首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The effects of the acridines euflavine and proflavine on mitochondrial DNA (mtDNA) replication and mutation inSaccharomyces cerevisiae have been compared. In contrast to previous results we found that under our conditions proflavine can indeed induce high levels (>80%) of petite mutants, although six times less efficiently than euflavine. The parameters measured for mutagenesis of the mitochondrial genome and inhibition of mtDNA replication in whole cells suggest that the modes of action of euflavine and proflavine are very similar. After extended (18h) treatment of growing cells with each drug the percentage loss of mtDNA or genetic loci was almost coincidental with the extent of petite induction.It was found that proflavine is equally as effective as euflavine in inhibiting mtDNA replication in isolated mitochondria in contrast to the differential between the drugs observed in vivo. However, proflavine and euflavine inhibit cellular growth at almost the same concentrations. It is therefore proposed that there is some intracellular permeability barrier which impedes proflavine access to the mitochondrial DNA replicating system.The petites induced by euflavine (and proflavine) are characterized by there being a preferential induction ofrho 0 petites lacking mtDNA as opposed torho - petites retaining mtDNA. This is in contrast to the relative proportions of such petites induced by ethidium bromide or berenil. A scheme for the production of petites by euflavine is presented, in which euflavine inhibits the replication of mtDNA, but does not cause direct fragmentation of mtDNA (unlike ethidium bromide and berenil). The proposed scheme explains the production of the high frequency ofrho o cells, as well as therho - cells induced by euflavine. The scheme also accounts for previous observations that euflavine only mutants growing cultures, and that the buds, but not mother cells, become petite.  相似文献   

2.
We report an analysis of the sequences used in the excision of the mitochondrial genomes of 22 spontaneous and ten ethidium bromide (EtBr)-induced Saccharomyces cerevisiae petite mutants. In all cases, excision sequences were found to be perfect direct repeats, often flanked on one or both sides by regions of patchy homology. Sequences used in the excision of the genomes of spontaneous petites were always located in the AT spacers and GC clusters of intergenic regions of the genome; the GC clusters corresponded to ori and oris sequences, namely to canonical and surrogate origins of DNA replication, respectively. In the case of the ethidium bromide-induced petites, excision sequences were found not only in intergenic sequences, but also in the introns and exons of mitochondrial genes.  相似文献   

3.
Summary Mitochondrial DNA (mtDNA) replication in petite mutants ofSaccharomyces cerevisiae is generally less sensitive to inhibition by ethidium bromide than in grande (respiratory competent) cells. In every petite that we have examined, which retain a range of different grande mtDNA sequences, this general phenomenon has been demonstrated by measurements of the loss of mtDNA from cultures grown in the presence of the drug. The resistance is also demonstrable by direct analysis of drug inhibition of mtDNA replication in isolated mitochondria. Furthermore, the resistance to ethidium bromide is accompanied, in every case tested, by cross-resistance to berenil and euflavine, although variations in the levels of resistance are observed.In one petite the level of in vivo resistance to the three drugs was very similar (4-fold over the grande parent) whilst another petite was mildly resistant to ethidium bromide and berenil (each 1.6-fold over the parent) and strongly resistant (nearly 8-fold) to inhibition of mtDNA replication by euflavine. The level of resistance to ethidium bromide in several other petite clones tested was found to vary markedly. Using genetic techniques it is possible to identify those petites which display an enhanced resistance to ethidium bromide inhibition of mtDNA replication.It is considered that the general resistance of petites arises because a product of mitochondrial protein synthesis is normally involved in facilitating the inhibitory action of these drugs on mtDNA synthesis in grande cells. The various levels of resistance in petites may be modulated by the particular mtDNA sequences retained in each petite.  相似文献   

