首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Venom from the pupal endoparasitoid, Pimpla hypochondriaca has previously been shown to contain a mixture of biologically active molecules. Currently, P. hypochondriaca venom was examined for the presence of hydrolase activity. Six hydrolases were consistently detected using the API ZYM semiquantitative colourimetric kit. The main hydrolases detected were; acid phosphatase, beta-glucosidase, esterase, beta-galactosidase, esterase lipase, and lipase. The most rapid and intense colour reaction was detected for acid phosphatase. The pH optimum and the specific activity of venom acid phosphatase was determined using p-nitrophenol phosphate as a substrate and were 4.8 and 0.47 nmol p-nitrophenol/min/microg of venom protein, respectively. The acid phosphatase activity was inhibited in a dose dependent manner by sodium fluoride (IC(50) 4.2 x 10(-4) M), and by cocktail inhibitor 2 (CI 2). P. hypochondriaca venom has previously been shown to display potent cytotoxic activity towards Lacanobia oleracea haemocytes maintained in vitro. The contribution of acid phosphatase in venom to this cytotoxic activity was investigated by titrating venom against CI 2 prior to the addition of L. oleracea haemocytes. The results suggest that, despite the relatively high levels of acid phosphatase activity in venom, venom acid phosphatase plays no role in the antihaemocytic activity of P. hypochondriaca venom in vitro.  相似文献   

2.
Cellular immune responses in insects protect them against parasites and pathogens that enter their hemocoel. Venom from the solitary pupal endoparasitoid, Pimpla hypochondriaca, has previously been shown to suppress certain key, cell-mediated immune responses of Lacanobia oleracea. Experiments were performed to determine if L. oleracea larvae injected with P. hypochondriaca venom would be more susceptible to Bacillus cereus, or Beauveria bassiana, when these microorganisms were subsequently injected. Mortality due to B. cereus (approximately 15 colony-forming units [CFU]/larva) and B. bassiana (approximately 2.4 x 10(3) conidia/larva) was enhanced by prior injection of 4 microg of venom. In addition, injection of venom/Dulbecco's phosphate-buffered saline (DPBS) or DPBS/B. bassiana reduced the rate at which larvae gained weight compared to control larvae. However, the greatest reduction in weight was recorded for larvae that had been injected with venom/B. bassiana conidia.  相似文献   

3.
Pimpla hypochondriaca venom is complex and contains a number of different proteins and polypeptides that exert a variety of effects on insect physiology. In particular, it possesses factors with potent anti-haemocyte and immunosuppressive properties. In the current work, we describe the biochemical isolation of a single venom factor with insect haemocyte anti-aggregation properties. The protein was isolated using gel filtration and ion exchange chromatography, in conjunction with a qualitative in vitro haemocyte anti-aggregation assay to monitor activity and confirm identity. The protein has a molecular weight estimate of 33kDa (determined by SDS PAGE under reducing conditions), and an N-terminal sequence of Asp-Ser-Asp-Ile-Tyr-Leu-Leu. The biochemically isolated protein has been demonstrated to inhibit haemocyte aggregation and to suppress encapsulation responses, using in vitro and in vivo assays, respectively. Furthermore, its gene has been identified as vpr3. The work is presented within the context of the role of P. hypochondriaca venom and the isolated protein in host immune suppression.  相似文献   

