首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The age related decrease in alpha1-adrenergic stimulated inositol 1,4,5 trisphosphate (IP3) production in parotid cells of aged rats can be partially restored by treatment with S-adenosylmethionine (SAM). This effect is completely blocked by S-adenosyl homocysteine (SAH) and occurs in association with an increase in the conversion of phosphatidylethanolamine to phosphatidylcholine and a decrease in membrane viscosity. In contrast, SAM treatment actually inhibits stimulated IP3 production in cells of young rats. The membrane viscosity of these cells is lower than that of those from aged rats. Although conversion of phosphatidylethanolamine to phosphatidylcholine is enhanced, no further decrease in membrane viscosity is elicited in young cell preparations. These findings suggest that age changes in the membrane environment may result in impaired alpha1-adrenergic signal transduction and that such alterations may be at least partially reversible by SAM treatment.  相似文献   

2.
Shulga YV  Topham MK  Epand RM 《FEBS letters》2011,585(24):4025-4028
We show that diacylglycerol kinase-ε (DGKε) has less preference for the acyl chain at the sn-1 position of diacylglycerol (DAG) than the one at the sn-2 position. Although DGKε discriminates between 1-stearoyl-2-arachidonoyl-DAG and 1-palmitoyl-2-arachidonoyl-DAG, it has similar substrate preference for 1-stearoyl-2-arachidonoyl-DAG and 1,2-diarachidonoyl-DAG. We suggest that in addition to binding to the enzyme, the acyl chain at the sn-1 position may contribute to the depth of insertion of the DAG into the membrane. Thus, the DAG intermediate of the PI-cycle, 1-stearoyl-2-arachidonoyl-DAG, is not the only DAG that is a good substrate for DGKε, the DGK isoform involved in PI-cycling.  相似文献   

3.
Loss of venom from the venom gland after biting or manual extraction leads to morphological changes in venom secreting cells and the start of a cycle of production of new venom. We have previously shown that stimulation of both α- and β-adrenoceptors in the secretory cells of the venom gland is essential for the onset of the venom production cycle in Bothrops jararaca. We investigated the signaling pathway by which the α-adrenoceptor initiates the venom production cycle. Our results show that the α1-adrenoceptor subtype is present in venom gland of the snake. In quiescent cells, stimulation of α1-adrenoceptor with phenylephrine increased the total inositol phosphate concentration, and this effect was blocked by the phospholipase C inhibitor U73122. Phenylephrine mobilized Ca2+ from thapsigargin-sensitive stores and increased protein kinase C activity. In addition, α1-adrenoceptor stimulation increased the activity of ERK 1/2, partially via protein kinase C. Using RT-PCR approach we obtained a partial sequence of a snake α1-adrenoceptor (260 bp) with higher identity with α1D and α1B-adrenoceptors from different species. These results suggest that α1-adrenoceptors in the venom secreting cells are probably coupled to a Gq protein and trigger the venom production cycle by activating the phosphatidylinositol 4,5-bisphosphate and ERK signaling pathway.  相似文献   

4.
Phosphatidylinositol 3,5-bisphosphate (PtdIns[3,5]P(2)) was first identified as a non-abundant phospholipid whose levels increase in response to osmotic stress. In yeast, Fab1p catalyzes formation of PtdIns(3,5)P(2) via phosphorylation of PtdIns(3)P. We have identified Vac14p, a novel vacuolar protein that regulates PtdIns(3,5)P(2) synthesis by modulating Fab1p activity in both the absence and presence of osmotic stress. We find that PtdIns(3)P levels are also elevated in response to osmotic stress, yet, only the elevation of PtdIns(3,5)P(2) levels are regulated by Vac14p. Under basal conditions the levels of PtdIns(3,5)P(2) are 18-28-fold lower than the levels of PtdIns(3)P, PtdIns(4)P, and PtdIns(4,5)P(2). After a 10 min exposure to hyperosmotic stress the levels of PtdIns(3,5)P(2) rise 20-fold, bringing it to a cellular concentration that is similar to the other phosphoinositides. This suggests that PtdIns(3,5)P(2) plays a major role in osmotic stress, perhaps via regulation of vacuolar volume. In fact, during hyperosmotic stress the vacuole morphology of wild-type cells changes dramatically, to smaller, more highly fragmented vacuoles, whereas mutants unable to synthesize PtdIns(3,5)P(2) continue to maintain a single large vacuole. These findings demonstrate that Vac14p regulates the levels of PtdIns(3,5)P(2) and provide insight into why PtdIns(3,5)P(2) levels rise in response to osmotic stress.  相似文献   