4.
We have studied the effects on the yeast mitochondrial genome of four analogues of ethidium bromide, in which the phenyl moiety has been replaced by linear alkyl chains of lengths varying from seven to fifteen carbon atoms. These analogues are more efficient than ethidium bromide in inducing petite mutants inSaccharomyces cerevisiae. The drugs also cause a loss of mtDNA from the cellsin vivo; however these analogues are in fact less effective inhibitors of mitochondrial DNA replicationper se, as shown by directin vitro studies. It is concluded that these analogues are more efficient than ethidium bromide in causing the fragmentation of mitochondrial DNA inS. cerevisiae.  相似文献   

5.
This paper describes investigations into the effects of ethidium bromide on the mitochondrial genomes of a number of different petite mutants derived from one respiratory competent strain of Saccharomyces cerevisiae. It is shown that the mutagenic effects of ethidium bromide on petite mutants occur by a similar mechanism to that previously reported for the action of this dye on grande cells. The consequences of ethidium bromide action in both cases are inhibition of the replication of mitochondrial DNA, fragmentation of pre-existing mitochondrial DNA, and the induction, often in high frequency, of cells devoid of mitochondrial genetic information (ρ ° cells).The susceptibility of the mitochondrial genomes to these effects of ethidium bromide varies in the different clones studied. The inhibition of mitochondrial DNA replication requires higher concentrations of ethidium bromide in petite cells than in the parent grande strain. Furthermore, the susceptibility of mitochondrial DNA replication to inhibition by ethidium bromide varies in different petite clones.It is found that during ethidium bromide treatment of the suppressive petite clones, the over-all suppressiveness of the cultures is reduced in parallel with the reduction in the over-all cellular levels of mitochondrial DNA. Furthermore, ethidium bromide treatment of petite clones carrying mitochondrial erythromycin resistance genes (ρ?ERr) leads to the elimination of these genes from the cultures. The rates of elimination of these genes are different in two ρ?ERr clones, and in both the gene elimination rate is slower than in the parent ρ+ ERr strain. It is proposed that the rate of elimination of erythromycin resistance genes by ethidium bromide is related to the absolute number of copies of these genes in different cell types. In general, the more copies of the gene in the starting cells, the slower is the rate of elimination by ethidium bromide. These concepts lead us to suggest that petite mutants provide a system for the biological purification of particular regions of yeast mitochondrial DNA and of particular relevance is the possible purification of erythromycin resistance genes.  相似文献   

6.
The role of the HCR system in the repair of prelethal lesions induced by UV-light, γ-rays and alkylating agents was studied in theBacillus subtilis SPP1 phage, its thermosensitive mutants (N3, N73 endts 1) and corresponding infectious DNA. The survival of phages and their transfecting DNA after treatment with UV light is substantially higher inhcr + cells than inhcr cells, the differences being more striking in intact phages than in their transfecting DNA’s. Repair inhibitors reduce the survival inhcr + cells: caffeine lowers the survival of UV-irradiated phage SPP1 in exponentially growinghcr + cells but has no effect on its survival in competenthcr + cells; acriflavin and ethidium bromide decrease the survival of UV-irradiated SPP1 phage in both exponentially growing and competenthcr + cells to the level of survival observed inhcr cells; moreover, ethidium bromide lowers the number of infective centres inhcr + cells of UV-irradiated DNA of the SPP1 phage. Repair inhibitors do not lower the survival of UV-irradiated phages or their DNA inhcr cells. The repair mechanism under study repairs effectively also lesions induced by polyfunctional alkylating agents in transfecting DNA’s ofB. subtilis phages but is not functional with lesions induced by these agents in free phages and lesions caused in phages and their DNA by ethyl methanesulphonate or γ-rays.  相似文献   

7.
Superoxide anion (O 2 .– ) was photogenerated upon illumination of riboflavin in fluorescent light. The rate of O 2 .– formation was stimulated by double stranded DNA but not by denatured DNA or RNA. Depurinated DNA, which was predominantly depleted in guanine residues, did not exhibit the stimulatory effect, indicating an interaction of riboflavin, or active oxygen species derived from it, with guanine bases. Also, the stimulation of O 2 .– photogeneration was not observed with ethidium bromide but was seen with proflavin-intercalated DNA. Since ethidium bromide intercalates preferentially between purines and pyrimidines, and proflavin prefers dA-dT rich sites, these results were interpreted to suggest that the interaction of riboflavin with DNA is mainly with GC or CG base pairs.  相似文献   