4.
The intraglomerular renin-angiotensin system (RAS) is linked to the pathogenesis of progressive glomerular diseases. Glomerular podocytes and mesangial cells play distinct roles in the metabolism of angiotensin (ANG) peptides. However, our understanding of the RAS enzymatic capacity of glomerular endothelial cells (GEnCs) remains incomplete. We explored the mechanisms of endogenous cleavage of ANG substrates in cultured human GEnCs (hGEnCs) using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and isotope-labeled peptide quantification. Overall, hGEnCs metabolized ANG II at a significantly slower rate compared with podocytes, whereas the ANG I processing rate was comparable between glomerular cell types. ANG II was the most abundant fragment of ANG I, with lesser amount of ANG-(1-7) detected. Formation of ANG II from ANG I was largely abolished by an ANG-converting enzyme (ACE) inhibitor, whereas ANG-(1-7) formation was decreased by a prolylendopeptidase (PEP) inhibitor, but not by a neprilysin inhibitor. Cleavage of ANG II resulted in partial conversion to ANG-(1-7), a process that was attenuated by an ACE2 inhibitor, as well as by an inhibitor of PEP and prolylcarboxypeptidase. Further fragmentation of ANG-(1-7) to ANG-(1-5) was mediated by ACE. In addition, evidence of aminopeptidase N activity (APN) was demonstrated by detecting amelioration of conversion of ANG III to ANG IV by an APN inhibitor. While we failed to find expression or activity of aminopeptidase A, a modest activity attributable to aspartyl aminopeptidase was detected. Messenger RNA and gene expression of the implicated enzymes were confirmed. These results indicate that hGEnCs possess prominent ACE activity, but modest ANG II-metabolizing activity compared with that of podocytes. PEP, ACE2, prolylcarboxypeptidase, APN, and aspartyl aminopeptidase are also enzymes contained in hGEnCs that participate in membrane-bound ANG peptide cleavage. Injury to specific cell types within the glomeruli may alter the intrarenal RAS balance.  相似文献   

5.
A membrane-bound enkephalin-degrading aminopeptidase was purified from the longitudinal muscle layer of the guinea pig small intestine by four steps of column chromatography using L-tyrosine beta-naphthylamide. The molecular weight of the enzyme was estimated to be 105,000 by gel filtration. The maximum activity was observed between pH 6.5 and 7.0. The Km value for leucine-enkephalin was 137 microM. The aminopeptidase activity toward aminoacyl beta-naphthylamide substrates was restricted to basic, neutral, and aromatic aminoacyl derivatives. No action was detected on acidic amino acid and proline derivatives. The enzyme was potently inhibited by the aminopeptidase inhibitors actinonin, amastatin, and bestatin, and bioactive peptides such as angiotensin III, substance P, and Met-Lys-bradykinin. The enzyme activity was also inhibited by the antibody against the purified serum enkephalin-degrading aminopeptidase of guinea pig at concentrations similar to those at which activity was observed toward serum enkephalin-degrading aminopeptidase and renal aminopeptidase M. The enzyme rapidly hydrolyzed Leu-enkephalin and Met-enkephalin with the sequential removal of the N-terminal amino acid residues. The enzyme also hydrolyzed two enkephalin derivatives, angiotensin III and neurokinin A. However, neurotensin, substance P, and bradykinin were not cleaved. These properties indicated that the membrane-bound enkephalin-degrading aminopeptidase in the longitudinal muscle layer of the small intestine is similar to the serum enkephalin-degrading aminopeptidase and resembles aminopeptidase M. It is therefore suggested to play an important role in the metabolism of some bioactive peptides including enkephalin in peripheral nervous systems in vivo.  相似文献   

6.
An intracellular aminopeptidase (EC 3.4.11.-) was purified from the extreme thermophilic archaebacterium, Sulfolobus solfataricus. The molecular weight of the native enzyme was about 320,000, as calculated by gel-filtration studies, and a subunit Mr of 80,000 was estimated by SDS-polyacrylamide gel electrophoresis. The temperature optimum of the enzyme was at 75 degrees C and the pH optimum was found to be 6.5. The aminopeptidase was highly active against the chromogenic substrates L-Leu-p-NA and L-Ala-p-NA. The enzyme was inhibited by EDTA, but the activity could be partially restored by removal of the EDTA and incubation with Co2+ or Mn2+. Bestatin, a typical inhibitor of aminopeptidase, fully inhibited the enzyme activity, but inhibitors of serine proteinases had no effect. Beside a high thermostability, the enzyme showed a remarkable stability against 6 M urea, organic solvents and acetonitrile.  相似文献   

