首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HIV patients in highly active antiretroviral therapy (HAART) develop lipodystrophy and insulin resistance. Protease inhibitors have been shown to alter adipocyte metabolism in murine cell lines. In this study, biological effects of the HIV protease inhibitor, ritonavir, were investigated on human SGBS preadipocytes and adipocytes. Ritonavir dose-dependently impaired preadipocyte proliferation and adipogenic differentiation. Gene expression analysis measured by real-time PCR, showed no effect of ritonavir (up to 20 microM) on expression of mRNA of PPARgamma2 and SREBP1c, but suppressed adiponectin mRNA while increasing IL-6 mRNA expression. In human adipocytes, ritonavir at therapeutic concentrations inhibited insulin-stimulated lipogenesis, reduced GLUT4 mRNA, fatty acid synthase and adiponectin expression, while increasing IL-6 mRNA expression. Finally, long-term treatment (72 and 120 h) of SGBS adipocytes but not preadipocytes with ritonavir induced apoptosis in up to 15% of the cells. All together, these data show effects of ritonavir on human preadipocytes and adipocytes aiming at reducing adipose tissue mass and increasing insulin resistance. These in vitro findings may partly explain the clinical findings in patients under HAART. Furthermore, SGBS cells may serve as a useful tool in further investigation of the mechanism of protease inhibitor action in human adipocytes.  相似文献   

2.
3.
4.
5.
HIV protease inhibitors must penetrate into cells to exert their action. Differences in the intracellular pharmacokinetics of these drugs may explain why some patients fail on therapy or suffer from drug toxicity. Yet, there is no information available on the intracellular levels of HIV protease inhibitors in HIV infected children, which is in part due to the large amount of sample that is normally required to measure the intracellular concentrations of these drugs. Therefore, we developed an ultra-fast and sensitive assay to measure the intracellular concentrations of HIV protease inhibitors in small amounts of peripheral blood mononuclear cells (PBMCs), and determined the intracellular concentrations of lopinavir and ritonavir in HIV infected children. An assay based on matrix-assisted laser desorption/ionization (MALDI) - triple quadrupole mass spectrometry was developed to determine the concentrations of HIV protease inhibitors in 10 µL plasma and 1×106 PBMCs. Precisions and accuracies were within the values set by the FDA for bioanalytical method validation. Lopinavir and ritonavir did not accumulate in PBMCs of HIV infected children. In addition, the intracellular concentrations of lopinavir and ritonavir correlated poorly to the plasma concentrations of these drugs. MALDI-triple quadrupole mass spectrometry is a new tool for ultra-fast and sensitive determination of drug concentrations which can be used, for example, to assess the intracellular pharmacokinetics of HIV protease inhibitors in HIV infected children.  相似文献   

6.
7.
8.
9.
10.
In this study multipotent adipose-derived stem cells isolated from human adipose tissue (hMADS cells) were shown to differentiate into adipose cells in serum-free, chemically defined medium. During the differentiation process, hMADS cells exhibited a gene expression pattern similar to that described for rodent clonal preadipocytes and human primary preadipocytes. Differentiated cells displayed the key features of human adipocytes, i.e., expression of specific molecular markers, lipolytic response to agonists of beta-adrenoreceptors (beta2-AR agonist > beta1-AR agonist > beta3-AR agonist) and to the atrial natriuretic peptide, insulin-stimulated glucose transport, and secretion of leptin and adiponectin. hMADS cells were able to respond to drugs as inhibition of adipocyte differentiation was observed in the presence of prostaglandin F2alpha, tumour necrosis factor-alpha, and nordihydroguaiaretic acid, a natural polyhydroxyphenolic antioxidant. Thus, for the first time, human adipose cells with normal karyotype and indefinite life span have been established. They represent a novel and valuable tool for studies of fat tissue development and metabolism.  相似文献   