8.
Dequalinium (DEQ), a drug with both antimicrobial and anticancer activity, induced the formation of petite (respiration-deficient) mutants in the yeast Saccharomyces cerevisiae. DEQ was found to be approximately 50-fold more potent than ethidium bromide (EB) at inducing petites. Analysis of the DEQ-induced petite mutants indicated a complete loss of mitochondrial DNA (<1 copy/cell). Prior to the loss of mtDNA, DEQ caused cleavage of the mtDNA into a population of fragments 30-40kbp in size suggesting that this drug causes petites by inducing a breakdown of mtDNA. The selective effect of DEQ on yeast mtDNA may underlie the antifungal activity of this chemotherapeutic agent.  相似文献   

9.
Summary In a random collection of mit mutations of the yeast strain 777-3A we find that deletions are exceptionally frequent in the OXI3 gene, a large mosaic gene coding for subunit I of cytochrome oxidase. About 10% of all oxi3 mutants carry the same macro-deletion, del-A, extending from the 5 non-translated leader of OXI3 to intron 5b of this gene. Determination of the respective wild-type sequences and of the del-A junction sequence revealed that the end-points of the deletion are in two GC clusters with 31 by sequence identity which are located at a distance of 11.3 kb. We speculate that not only the sequence identity of the two GC clusters but also the palindromic structure of these putatively mobile elements of yeast mitochondrial DNA (mtDNA) plays a role in deletion formation.  相似文献   

10.
该研究以6~8月上午10点左右摘取的新鲜黄瓜花朵为材料,采用渗透压冲击的方法分离黄瓜生殖细胞,并应用竞争型定量PCR技术测定其线粒体DNA数量,分析生殖细胞在发育过程中线粒体DNA的变化,以明确高丰度线粒体DNA的来源,为进一步研究被子植物调控线粒体DNA扩增的分子机制奠定基础。结果显示:(1)DAPI染色观察发现,黄瓜生殖细胞的细胞核周围存在大量的细胞器DNA荧光点,表明黄瓜生殖细胞的细胞质中存在大量的线粒体DNA。(2)成熟黄瓜生殖细胞平均包含(1 037±126)个线粒体DNA拷贝。(3)成熟生殖细胞内线粒体DNA含量为早期生殖细胞的14.5倍,表明成熟生殖细胞中的线粒体DNA主要来自于生殖细胞形成后其内活跃的线粒体DNA扩增。研究认为,黄瓜生殖细胞内活跃的线粒体DNA是黄瓜线粒体父系遗传的基础。  相似文献   

11.
DNA polymerase gamma (POLG) is essential for replication and repair of mitochondrial DNA (mtDNA). Mutations in POLG cause mtDNA instability and a diverse range of poorly understood human diseases. Here, we created a unique Polg animal model, by modifying polg within the critical and highly conserved polymerase domain in zebrafish. polg+/− offspring were indistinguishable from WT siblings in multiple phenotypic and biochemical measures. However, polg−/− mutants developed severe mtDNA depletion by one week post-fertilization (wpf), developed slowly and had regenerative defects, yet surprisingly survived up to 4 wpf. An in vivo mtDNA polymerase activity assay utilizing ethidium bromide (EtBr) to deplete mtDNA, showed that polg+/− and WT zebrafish fully recover mtDNA content two weeks post-EtBr removal. EtBr further reduced already low levels of mtDNA in polg−/− animals, but mtDNA content did not recover following release from EtBr. Despite significantly decreased respiration that corresponded with tissue-specific levels of mtDNA, polg−/− animals had WT levels of ATP and no increase in lactate. This zebrafish model of mitochondrial disease now provides unique opportunities for studying mtDNA instability from multiple angles, as polg−/− mutants can survive to juvenile stage, rather than lose viability in embryogenesis as seen in Polg mutant mice.  相似文献   