7.
An aminopeptidase has been purified to homogeneity from bovine lens tissue by gel filtration and DEAE-cellulose chromatography. This enzyme has a molecular weight of 96,000 under both native and denaturing conditions. The purified enzyme hydrolyzed a variety of synthetic substrates as well as di-, tri-, and higher molecular weight peptides. Significantly this enzyme is capable of hydrolyzing arginine, lysine, and proline aminoacyl bonds. The pH optimum for activity and stability was 6.0. Both a reduced sulfhydryl group and a divalent metal ion are essential for activity. The native enzyme contains 1.6 mol of zinc and 1.0 mol of copper/mol of enzyme. No activation was seen upon incubation with either magnesium or manganese; however, heavy metal ions were inhibitory. Bestatin and puromycin were effective inhibitors and no endopeptidase activity could be detected in the purified preparation. This enzyme is clearly distinct from the lens leucine aminopeptidase, but rather, is identical to a cytosolic aminopeptidase III isolated from other tissues. Evidence is presented which argues that this enzyme may be the major lens aminopeptidase under in vivo conditions.  相似文献   

8.
S M Sebti  J S Lazo 《Biochemistry》1987,26(2):432-437
Bleomycin (BLM) hydrolase inactivates the BLM class of antitumor antibiotics and protects against BLM-induced pulmonary fibrosis. This enzyme is poorly characterized but believed to be an aminopeptidase B. In the present report, both BLM hydrolase and aminopeptidase B from rabbit pulmonary cytosol were retained by arginyl-Sepharose and BLM-Sepharose affinity columns, further suggesting that these two enzymes are similar. When, however, BLM hydrolase was purified over 1800-fold by using our newly developed high-speed liquid chromatography assay for BLM hydrolase coupled with fast protein liquid chromatography, we found that this partially purified BLM hydrolase preparation lacked aminopeptidase B activity. Furthermore, BLM hydrolase was completely separated, by using anion-exchange Mono Q chromatography, from all the aminopeptidases identified in rabbit pulmonary cytosol: one aminopeptidase B, two aminopeptidases N, and one aminopeptidase with both aminopeptidase B and aminopeptidase N activities. Pulmonary BLM hydrolase also had a higher molecular weight than pulmonary aminopeptidase B. In contrast to aminopeptidase B, BLM hydrolase was not activated by NaCl and was much less stable at 4 degrees C. In addition, bestatin was a potent inhibitor of aminopeptidase B but had little effect on BLM hydrolase, while leupeptin was a potent inhibitor of BLM hydrolase but was less effective against aminopeptidase B. Thus, pulmonary BLM hydrolase and aminopeptidase B have affinity for each other's substrate, but they are clearly distinct enzymes on the basis of charge characteristics, molecular weight, stability, and sensitivity to inhibitors and activators.  相似文献   

9.
The inhibitory activity of an angiotensin I-converting enzyme (ACE) detected in soy sauce was fractionated into two major fractions of high molecular weight (Hw) and low molecular weight (Lw) by gel filtration chromatography on Bio-gel P-2 after treating with ethanol. The Hw fraction reduced the blood pressure in hypertensive rats after orally administering, while the Lw fraction did not. The ACE inhibitor in the Hw fraction was further purified by Dowex 50W ion-exchange chromatography and four subsequent steps of HPLC. On the basis of the SIMS-mass spectrum, NMR spectrum and other characteristics, the purified ACE inhibitor was identified as nicotianamine (N-[N-(3-amino-3-carboxypropyl)-3-amino-3- carboxypropyl]azetidine-2-carboxylic acid). The IC50 value for this ACE was 0.26 µM.  相似文献   

