首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equilibrium binding studies demonstrate that purified Escherichia coli isocitrate dehydrogenase binds isocitrate, alpha-ketoglutarate, NADP, and NADPH at 1:1 ratios of substrate to enzyme monomer. The phosphorylated enzyme, which is completely inactive, is unable to bind isocitrate but retains the ability to bind NADP and NADPH. Replacement of serine 113, which is the site of phosphorylation, by aspartate results in an inactive enzyme that is unable to bind isocitrate. Replacement of the same serine with other amino acids (lysine, threonine, cysteine, tyrosine, and alanine) produces active enzymes that bind both substrates. Hence, the negative charge of an aspartate or a phosphorylated serine at site 113 inactivates the enzyme by preventing the binding of isocitrate.  相似文献   

2.
L C Costello  R Franklin  R Stacey 《Enzyme》1976,21(6):495-506
Mitochondrial preparations isolated from rat ventral prostate were capable of oxidizing isocitrate by way of NADP isocitrate dehydrogenase (NADP-IDH) and NAD-IDH. NAD-IDH activity required ADP for activation. The pH responses for NAD-IDH and NADP-IDH were quite different. The results indicated that two different enzymes were involved in the NAD- and NADP-IDH activities. Indirect evidence indicated that NADPH-NAD transhydrogenase activity might also be involved in the mitochondrial pathway for isocitrate oxidation. NADP-IDH activity was significantly greater than NAD-IDH activity. The oxidation of isocitrate through IDH activity was coupled to the cytochrome system by NADPH- and NADH-cytochrome c reductase activities. Citrate, via isocitrate, oxidation proceeded at a much slower rate suggesting that aconitase activity could be limiting in the oxidation of citrate. In comparison to other tissues, the prostate oxidative enzyme activities are considerably lower. The results suggest that the accumulation of high prostate citrate levels is not due to a limitation imposed by a lack of IDH activity in prostate mitochondria.  相似文献   

3.
G W Plaut  R L Beach  T Aogaichi 《Biochemistry》1975,14(12):2581-2588
D-Garcinia acid (D-threo-1,2-dihydroxy-1,2,3-propanetricarboxylate), like D-isocitrate, has an alpha-DS-hydroxyl group and a beta-LS configuration of the second carboxyl group. The maximal velocity of pyridine nucleotide reduction with D-garcinia acid is 8 and 21% of D-threo-isocitrate with the DPN-linked and TPN-linked isocitrate dehydrogenase from bovine heart, respectively. The other stereoisomers of hydroxycitrate [L-garcinia acid, D- and L-hibiscus acid (D- and L-erythro-1,2-dihydroxy-1,2,3-propanetricarboxylate)] are inactive. DL-threo-Homoisocitrate (DL-threo-1-hydroxy-1,2,4-butanetricarboxylate) supports DPN+ reduction at 10-15% of the rate observed for isocitrate with the DPN-specific enzyme, but is not a substrate for TPN-linked isocitrate dehydrogenase. The values of apparent S0.5 for total isocitrate and total garcinia acid are similar with both enzymes; the apparent S0.5 of total homoisocitrate is two- to threefold higher than that of total isocitrate with the DPN-linked enzyme. Enzymatic oxidative decarboxylation of garcinia acid and homoisocitrate leads to formation of alpha-keto-beta-hydroxyglutarate and alpha-ketoadipate, respectively. DL-Methylmalate (DL-1-hydroxy-2-methylsuccinate) is inactive as a substrate for either dehydrogenase as are the newly synthesized compounds: DL-threo-gamma-isocitrate amide (DL-threo-1-hydroxy-3-carbamy01,2-propanedicarboxylate), beta-methyl-DL-isocitrate (DL-1-hydroxy-2-methyl-1,2,3-propanetricarboxylate), beta-methyl-DL-garcinia acid (DL-threo-1-hydroxyl-2-methoxy-1,2,3-propanetricarboxylate), DL-1-hydroxyl-1,2,2-ethanetricarboxylate, and DL-1,4-dihydroxy-1,2-butanedicarboxylate.  相似文献   

