynaptic NMDA receptors. (RS)-alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, a selective quisqualate receptor agonist, and kainate, an agonist active at both kainate and quisqualate receptors, selectively depressed the K(+)-evoked release of aspartate. Conversely, 6-cyano-7-nitro-quinoxaline-2,3-dione, an antagonist active at both quisqualate and kainate receptors, selectively enhanced aspartate release. These results suggest that glutamate can negatively modulate the release of aspartate by activating autoreceptors of the quisqualate, and possibly also of the kainate, type. Thus, the activation of excitatory amino acid receptors has both presynaptic and postsynaptic effects.  相似文献   

2.
Abstract: Synaptosomes prepared from area CA1 of the rat hippocampus were used to determine (a) whether Schaffer collateral-commissural-ipsilateral associational terminals release both aspartate and glutamate in a Ca2+-dependent manner when reuptake of released glutamate is minimal and (b) whether autoreceptor mechanisms described in CA1 or hippocampal slices could reflect direct actions of glutamate receptor ligands on the synaptic terminal. When challenged for 1 min with either 25 m M K+ or 300 µ M 4-aminopyridine, CA1 synaptosomes released both glutamate and aspartate in a Ca2+-dependent manner. The glutamate/aspartate ratio was ∼5:1 in each case. K+-evoked glutamate release was unaffected by ligands active at NMDA or ( RS )-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. Unlike glutamate release, the release of aspartate was enhanced by NMDA, and this effect was blocked by d -2-amino-5-phosphonovalerate ( d -AP5). Kainate selectively depressed and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) selectively increased the K+-evoked release of aspartate. AMPA enhanced aspartate release, like the antagonist CNQX. When applied in the presence of diazoxide, which blocks the desensitization of AMPA receptors, AMPA and kainate both depressed aspartate release. These findings support the view that Schaffer collateral-commissural-ipsilateral associational terminals release aspartate as well as glutamate and that these two release processes are regulated by different autoreceptor mechanisms.  相似文献   

3.
Glutamate and/or aspartate is the probable transmitter released from synaptic terminals of the CA3-derived Schaffer collateral, commissural, and ipsilateral associational fibers in area CA1 of the rat hippocampal formation. Slices of the CA1 area were employed to test the effects of adenosine- and gamma-aminobutyrate (GABA)-related compounds on the release of glutamate and aspartate from this projection. Under the conditions of these experiments, the release of glutamate and aspartate evoked by 50 mM K+ was more than 90% Ca2+-dependent and originated predominantly from the CA3-derived pathways. Adenosine reduced the K+-evoked release of glutamate and aspartate by a maximum of about 60%, but did not affect the release of GABA. This action was reversed by 1 microM 8-phenyltheophylline. The order of potency for adenosine analogues was as follows: L-N6-phenylisopropyladenosine greater than N6-cyclohexyladenosine greater than D-N6-phenylisopropyladenosine approximately equal to 2-chloroadenosine greater than adenosine much greater than 5'-N-ethylcarboxamidoadenosine. 8-Phenyltheophylline (10 microM) by itself enhanced glutamate/aspartate release, whereas dipyridamole alone depressed release. These results support the view that adenosine inhibits transmission at Schaffer collateral-commissural-ipsilateral associational synapses mainly by reducing transmitter release and that these effects involve the activation of an A1 receptor. Neither adenosine, L-N6-phenylisopropyladenosine, nor 8-phenyltheophylline affected the release of glutamate or aspartate evoked by 10 microM veratridine. The differing effects of adenosine compounds on release evoked by K+ and veratridine suggest that A1 receptor activation either inhibits Ca2+ influx through the voltage-sensitive channels or interferes with a step subsequent to Ca2+ entry that is coupled to the voltage-sensitive Ca2+ channels in an obligatory fashion. Neither baclofen nor any other agent active at GABAB or GABAA receptors affected glutamate or aspartate release evoked by elevated K+ or veratridine. Therefore, either baclofen does not inhibit transmission at these synapses by depressing transmitter release or else it does so in a way that cannot be detected when a chemical depolarizing agent is employed.  相似文献   