10.
Glutamine synthetase (GS) was purified to electrophoretic homogeneity from the obligate anaerobic archaebacterium Methanobacterium ivanovi. The 130-fold-purified enzyme was obtained by heat treatment, ion-exchange chromatography, and gel filtration. Like all other eubacterial GSs known so far, the GS of M. ivanovi was found to be a dodecamer of about 600,000 daltons composed of a single type of subunit. The enzyme was stable at 63 degrees C for 10 min and was not sensitive to oxygen. The isoelectric point was 4.6, and the optimum pH of gamma-glutamyltransferase activity was 8.0. The Km values for hydroxylamine, glutamine, and ADP in the transferase reaction were 6.8, 22.7, and 0.35 mM, respectively. L-Methionine-DL-sulfoximine strongly inhibited the activity. Like the GS from gram-positive bacteria, Anabaena sp., several yeasts, and mammals, the enzyme from M. ivanovi was not regulated by adenylylation as demonstrated by snake venom phosphodiesterase treatment. Inhibition of the transferase activity by L-alanine, glycine, L-histidine, and L-tryptophan was observed. L-Glutamine alone or in the presence of AMP did not inhibit the GS synthetic activity. The GS of Methanobacterium ivanovi did not cross-react with a variety of antisera against GS from Escherichia coli, Anabaena strain 7120, or Bacillus megaterium. Archaebacterial GS appears to be structurally and functionally similar to eubacterial GS in gram-positive bacteria.  相似文献   

11.
Activities of plasma membrane proteinases such as angiotensin-converting enzyme (ACE), aminopeptidases, and dipeptidyl peptidase IV (DPP-IV) were determined in lymphoid cells of various immunological phenotype which were obtained from 30 patients with lymphoproliferative diseases. The enzyme activities significantly varied depending on the immunological phenotype and stage of cell differentiation, but no correlation was found between activities of ACE, DPP-IV, and aminopeptidases in the cells of different type. The cell lysates studied contained at least two classes of aminopeptidases: metal- and sulfhydryl-dependent enzymes. A sulfhydryl-dependent aminopeptidase with activity optimum at pH 8. 5-9.0 was found for the first time and is suggested to be from a poorly studied aminopeptidase family. In addition to ACE, lysates of leukemic T- and B-cells were found to contain an inhibitor of ACE which was not previously described for these cells.  相似文献   

12.
Two closely related Cl(-)-activated arginyl aminopeptidases (I and II) were purified from a soluble extract of postmortem human cerebral cortex by anion-exchange chromatography and preparative gel electrophoresis. The electrophoretic mobility of II was approximately 80% that of I; the molecular mass of both enzymes was approximately 70 kilodaltons (kDa) (gel filtration). The aminopeptidase action of I and II on aminoacyl-7-amido-4-methylcoumarin (AMC) substrates was restricted to the Arg and Lys derivatives. Both enzymes had significant endopeptidase activity, hydrolysing several biologically active peptides including neurotensin, bradykinin, angiotensin-I, substance P, luliberin, and somatostatin at internal bonds. Other peptides [Leu-enkephalin, proctolin, thyroliberin, adrenocorticotropin18-39 (ACTH18-39), ACTH11-24, and dynorphin (1-13)] were not appreciably hydrolysed. The amino- and endopeptidase activities had pH optima at 6.5 and 7, respectively, and were both inhibited by metal ion chelators and sulphydryl group blocking agents. The aminopeptidase activity was stimulated 20-fold by Cl- ions, whereas the endopeptidase activity was unaffected by the latter. Km values for neurotensin degradation were 20 microM (I) and 37 microM (II) and for Arg-AMC hydrolysis they were 167 microM (I) and 125 microM (II). The endopeptidase activity was not inhibited by the aminopeptidase inhibitors arphamenine or bestatin (IC50 = 9 nM and 0.1 microM, respectively, with Arg-AMC substrate).  相似文献   

13.
A halophilic bacterium was isolated from fermented anchovy sauce and identified as Bacillus species. An extracellular leucine aminopeptidase from Bacillus sp. N2 was purified to homogeneity using four successive purification steps. The enzyme has a native molecular mass of about 57 000 Da using FPLC gel filtration analysis and a molecular mass of 58 000 Da using SDS-polyacrylamide gel electrophoresis. This monomeric leucine aminopeptidase showed maximum enzyme activity at pH 9·5. The optimum temperature was 50 °C when L -Leu- p -nitroanilide was the substrate. The leucine aminopeptidase was inactivated by 1,10-phenanthroline, dithiothreitol and sodium dodecyl sulphate. Enzyme activity was increased by addition of Co2+. It is likely that Co2+ plays an important role in the catalysis or stability of the Bacillus sp. N2 leucine aminopeptidase. Sodium chloride (0–4·5 mol l−1) increased the hydrolytic activity towards L -Leu- p -nitroanilide. The N-terminal amino acid sequence was Glu-Arg-Glu-Leu-Pro-Phe-Lys-Ala-Lys-His-Ala-Tyr-Ser-Thr-Ile. The purified enzyme had a high specificity for L -Leu- p -nitroanilide.  相似文献   