12.
HeLa cell mitochondria were allowed to incorporate 3H-thymidine in a cell free system and the effect of ethidium bromide, cytosine arabinoside and cytosine arabinoside triphosphate on the labeling of mitochondrial DNA was studied. The labeled products, isolated by sedimentation velocity in CsCl-ethidium bromide two-step gradients, showed similar sedimentation profiles as in vivo labeled mtDNA. Cytosine arabinoside triphosphate and ethidium bromide strongly inhibited the labeling of mitochondrial DNA, whereas cytosine arabinoside appeared to be much less effective. Tritiated deoxycytidine was found to be incorporated by isolated mitochondria, whereas cytosine arabinoside was shown to enter the mitochondrial acid-soluble pool but not to be incorporated in acid-insoluble form. These results are in agreement with the previously reported findings of in vivo experiments.  相似文献   

13.
Petite-positivity - the ability to tolerate the loss of mtDNA - was examined after the treatment with ethidium bromide (EB) in over hundred isolates from the Saccharomyces/Kluyveromyces complex. The identity of petite mutants was confirmed by the loss of specific mtDNA DAPI staining patterns. Besides unequivocal petite-positive and petite-negative phenotypes, a few species exhibited temperature sensitive petite positive phenotype and petiteness of a few other species could be observed only at the elevated EB concentrations. Several yeast species displayed a mixed 'moot' phenotype, where a major part of the population did not tolerate the loss of mtDNA but several cells did. The genera from postwhole-genome duplication lineages (Saccharomyces, Kazachstania, Naumovia, Nakaseomyces) were invariably petite-positive. However, petite-positive traits could also be observed among the prewhole-genome duplication species.  相似文献   

14.
Following targeted disruption of the unique CYC1 gene, the petite-negative yeast, Kluyveromyces lactis, was found to grow fermentatively in the absence of cytochrome c-mediated respiration. This observation encouraged us to seek mitochondrial mutants by treatment of K. lactis with ethidium bromide at the highest concentration permitting survival. By this technique, we isolated four mtDNA mutants, three lacking mtDNA and one with a deleted mitochondrial genome. In the three isolates lacking mtDNA, a nuclear mutation is present that permits petite formation. The three mutations occur at two different loci, designated MGI1 and MGI2 (for Mitochondrial Genome Integrity). The mgi mutations convert K. lactis into a petite-positive yeast. Like bakers' yeast, the mgi mutants spontaneously produce petites with deletions in mtDNA and lose this genome at high frequency on treatment with ethidium bromide. We suggest that the MGI gene products are required for maintaining the integrity of the mitochondrial genome and that, petite-positive yeasts may be naturally altered in one or other of these genes.  相似文献   

15.
Summary Sodium nalidixate inhibited the cell growth and division of several respiratory competent strains of Saccharomyces cerevisiae. A number of cytoplasmic petite strains (both spontaneous and induced by ethidium bromide) were shown to be more resistant to sodium nalidixate than the wild-type strains from which they were derived. There was considerable variation in sensitivity of different petites derived from the same wild-type. Usually petite strains which were induced by ethidium bromide were more resistant than spontaneously arising petites. The susceptibility of a wild-type strain to nalidixate was found to be least when the mitochondrial respiratory system was maximally repressed. It was also noted that sodium nalidixate (100 g/ml) induced petite mutants.Dr. Carnevali is a Senior Research Worker of the Centro di Studio per gli Acidi Nucleici of the National Research Council of Rome and is on leave of absence at the above address  相似文献   

16.
Several new types of cerulenin-resistant mutants of sake yeast were isolated. These mutants showed respiratory deficiency and could grow on media containing a higher concentration of antibiotics than could the parent. Sakes brewed by the mutants produced less succinate than by both the parent yeast and the mutants with respiratory deficiency induced by ethidium bromide. In addition, the acidity of these mutants was decreased. Since low acidity is favourable in both sake and wine, these mutants might be applicable for both sake and wine brewing.  相似文献   