11.
Subtype F wild type HIV protease has been kinetically characterized using six commercial inhibitors (amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) commonly used for HIV/AIDS treatment, as well as inhibitor TL-3 and acetyl-pepstatin. We also obtained kinetic parameters for two multi-resistant proteases (one of subtype B and one of subtype F) harboring primary and secondary mutations selected by intensive treatment with ritonavir/nelfinavir. This newly obtained biochemical data shows that all six studied commercially available protease inhibitors are significantly less effective against subtype F HIV proteases than against HIV proteases of subtype B, as judged by increased Ki and biochemical fitness (vitality) values. Comparison with previously reported kinetic values for subtype A and C HIV proteases show that subtype F wild type proteases are significantly less susceptible to inhibition. These results demonstrate that the accumulation of natural polymorphisms in subtype F proteases yields catalytically more active enzymes with a large degree of cross-resistance, which thus results in strong virus viability.  相似文献   

12.
Subtype F wild type HIV protease has been kinetically characterized using six commercial inhibitors (amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) commonly used for HIV/AIDS treatment, as well as inhibitor TL-3 and acetyl-pepstatin. We also obtained kinetic parameters for two multi-resistant proteases (one of subtype B and one of subtype F) harboring primary and secondary mutations selected by intensive treatment with ritonavir/nelfinavir. This newly obtained biochemical data shows that all six studied commercially available protease inhibitors are significantly less effective against subtype F HIV proteases than against HIV proteases of subtype B, as judged by increased K(i) and biochemical fitness (vitality) values. Comparison with previously reported kinetic values for subtype A and C HIV proteases show that subtype F wild type proteases are significantly less susceptible to inhibition. These results demonstrate that the accumulation of natural polymorphisms in subtype F proteases yields catalytically more active enzymes with a large degree of cross-resistance, which thus results in strong virus viability.  相似文献   

13.
Human immunodeficiency virus (HIV) therapies have been associated with alterations in fat metabolism and bone mineral density. This study examined the effects of HIV protease inhibitors (PIs) on bone resorption, bone formation, and adipocyte differentiation using ex vivo cultured osteoclasts, osteoblasts, and adipocytes, respectively. Osteoclast activity, measured using a rat neonatal calvaria assay, increased in the presence of nelfinavir (NFV; 47.2%, p = 0.001), indinavir (34.6%, p = 0.001), saquinavir (24.3%, p = 0.001), or ritonavir (18%, p < 0.01). In contrast, lopinavir (LPV) and amprenavir did not increase osteoclast activity. In human mesenchymal stem cells (hMSCs), the PIs LPV and NFV decreased osteoblast alkaline phosphatase enzyme activity and gene expression significantly (p < 0.05). LPV and NFV diminished calcium deposition and osteoprotegrin expression (p < 0.05), whereas the other PIs investigated did not. Adipogenesis of hMSCs was strongly inhibited by saquinavir and NFV (>50%, p < 0.001) and moderately inhibited by ritonavir and LPV (>40%, p < 0.01). Expression of diacylglycerol transferase, a marker of adipocyte differentiation, decreased in hMSCs treated with NFV. Amprenavir and indinavir did not affect adipogenesis or lipolysis. These results suggest that bone and fat formation in hMSCs of bone marrow may be coordinately down-regulated by some but not all PIs.  相似文献   

14.
15.
16.
Objective: Human immunodeficiency virus (HIV) patients on antiretroviral regimens frequently develop a syndrome of abnormal fat distribution, insulin resistance, and dyslipidemia. This lipodystrophic syndrome has been most closely linked to the use of HIV protease inhibitors (PIs). Several mechanisms have been postulated to explain these adverse effects of PIs, based largely on studies of rodent adipocytes. Intriguingly, atazanavir, a newer PI equally effective against HIV, is associated with fewer signs of lipodystrophy. We hypothesized that the less deleterious clinical effects of atazanavir would be reflected in physiological differences observed in PI‐treated adipocytes. Research Methods and Procedures: We compared the effects of atazanavir and an older PI associated with lipodystrophy, ritonavir, on differentiation, gene expression, adipocytokine secretion, and insulin signaling in a human adipocyte cell line. Results: Ritonavir inhibited human adipocyte differentiation and induced apoptosis to a greater extent than atazanavir. Treatment of mature adipocytes with ritonavir, but not atazanavir, also selectively decreased insulin signaling. Moreover, ritonavir also selectively decreased expression of adiponectin, an insulin‐sensitizing adipocytokine, while inducing interleukin‐6, a proinflammatory cytokine implicated in insulin resistance. Discussion: These data suggest that the distinct metabolic side effect profiles of these PIs could be a consequence of their differential effects on adipocyte physiology.  相似文献   