14.
Two major aminopeptidases, an aminopeptidase B and an aminopeptidase M-like enzyme, were purified from human skeletal muscle by DEAE-cellulose, HPLC gel filtration, and hydroxyapatite column chromatographies. The purified aminopeptidase B exhibits a molecular weight of 76,000 under both native and denaturing conditions. The activity of the aminopeptidase B is regulated by C1 ions and other anions in vitro. On the other hand, the aminopeptidase M-like enzyme is a monomeric protein having a molecular weight of 96,000. It is capable of significantly cleaving Phe-, Leu-, Arg-, and Ala-aminoacyl bonds in the presence of 2-mercaptoethanol. The pH optima for both enzymes are around 7.0, and bestatin is an effective inhibitor of both enzymes.  相似文献   

15.
The more potent inhibitory activity against angiotensin-converting enzyme (ACE) was excised from a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) preparation of Bacillus stearothermophilus by heating at 120°C in 1 m AcOH–20mm HCI, as compared with GAPDH preparations of yeast and pig. Sufficient excision of B. stearothermophilus ACE inhibitors required a longer proteolysis time of 60 min. Two inhibitors were then purified by gel-permeation and reverse-phase chromatog-raphies. One of the B. stearothermophilus ACE inhibitors, BG-1, was the GAPDH peptide 68–77 (Gly-Lys-Glu-Ile-Ile-Val-Lys-Ala-Glu-Arg, IC50: 32 μm). Another inhibitor, BG-2 (Gly-Lys-Met-Val-Lys-Val-Val-Ser-Trp-Tyr, IC50: 6 μM), corresponded to GAPDH peptide 304–313. These sequences were quite different from those of vertebrate GAPDH peptides and the venom peptide family with ACE inhibitory activity. BG-2 was found to be a non-competitive type inhibitor, differing from many natural peptide inhibitors. Thus, B. stearothermophilus GAPDH seemed to be a good source of new type ACE inhibitors, in addition to the advantages due to its thermophilic property.  相似文献   

16.
A manganese containing superoxide dismutase was purified to homogeneity from the venom of scorpion Heterometrus fulvipes by ammonium sulfate fractionation followed by gel filtration on Sephadex G-100 and ion exchange chromatography on DEAE-cellulose. The enzyme has a molecular weight of 100,000. Optimum pH for enzyme activity was 8.5 and optimum temperature was 45 degrees C. The enzyme was not sensitive to either cyanide or hydrogen peroxide but was inhibited by chloroform-ethanol mixture and p-hydroxymercuribenzoate. Metal chelators, EDTA, o-phenanthroline and diethyldithiocarbamate inhibited the enzyme activity in decreasing order. The effect of 6 M urea, sodium dodecylsulfate, guanidinium chloride and nitroprusside on enzyme activity has been studied. An antiserum raised against H. fulvipes venom inhibited the superoxide dismutase activity.  相似文献   

17.
Phospholipase A2 inhibitor was purified from the blood plasma of Habu, Trimeresurus flavoviridis, by Sephadex G-200 gel filtration, DEAE-cellulose chromatography, and Blue-Sepharose CL-6B column chromatography. The purified inhibitor was shown to be a glycoprotein with a molecular weight of about 100K. It was found to consist of four subunits whose molecular weights were around 20-24K. In order to examine the inhibition mechanism of the inhibitor, the interaction of the inhibitor with a phospholipase A2 from T. flavoviridis venom was examined by Sephadex G-100 gel filtration. One inhibitor molecule was found to bind directly to one phospholipase A2 molecule in both the presence and absence of Ca2+. The inhibitor inhibited the phospholipase A2 from T. flavoviridis venom with an apparent dissociation constant, Ki, of 1.7 X 10(-10) M, but not the porcine pancreas enzyme or the Agkistrodon halys blomhoffii enzyme belonging to the same family, Crotalidae, as T. flavoviridis, or the phospholipase C from Bacillus cereus.  相似文献   