17.
Eight toluene-sensitive mutants were previously isolated from the toluene-tolerant bacterium Pseudomonas putida GM730. One of these mutants was TOS6, in which Tn5 had been inserted into phoU. Susceptibility to multiple antibiotics, as well as toluene sensitivity, was increased in the phoU mutant of P. putida GM730. We compared the outer membrane proteins from the phoU mutant and wild-type via two-dimensional gel electrophoresis. A 45 kDa protein was dramatically overexpressed as the result of phoU inactivation, and this protein was identified by peptide mass fingerprinting and microsequencing as a conserved hypothetical protein consisting of 414 amino acids. The protein, designated as OprT, harbors a signal sequence and extended β-sheets, both of which are features common to the bacterial porins. The rate of ethidium bromide accumulation in TOS6 was higher than in GM730, which indicates that the TOS6 membranes may be more permeable to ethidium bromide than are the membranes of GM730. We propose that the toluene sensitivity and increased antibiotic susceptibility observed in the phoU mutant may be attributable to increased membrane permeability.  相似文献   

18.
Our examination of the cytological characteristics of the vegetative incompatibility reaction in a filamentous basidiomycete, Helicobasidium monpa, by analyzing the fluorescence emitted by ethidium bromide and acridine orange stained nuclei is described. Hyphal anastomoses between strains belonging to different mycelium compatibility groups (MCG) were observed with cell death in fused hyphae, whose nuclei were intensified by ethidium bromide. In contrast, the nuclei in a living cell were not intensified by staining with ethidium bromide, but were intensified by staining with acridine orange. These results indicate that in H. monpa, ethidium bromide staining is a useful method for detecting dead cells. We also examined the relationships between the alternation of ploidy and hyphal anastomosis formation using the newly developed method on filamentous fungi. The tetraploid monokaryon strain derived from the original dikaryon strain by continuous subculture could not be fused to any wild type strains, but the original dikaryon strain could be fused without cell death to only the same MCG strain. In contrast, the haploid dikaryon strain derived from the original monokaryon strain fuses to several strains belonging to different MCGs without cell death. These results suggested that the cellular ploidy of this fungus is closely related to its mating system and, H. monpa may be a self-fertilizing fungus. Received: 13 June 2001 / Accepted: 8 August 2001  相似文献   

19.
Mutants of the petite-negative yeast, Kluyveromyceslactis, resistant to the inhibitors of oxidative phosphorylation, decamethylenediguanidine and octylguanidine were isolated from medium containing ethidium bromide. All mutants were resistant to ethidium bromide; some mutants were resistant to both alkylguanidines, some to one, others to neither. Both nuclear and cytoplasmic inheritance of resistance to decamethylenediguanidine and ethidium bromide was demonstrated by tetrad analysis.  相似文献   

20.
Mechanism of Mitochondrial Mutation in Yeast   总被引:2,自引:0,他引:2  
THE yeast Saccharomyces cerevisiae can mutate to the respiratory-incompetent petite colony form. The mutation is probably caused by damage to, or loss of, the yeast's mitochondrial DNA, for petite mutants often lack mitochondrial DNA, possess it in abnormal amounts or with abnormal buoyant density1. Some of the agents, such as acrifiavine or ethidium bromide, which induce the petite mutation interfere with mitochondrial DNA synthesis2,3 whereas ethidium bromide also causes or permits degradation of Saccharomyces cerevisiae mitochondrial DNA2,3. We have observed that nalidixate (50 µg/ml.), an inhibitor of DNA synthesis, can prevent or delay petite mutation induced by ethidium bromide4. A similar effect has been observed by Hollenberg and Borst using a higher nalidixate concentration5. We have investigated the mechanism of this effect. A diploid prototrophic strain of Saccharomyces cerevisiae (NCYC 239) was used throughout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号