4.
The isocitrate dehydrogenase from cyanobacteria   总被引:2,自引:0,他引:2  
The present communication describes the properties of isocitrate dehydrogenase in crude extracts from the unicellular Anacystis nidulans and from heterocysts and vegetative cells of Nostoc muscorum and Anabaena cylindrica. The activity levels of this enzyme are much higher in heterocysts than in vegetative cells of N. muscorum and A. cylindrica. Isocitrate dehydrogenase is virtually inactive in vegetative cells of A. cylindrica. The enzyme is negatively regulated by the reduction charge and scarcely affected by oxoglutarate in the three cyanobacteria. The inhibition by ATP and ADP is competitive with respect to isocitrate and NADP+ in A. cylindrica and N. muscorum and noncompetitive in A. nidulans. Isocitrate dehydrogenase from the three cyanobacteria seems to be a hysteretic enzyme. All the experimental data suggest that the major physiological role of isocitrate and the isocitrate dehydrogenase in heterocysts is not to generate reducing equivalents for N2-fixation. Oxoglutarate formed by the enzyme reaction is likely required for the biosynthesis of glutamate inside the heterocysts. Thioredoxin preparations from spinach chloroplasts or from A. cylindrica activate isocitrate dehydrogenase from either heterocysts or vegetative cells of A. cylindrica. Activation is completed within seconds and requires dithiothreitol besides thioredoxin. The thioredoxin preparation which activates isocitrate dehydrogenase also activates NADP+-dependent malate dehydrogenase from spinach chloroplasts or heterocysts of A. cylindrica. Isocitrate dehydrogenase from A. cylindrica is deactivated by oxidized glutathione. It is speculated that isocitrate dehydrogenase and thioredoxin play a role in the differentiation of vegetative cells to heterocysts.  相似文献   

5.
Purification of yeast isocitrate dehydrogenase   总被引:3,自引:2,他引:1       下载免费PDF全文
The NAD-linked isocitrate dehydrogenase from baker's yeast was purified to homogeneity (as judged by gel filtration and polyacrylamide-gel electrophoresis) with an overall yield of 50% by using dilute solutions of the allosteric effector (AMP) to elute the enzyme specifically from CM-cellulose. This method preserves the allosteric properties of the crude enzyme. Although the pure enzyme shows only a single band on electrophoresis in the presence of sodium dodecyl sulphate, two types of subunit are observed in 8m-urea. The isoelectric point of the enzyme rises during purification, and this may reflect the partial loss of an additional low-molecular-weight component. Values are included for the amino acid composition and extinction coefficients of the pure enzyme.  相似文献   

6.
Mitochondrial isocitrate dehydrogenases from yeast   总被引:2,自引:0,他引:2  
  相似文献   

7.
In the green alga Chlamydomonas reinhardtii , nitrogen staravation induced a reversible increase (2-fold) in NAD-isocitrate dehydrogenase (NAD-IDH; EC 1.1.1.41) and NADP-isocitrate dehydrogenase (NADP-IDH; EC 1.1.1.42) activities. Both enzymes were not affected by the concentration of CO2, the dark or the nature of the nitrogen source (nitrate, nitrite, or ammonium). When cells growing autotrophically were transferred to heterotrophic conditions, a 40% reduction of the NAD-IDH activity was detected, a 2-fold increase of NADP-IDH was observed and isocitrate lyase (ICL; EC 4.1.3.1) activity was induced. The replacement of autotrophic conditions led to the initial activity levels. NAD- and NADP-IDH activities showed markedly different patterns of increase in synchronous cultures of this alga obtained by 12 h light/12 h dark transitions. While NAD-IDH increased in the last 4 h of the dark period, NADP-IDH increased during the last 4 h of the light period, remaining constant for the rest of the cycle.  相似文献   

8.
9.
10.
During growth on succinate, Acinetobacter calcoaceticus contains two forms of the enzyme isocitrate dehydrogenase. Addition of acetate to a lag-phase culture grown on succinate causes a dramatic increase in activity of form II of isocitrate dehydrogenase and in isocitrate lyase. Form II of isocitrate dehydrogenase may be responsible for the partition of isocitrate between the TCA cycle and the glyoxylate by-pass. This report describes the phosphorylation of the enzyme isocitrate lyase from A. calcoaceticus. This phosphorylation may be a regulatory mechanism for the glyoxylate by-pass.  相似文献   

11.
12.
13.
14.
Hormonal control of isocitrate lyase synthesis   总被引:3,自引:0,他引:3  
  相似文献   