18.
目的:从广西眼镜蛇蛇毒中分离纯化血管紧张素转换酶抑制剂(Angiotensin Converting Enzyme Inhibitor,ACEI),命名为降压因子(Hypotensive Factor,HF),并测定其生物活性。方法:采用Sephacryl S-100凝胶过滤,CM Sepharose F.F.离子交换层析分离纯化HF,高效液相鉴定纯度,SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)测定其分子量,紫外分光光度法测定HF对血管紧张素转换酶(ACE)的抑制活性。用离体兔子十二指肠平滑肌测定HF增强缓激肽(Bradykinin,BK)的效应。结果:纯化的广西眼镜蛇蛇毒HF经SDS-PAGE检测显示单一条带,测得其相对分子量约为8.2kD,由十二种氨基酸组成,蛋白回收率为5.70%。HF对ACE有明显的抑制作用,其抑制作用与剂量呈正相关。IC50为1.02?g/ml。HF能增强BK对离体兔子十二指肠平滑肌的收缩效应。结论:本方法成功地从广西眼镜蛇蛇毒中纯化出降血压成分。该成分与血管紧张素转换酶抑制剂作用相似,对血管紧张素转换酶有明显的抑制作用。  相似文献   

19.
In order to find a unique proteinase, proteinase-producing bacteria were screened from fish sauce in Thailand. An isolated moderately halophilic bacterium was classified and named Filobacillus sp. RF2-5. The molecular weight of the purified enzyme was estimated to be 49 kDa. The enzyme showed the highest activity at 60 degrees C and pH 10-11 under 10% NaCl, and was highly stable in the presence of about 25% NaCl. The activity was strongly inhibited by phenylmethane sulfonyl fluoride (PMSF), chymostatin, and alpha-microbial alkaline proteinase inhibitor (MAPI). Proteinase activity was activated about 2-fold and 2.5-fold by the addition of 5% and 15-25% NaCl respectively using Suc-Ala-Ala-Phe-pNA as a substrate. The N-terminal 15 amino acid sequence of the purified enzyme showed about 67% identity to that of serine proteinase from Bacillus subtilis 168 and Bacillus subtilis (natto). The proteinase was found to prefer Phe, Met, and Thr at the P1 position, and Ile at the P2 position of peptide substrates, respectively. This is the first serine proteinase with a moderately thermophilic, NaCl-stable, and NaCl-activatable, and that has a unique substrate specificity at the P2 position of substrates from moderately halophilic bacteria, Filobacillus sp.  相似文献   

20.
Some properties (molecular weight, pI, temperature stability, action of selected inhibitors, substrate specificity and pH-activity dependence) of two not yet known cathepsins from rat liver lysosomes are compared with the properties of the known cathepsin B1. Cathepsin L is a thiolproteinase, has a molecular weight of 23--24000 and a pI of 5,8--6,1. By disc electrophoresis and isoelectric focusing there appear several protein bands which all have enzymatic activity. Leupeptin behaves as a strong inhibitor. The pH-optimum for digestion of proteins is close to 5,0. Cathepsin L does not hydrolyse esters and splits synthetic low molecular substrates only to a low degree. Cathepsin L stored in presence of glutathion and EDTA in liquid nitrogen kept its activity for some months. Cathepsin H is an aminopeptidase as well as an endopeptidase. An enzyme with these bifunctional properties was detected up to now only in E. coli but not in animal cells. Cathepsin H is a thiol-enzyme with a molecular weight of 28000 and a pI of 7,1. Strong inhibitors are leucyl-chlormethan and SH-blocking substances. Leupeptin shows only a weak inhibitory effect to this enzyme compared to its action on cathepsins L and B1. The pH-optimum for hydrolysis of all substrates is 6.0. Cathepsin H splits proteins, amino acid derivatives and selected N-protected amino acid derivatives. Cathepsin H compared to cathepsin L and B1 is quite temperature stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号