4.
We have been interested in the possibility that arachidonic acid or one of its 12-lipoxygenase metabolites may function as a retrograde messenger in long-term potentiation (LTP) in the dentate gyrus of the hippocampus. One criterion required of a retrograde messenger is that it stimulates presynaptic changes. Here, two possible presynaptic actions of arachidonic acid and its 12-lipoxygenase metabolites, 12-hydroxyeicosatetraenoic acid (HETE) and 12-hydroperoxyeicosatetraenoic acid (HPETE), are examined. We report that arachidonic acid, HETE, and HPETE significantly increase both K(+)-stimulated release of [3H]glutamate and [3H]inositol labelling of inositol phosphates in synaptosomes, whereas other biologically important fatty acids (oleic, palmitic, and stearic) failed to induce a similar response. The findings of these experiments are consistent with the hypothesis that arachidonic acid, HETE, or HPETE may play the role of a retrograde messenger in LTP.  相似文献   

5.
The action of arachidonic acid on glutamate release in rat cerebrocortical synaptosomes was investigated. The Ca(2+)-dependent release of glutamate evoked by 4-aminopyridine (4-AP) was inhibited by arachidonic acid (0.5-10 microM), but the KCl-evoked release was not modified. The Ca(2+)-independent release of glutamate was insensitive to low concentrations of arachidonic acid, but higher concentrations of this free fatty acid (30 microM) induced a slow efflux of cytoplasmic glutamate. The decrease in the Ca(2+)-dependent release of glutamate by arachidonic acid was consistent with a reduction in both the depolarization and the subsequent rise in the cytoplasmic free Ca2+ concentration induced by 4-AP in the nerve terminal. The inhibitory action by arachidonic acid observed in glutamate release was reversed in the presence of the K(+)-channel blocker tetraethylammonium.  相似文献   

6.
It has been found previously that the ratio of aspartate to glutamate released and retained by brain slices reversibly changes with changing glucose concentrations in the medium. To find out whether increased neuronal activity also results in changes in the ratio of aspartate to glutamate, in this study electrical-field stimulation was applied for 10 min to hippocampal slices in the presence of 0.2-5 mM glucose. In 5 mM glucose, the ratio of aspartate to glutamate released did not change during stimulation, but the amount of aspartate retained at the end of stimulation was reduced. In contrast, in 1 mM or less glucose, the ratio of aspartate to glutamate released increased progressively and the rate of increase was inversely proportional to the glucose content of the medium. The evoked release of aspartate and glutamate both in low and high glucose was nearly suppressed in low (0.1 mM) Ca2+ or by tetrodotoxin. In low glucose, the ratio of aspartate to glutamate contained in the slices also increased as a result of stimulation. This increase was reduced only a little in low Ca2+, but was nearly eliminated by tetrodotoxin. Results suggest that increased neuronal activity causes a shift in the ratio of aspartate to glutamate released in the presence of glucose concentrations similar to those found in the brain in normoglycemic rats. This shift, due to an increased energy demand, probably originates from terminals which release aspartate and glutamate in different proportions.  相似文献   

7.
Abstract: The effect of pros -methylimidazoleacetic acid (p-MIAA) was measured on the release of glutamate and aspartate from cerebral cortex, hippocampus, and striatum of freely moving rats, and on the uptake of 14C by striatal slices incubated in the presence of l -[14C]-glutamate. Twenty-four hours after implantation of a dialysis fiber, striatum, hippocampus, or cerebral cortex spontaneously released both glutamate and aspartate in the micromolar range. p-MIAA (1 µ M to 1 m M ), added to the dialysis perfusate, elicited a concentration-dependent increase of glutamate release from striatum with a maximal increase of about threefold. This effect did not occur in hippocampus or cortex. In none of these regions did p-MIAA increase aspartate release significantly. The p-MIAA effect was not mimicked by its isomer tele -methylimidazoleacetic acid. p-MIAA did not influence the uptake of glutamate by striatal slices. The glutamate-releasing action of p-MIAA may affect striatal function and explain the positive correlation between levels of p-MIAA in CSF and the severity of Parkinson's disease.  相似文献   