17.
18.
Effects of HIV protease inhibitor therapy on lipid metabolism   总被引:1,自引:0,他引:1  
Highly active antiretroviral therapy, which includes a combination of protease inhibitors, is highly successful in controlling human immunodeficiency virus (HIV) infection and reducing the morbidity and mortality of autoimmune deficiency syndrome (AIDS). However, the benefits of HIV protease inhibitors are compromised by numerous undesirable side effects. These include peripheral fat wasting and excessive central fat deposition (lipodystrophy), overt hyperlipidemia, and insulin resistance. The mechanism associated with protease inhibitor-induced metabolic abnormalities is multifactorial. One major effect of the protease inhibitor is its suppression of the breakdown of the nuclear form of sterol regulatory element binding proteins (nSREBP) in the liver and adipose tissues. Hepatic accumulation of nSREBP results in increased fatty acid and cholesterol biosynthesis, whereas nSREBP accumulation in adipose tissue causes lipodystrophy, reduces leptin expression, and promotes insulin resistance. The HIV protease inhibitors also suppress proteasome-mediated breakdown of nascent apolipoprotein (apo) B, thus resulting in the overproduction and secretion of triglyceride-rich lipoproteins. Finally, protease inhibitor also suppresses the inhibition of the glucose transporter GLUT-4 activity in adipose and muscle. This latter effect also contributes directly to insulin resistance and diabetes. These adverse effects need to be alleviated for long-term use of protease inhibitor therapy in treatment of HIV infection.  相似文献   

19.
Multipotent adult stem cells constitute an unlimited source of differentiated cells that could be used in pharmacological studies and in medicine. The presence of stem cells in different tissues, such as bone marrow, skin, muscle, has been reported. However, stem cells are rare in these tissues, are difficult to isolate and to maintain ex vivo. As adipose tissue allows extraction of a large volume of tissue with limited morbidity, this tissue could be an exciting alternative stem cell source. We have recently identified and isolated multipotent stem cells from adipose tissue of young donors. These cells, named human Multipotent Adipose-Derived Stem (hMADS) cells, exhibit features of stem cells, i.e. a high ability to self-renew and the capacity to differentiate in different lineages at the single cell level. The adipocyte differentiation of hMADS cells has been thoroughly studied and differentiated cells exhibit the unique characteristics of human adipocytes. The effects of HIV drugs on the development of hMADS cells into adipocytes will be discussed. Finally, the therapeutic potential of hMADS cells has been revealed after their transplantation into muscles of mdx mice, an animal model of Duchenne muscular dystrophy. Therefore, hMADS cells provides a powerful cellular model for drug screenings and their regenerative properties suggest that these cells could be an important tool for cell-mediated therapy.  相似文献   

20.
The HIV protease inhibitor ritonavir (RTV) is also a potent inhibitor of the metabolizing enzyme cytochrome P450 3A (CYP3A) and is clinically useful in HIV therapy in its ability to enhance human plasma levels of other HIV protease inhibitors (PIs). A novel series of CYP3A inhibitors was designed around the structural elements of RTV believed to be important to CYP3A inhibition, with general design features being the attachment of groups that mimic the P2–P3 segment of RTV to a soluble core. Several analogs were found to strongly enhance plasma levels of lopinavir (LPV), including 8, which compares favorably with RTV in the same model. Interestingly, an inverse correlation between in vitro inhibition of CYP3A and elevation of LPV was observed. The compounds described in this study may be useful for enhancing the pharmacokinetics of drugs that are metabolized by CYP3A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号