15.
In Escherichia coli, the homodimeric Krebs cycle enzyme isocitrate dehydrogenase (EcIDH) is regulated by reversible phosphorylation of a sequestered active site serine. The phosphorylation cycle is catalyzed by a bifunctional protein, IDH kinase/phosphatase (IDH-K/P). To better understand the nature of the interaction between EcIDH and IDH-K/P, we have examined the ability of an IDH homologue from Bacillus subtilis (BsIDH) to serve as a substrate for the kinase and phosphatase activities. BsIDH exhibits extensive sequence and structural similarities with EcIDH, particularly around the phosphorylated serine. Our previous crystallographic analysis revealed that the active site architecture of these two proteins is almost completely conserved. We now expand the comparison to include a number of biochemical properties. Both IDHs display nearly equivalent steady-state kinetic parameters for the dehydrogenase reaction. Both proteins are also phosphorylated by IDH-K/P in the same ratio (1 mole of phosphate per mole of monomer), and this stoichiometric phosphorylation correlates with an equivalent inhibition of IDH activity. Furthermore, tandem electrospray mass spectrometry demonstrates that BsIDH, like EcIDH, is phosphorylated on the corresponding active site serine residue (Ser-104). Despite the high degree of sequence, functional, and structural congruence between these two proteins, BsIDH is surprisingly a much poorer substrate of IDH-K/P than is EcIDH, with Michaelis constants for the kinase and phosphatase activities elevated by 60- and 3,450-fold, respectively. These drastically disparate values might result from restricted access to the active site cavity and/or from the lack of a potential docking site for IDH-K/P.  相似文献   

16.
Both monomeric and dimeric NADP+-dependent isocitrate dehydrogenase (IDH) belong to the metal-dependent beta-decarboxylating dehydrogenase family and catalyze the oxidative decarboxylation from 2R,3S-isocitrate to yield 2-oxoglutarate, CO2, and NADPH. It is important to solve the structures of IDHs from various species to correlate with its function and evolutionary significance. So far, only two crystal structures of substrate/cofactor-bound (isocitrate/NADP) NADP+-dependent monomeric IDH from Azotobacter vinelandii (AvIDH) have been solved. Herein, we report for the first time the substrate/cofactor-free structure of a monomeric NADP+-dependent IDH from Corynebacterium glutamicum (CgIDH) in the presence of Mg2+. The 1.75 A structure of CgIDH-Mg2+ showed a distinct open conformation in contrast to the closed conformation of AvIDH-isocitrate/NADP+ complexes. Fluorescence studies on CgIDH in the presence of isocitrate/or NADP+ suggest the presence of low energy barrier conformers. In CgIDH, the amino acid residues corresponding to the Escherichia coli IDH phosphorylation-loop are alpha-helical compared with the more flexible random-coil region in the E. coli protein where IDH activation is controlled by phosphorylation. This more structured region supports the idea that activation of CgIDH is not controlled by phosphorylation. Monomeric NADP+-specific IDHs have been identified from about 50 different bacterial species, such as proteobacteria, actinobacteria, and planctomycetes, whereas, dimeric NADP+-dependent IDHs are diversified in both prokaryotes and eukaryotes. We have constructed a phylogenetic tree based on amino acid sequences of all bacterial monomeric NADP+-dependent IDHs and also another one with specifically chosen species which either contains both monomeric and dimeric NADP+-dependent IDHs or have monomeric NADP+-dependent, as well as NAD+-dependent IDHs. This is done to examine evolutionary relationships.  相似文献   

17.
Coimmobilized horseradish peroxidase and D-isocitrate dehydrogenase were fixed to an oxygen electrode to assemble a bienzyme electrode for isocitrate determination. The linear measuring range for isocitrate of the sensor is between 0.1 and 2.0 mmol. I?1, the coefficient of variation (20 measurements) is 3.6%. 8 samples per hour can be assayed. With one sensor preparation 140 measurements can be carried out.  相似文献   

18.
The in vitro phosphorylation of isocitrate lyase was demonstrated in partially purified sonic extracts ofEscherichia coli. Extracts were incubated with [gamma32P]-ATP and subsequently analyzed by two-dimensional polyacrylamide gel electrophoresis. Isocitrate lyase was determined to be phosphorylated by autoradiography and Western blot analyses of the gels. Purified isocitrate lyase comigrates with the phosphorylated form of the enzyme; this suggests that the enzyme may become catalytically active concomitant with phosphorylation.  相似文献   

19.
Genetic polymorphism of isocitrate dehydrogenase in Primates   总被引:1,自引:0,他引:1  
J Schmitt  H Ritter 《Humangenetik》1973,19(3):327-329
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号