8.
Abstract: The activation of muscarinic and NMDA receptors by carbachol and NMDA, respectively, stimulated the release of [3H]arachidonic acid ([3H]AA) from cultured striatal neurons. Striking synergistic effects were observed when both agonists were coapplied. This synergistic response was suppressed by atropine or (5R, 10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate and inhibited by magnesium. It was markedly reduced in the absence of external calcium and suppressed by mepacrine. NMDA strongly elevated the intracellular calcium concentration ([Ca2+]i), but carbachol was ineffective. Ionomycin, α-amino-3-hydroxy-5-methylisoxazole-4-propionate, or potassium depolarization, which increased [Ca2+]i but was ineffective on [3H]AA release, also potentiated the carbachol response. Sphingosine and Ro 31-8220 suppressed the responses evoked by carbachol, NMDA, or both agonists. However, no synergistic responses could be observed when phorbol 12-myristate 13-acetate was associated with either carbachol or NMDA. Together, these results suggest that both the massive influx of calcium induced by NMDA and the coupling of muscarinic receptors with a putative phospholipase A2 are required for the strong synergistic effects of carbachol and NMDA on [3H]AA release. Synergistic effects were also observed with acetylcholine and glutamate in the presence of magnesium, further revealing the physiological relevance of this process.  相似文献   

9.
Aspartate (Asp) and/or glutamate (Glu) have been proposed as putative excitatory transmitters released from synaptic terminals of the olivo-cerebellar climbing fiber afferents to the Purkinje cells. Investigations of the climbing fiber transmitter(s) separately for hemispheres and vermis were performed to examine whether the current controversy over the role of Asp as a neurotransmitter in the climbing fibers may be due to topographic differences. K(+)-induced Ca2(+)-dependent release of endogenous substances was investigated in slices of cerebellar hemisphere and vermis of control rats and those deprived of climbing fibers by 3-acetylpyridine (3-AP) treatment. A release of Asp and Glu, as well as a small but significant release of homocysteic acid (HCA) was confirmed in control rats. Climbing fiber deprivation by 3-AP treatment reduced the stimulated release of Asp by 48% in slices of cerebellar hemispheres, but not in vermis. Climbing fiber deprivation completely abolished the release of HCA in both hemispheres and vermis. The release of HCA, Asp, and Glu from slices of control and climbing fiber-deprived rats evoked by 50 mM K+ was greater than 90% Ca2(+)-dependent. These results support the hypothesis that Asp is a transmitter candidate of the climbing fibers projecting to the cerebellar hemispheres, but not to the vermis, and provide the first evidence that HCA can be linked to a specific pathway.  相似文献   

10.
The effect of long-term potentiation (LTP) on endogenous amino acid release from rat hippocampus slices was studied. LTP was induced in vivo by application of a tetanus (200 Hz, 200 ms) to the Schaffer collateral fibers in unanesthetized rats. Endogenous release of glutamate and gamma-aminobutyric acid (GABA) was investigated 60 min after tetanization in CA1 subslices of potentiated and control rats. No significant effects of LTP were observed in basal and K(+)-induced Ca(2+)-independent release components of these amino acids. In contrast, K(+)-induced Ca(2+)-dependent release of both glutamate and GABA increased approximately 100% in slices from potentiated rats. No differences were observed in total content of glutamate and GABA between the subslices from control and LTP animals. These results suggest a persistent increase in the recruitment of the presynaptic vesicular pool of glutamate and GABA during LTP.  相似文献   

11.
An excess release of excitatory amino acids (EAA) is an important factor for postischemic brain damage. In the present communication, we demonstrate that cultured hippocampal cells release EAA after hypoxic-hypoglycemic treatment. The amounts of EAA released from astrocytes were appreciably above those released from neurons. Furthermore, the amount of aspartate released from astrocytes was comparable to that of glutamate, although the endogenous content of aspartate was one-fifth that of glutamate. The endogenous content of aspartate in astrocytes increased even after hypoxic-hypoglycemic treatment. These results suggests that ischemic neuronal death is due, at least in part, to the excitotoxicity of aspartate and glutamate derived from surrounding astrocytes.  相似文献   

12.
To evaluate the effects of chronic liver failure on release of the excitatory transmitter glutamate, electrically stimulated Ca2(+)-dependent and Ca2(+)-independent release of glutamate in the absence or presence of NH4+ was studied in superfused slices of hippocampus from portacaval-shunted or sham-operated rats 4 weeks after surgery. Spontaneous and stimulation-evoked release of glutamate was higher in shunted rats in the presence of normal or low Ca2+ concentrations, and this release was depressed by 5 mM ammonium chloride. These findings suggest that portacaval shunting results in increased levels of extracellular glutamate in brain, probably due to a decreased reuptake of glutamate into perineuronal astrocytes, shown in previous studies to undergo neuropathological changes following portacaval shunting. Changes in the inactivation of transmitter glutamate could be responsible, at least in part, for the neurological dysfunction resulting from sustained hyperammonemia and portal-systemic shunting resulting from chronic liver failure.  相似文献   

13.
Abstract: l -Glutamate stimulates the liberation of arachidonic acid from mouse striatal neurons via the activation of N -methyl- d -aspartic acid (NMDA) receptors and by the joint stimulation of α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and metabotropic receptors. In this study, we investigated whether starving cultured mouse striatal neurons of glucose would modify glutamatergic receptor-mediated arachidonic acid release. Glucose deprivation for 30 min led to enhancement of the NMDA-evoked release of arachidonic acid, compared with that observed in the presence of glucose. This enhanced response depended on both the concentration of glucose and the length of time of glucose deprivation. The enhanced NMDA response appeared to result from both a release of glutamate and the subsequent additional release of arachidonic acid due to the activation of AMPA and metabotropic receptors. Indeed, the increased NMDA response was completely reversed when extracellular glutamate was enzymatically removed. Moreover, glucose deprivation potentiated the combined AMPA/metabotropic receptor-evoked release of arachidonic acid, even in the absence of extracellular glutamate. However, removing glucose did not improve the calcium rise induced by AMPA or NMDA. The ATP-evoked release of arachidonic acid from striatal astrocytes was not altered by glucose starvation. In summary, glucose deprivation affected two properties of striatal neurons: (a) it induced an NMDA-evoked release of glutamate from striatal neurons and (b) it selectively potentiated the AMPA/(1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylic acid-evoked release of [3H]arachidonic acid without altering the authentic NMDA-mediated response.  相似文献   

14.
The release of D-[3H]aspartate, [3H]noradrenaline, and of endogenous glutamate and aspartate from rat hippocampal slices was significantly increased when the slices were incubated with xanthine oxidase plus xanthine to produce superoxide and hydroxyl free radicals locally. Allopurinol, a specific xanthine oxidase inhibitor, the hydroxyl-radical scavenger D-mannitol, or the superoxide-radical scavenger system formed by superoxide dismutase plus catalase prevented this release. These results suggest that endogenous excitatory amino acids are released consequent to the formation of free radicals. The excess of glutamate and aspartate released by this mechanism could be one of the factors contributing to the death of neurons after anoxic or ischemic injuries.  相似文献   

15.
Using cerebellar, neuron-enriched primary cultures, we have studied the glutamate receptor subtypes coupled to neurotransmitter amino acid release. Acute exposure of the cultures to micromolar concentrations of kainate and quisqualate stimulated D-[3H]aspartate release, whereas N-methyl-D-aspartate, as well as dihydrokainic acid, were ineffective. The effect of kainic acid was concentration dependent in the concentration range of 20-100 microM. Quisqualic acid was effective at lower concentrations, with maximal releasing activity at about 50 microM. Kainate and dihydrokainate (20-100 microM) inhibited the initial rate of D-[3H]aspartate uptake into cultured granule cells, whereas quisqualate and N-methyl-DL-aspartate were ineffective. D-[3H]Aspartate uptake into confluent cerebellar astrocyte cultures was not affected by kainic acid. The stimulatory effect of kainic acid on D-[3H]aspartate release was Na+ independent, and partly Ca2+ dependent; the effect of quisqualate was Na+ and Ca2+ independent. Kynurenic acid (50-200 microM) and, to a lesser extent, 2,3-cis-piperidine dicarboxylic acid (100-200 microM) antagonized the stimulatory effect of kainate but not that of quisqualate. Kainic and quisqualic acid (20-100 microM) also stimulated gamma-[3H]-aminobutyric acid release from cerebellar cultures, and kynurenic acid antagonized the effect of kainate but not that of quisqualate. In conclusion, kainic acid and quisqualic acid appear to activate two different excitatory amino acid receptor subtypes, both coupled to neurotransmitter amino acid release. Moreover, kainate inhibits D-[3H]aspartate neuronal uptake by interfering with the acidic amino acid high-affinity transport system.  相似文献   

16.
Rapid Inactivation of Brain Glutamate Decarboxylase by Aspartate   总被引:2,自引:2,他引:0  
In the absence of its cofactor, pyridoxal 5'-phosphate (pyridoxal-P), glutamate decarboxylase is rapidly inactivated by aspartate. Inactivation is a first-order process and the apparent rate constant is a simple saturation function of the concentration of aspartate. For the beta-form of the enzyme, the concentration of aspartate giving the half-maximal rate of inactivation is 6.1 +/- 1.3 mM and the maximal apparent rate constant is 1.02 +/- 0.09 min-1, which corresponds to a half-time of inactivation of 41 s. The rate of inactivation by aspartate is about 25 times faster than inactivation by glutamate or gamma-aminobutyric acid (GABA). Inactivation is accompanied by a rapid conversion of holoenzyme to apoenzyme and is opposed by pyridoxal-P, suggesting that inactivation results from an alternative transamination of aspartate catalyzed by the enzyme, as previously observed with glutamate and GABA. Consistent with this mechanism pyridoxamine 5'-phosphate, an expected transamination product, was formed when the enzyme was incubated with aspartate and pyridoxal-P. The rate of transamination relative to the rate of decarboxylation was much greater for aspartate than for glutamate. Apoenzyme formed by transamination of aspartate was reactivated with pyridoxal-P. In view of the high rate of inactivation, aspartate may affect the level of apoenzyme in brain.  相似文献   

17.
Abstract: A dramatic, time-dependent loss of l -glutamine was observed in mouse and rat hippocampal slices equilibrated in normal artificial CSF under static (no-flow) and super-fused (constant-flow) conditions. Concomitant with the decline in l -glutamine, there was a significant, but less pronounced, decrease in levels of the neurotransmitter amino acids, γ-aminobutyric acid, l -aspartate, and l -glutamate. The disappearance of l -glutamine was a result of diffusion from the tissue to the artificial CSF rather than chemical or biochemical transformation. The loss of amino acids from the hippocampal slices was prevented to different degrees by the addition of 0.5 m M exogenous l -glutamine to the artificial CSF. The levels of newly synthesized amino acids were also determined, because they may be more indicative of the neuronal activity than the total tissue levels of amino acids. The effects of perturbations in glutamine (length of the equilibration time and addition of exogenous. glutamine) on newly synthesized glutamate were more pronounced under 4-aminopyridine-stimulated than control (unstimulated) conditions. Therefore, a loss of l -glutamine from the hippocampal slices may have neurophysiological effects and warrants further investigation.  相似文献   

18.
Abstract: Phospholipase D (PLD) is activated by many neuro-transmitters in a novel signal transduction pathway. In the present work, PLD activity was studied comparatively in hippocampal slices of newborn and adult rats. Basal PLD activity in adult rats was almost three times higher than in newborn rats. In newborn rats, L-glutamate and 1 S ,3 R -1-aminocyclopentane-1,3-dicarboxylic acid (1 S ,3 R -ACPD) time- and concentrationdependently enhanced the formation of [3H]phosphatidylpropanol ([3H]PP) and of [3H]phosphatidic acid in the presence of 2% propanol. N -MethylD-aspartate and kainate (both 1 m M ) caused small, but significant increases (∼50%). whereas α-amino-3-hydroxy-5-methylisoxazole-4-propionate (100 μ M ) was ineffective. Maximally effective concentrations of glutamate (1 m M ) and of 1 S ,3 R -ACPD (300 μ M ) increased the PLD activity to almost 300% of basal activity; the EC50 values were 199 and 47 μ M , respectively. Glutamate receptor antagonists, such as DL-2-amino-3-phosphonopropionic acid (AP3). DL-2-aminc-5-phosphonovalenic acid, and kynurenate (all 1 m M ) did not inhibit the glutamate-evoked increase of PP formation. In slices of adult rats, the response to 1 S ,3 R -ACPD was significant, but small, whereas glutamate was effective only in the presence of the glutamate uptake inhibitor L-aspartate-β-hydroxarnate. It is concluded that glutamate activates PLD in rat hippocampus through an AP3-resistant metabotropic receptor. This effect is subject to ontogenetic development, with one important factor being glutamate uptake.  相似文献   

19.
The release of endogenous aspartic, glutamic, and gamma-aminobutyric acids (Asp, Glu, GABA, respectively) was measured in the effluent from superfused hippocampal slices using a new and sensitive mass spectrometric method. The stimulation of the stratum radiatum of the rat dorsal hippocampus caused a Ca2+-dependent increase in the release of these amino acids. This release was accompanied by an increase in the incorporation of [13C2] from [13C]glucose into Asp, Glu, and GABA, suggesting an increase in their neosynthesis. The removal of Ca2+ from the superfusion fluid brought about a marked decrease in Asp and Glu release at rest, and prevented their stimulation-evoked release and the appearance of population spikes. The results support the hypothesis that Asp and Glu are excitatory neurotransmitters in intrinsic hippocampal circuits and are possibly released from the Schaffer collaterals and commissural fibres. The increase in GABA release and neosynthesis during stimulation of the stratum radiatum could be related to recurrent inhibition evoked by transsynaptic stimulation of the pyramidal cells.  相似文献   

20.
The release of putative neurotransmitters [aspartate, glutamate, and gamma-aminobutyric acid (GABA)] was studied in hippocampal slices from adult normal C57BL/6J (B6) and El (epileptic) mice. The El mice, a genetic model of temporal lobe epilepsy, had an average of 86 seizures. Sets of B6 and El hippocampal slices (400 microns thick) were incubated in a series of normal and high potassium (60 mM) buffers in the presence or absence of calcium. The calcium-dependent and calcium-independent potassium-induced release of amino acids was compared in each mouse strain. Release of endogenous amino acids was measured using liquid chromatography with electrochemical detection and was expressed as picomoles of amino acid released per milliliter of incubation buffer per minute of incubation per slice +/- SEM. No significant differences were found between the El and B6 mice for the calcium-dependent potassium-evoked release of glutamate (18.20 +/- 2.62 and 15.41 +/- 3.56), or GABA (17.28 +/- 2.90 and 12.73 +/- 1.37), respectively. Aspartate release, however, was significantly higher in the El mice (6.62 +/- 0.69) than in the B6 mice (3.31 +/- 0.72). These findings suggest that enhanced aspartate release may be related to seizure expression in El mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号