5.
The role and regulation of D-type cyclins in the plant cell cycle   总被引:9,自引:0,他引:9  
  相似文献   

6.
Phosphatidylinositol 5-phosphate (PtdIns5P) is a relatively recently discovered inositol lipid whose metabolism and functions are not yet clearly understood. We have transfected cells with a number of enzymes that are potentially implicated in the synthesis or metabolism of PtdIns5P, or subjected cells to a variety of stimuli, and then measured cellular PtdIns5P levels by a specific mass assay. Stable or transient overexpression of Type IIalpha PtdInsP kinase, or transient overexpression of Type Ialpha or IIbeta PtdInsP kinases caused no significant change in cellular PtdIns5P levels. Similarly, subjecting cells to oxidative stress or EGF stimulation had no significant effect on PtdIns5P, but stimulation of HeLa cells with a phosphoinositide-specific PLC-coupled agonist, histamine, caused a 40% decrease within 1 min. Our data question the degree to which inositide kinases regulate PtdIns5P levels in cells, and we discuss the possibility that a significant part of both the synthesis and removal of this lipid may be regulated by phosphatases and possibly phospholipases.  相似文献   

7.
Prolyl oligopeptidase (POP) is a post-proline cleaving enzyme, which is widely distributed in various organs, with high levels in the brain. In this study, we investigated the effects of a selective POP inhibitor, 3-({4-[2-(E)-styrylphenoxy]butanoyl}-l-4-hydroxyprolyl)-thiazolidine (SUAM-14746), on the growth of NB-1 human neuroblastoma cells. SUAM-14746 treatment for 24–72 h suppresses the growth of NB-1 cells without cell death in a dose-dependent manner (10–60 μM). Similar suppressive effects were observed with another POP inhibitor benzyloxycarbonyl-thioprolyl-thioprolinal. The SUAM-14746-induced growth inhibition in NB-1 cells was associated with pronounced G0/G1 arrest and reduced levels of phosphorylated retinoblastoma protein (pRb), cyclin E, and cyclin dependent kinase (CDK) 2, and increased levels of the CDK inhibitor p27kip1 and the tumor suppressor p53. SUAM-14746 also induced transient inhibition of S and G2/M phase progression, which was correlated with retardation of the decrease in the levels of cyclins A and B. Moreover, RNAi-mediated knockdown of POP also led to inhibition of NB-1 cell growth and the effect was accompanied by G0/G1 arrest. These results indicate that POP is a part of the machinery that controls the cell cycle.  相似文献   

8.
Tensins are proposed cytoskeleton-regulating proteins. However, Tensin2 additionally inhibits Akt signalling and cell survival. Structural modelling of the Tensin2 phosphatase (PTPase) domain revealed an active site-like pocket receptive towards phosphoinositides. Tensin2-expressing HEK293 cells displayed negligible levels of plasma membrane phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) under confocal microscopy. However, mock-transfected cells, and Tensin2 cells harbouring a putative phosphatase-inactivating mutation, exhibited significant PtdIns(3,4,5)P3 levels, which decreased upon phosphatidylinositol 3-kinase inhibition with LY294002. In contrast, wtTensin3, mock and mutant cells were identical in membrane PtdIns(3,4,5)P3 and Akt phosphorylation. In vitro lipid PTPase activity was however undetectable in isolated recombinant PTPase domains of both Tensins, indicating a possible loss of structural stability when expressed in isolation. In summary, we provide evidence that Tensin2, in addition to regulating cytoskeletal dynamics, influences phosphoinositide-Akt signalling through its PTPase domain.  相似文献   

9.
Both phosphatidylethanolamine(PE)-N-methylation and phosphatidyl-inositol bisphosphate(PI-bisphosphate) breakdown potentially modify the microdomains in the sarcolemmal lipid bilayer. In this study the possibility of a mutual interaction between the enzymes responsible for these phospholipid reactions is examined. In sarcolemma purified from rat heart, prior hydrolysis of PI lipids by exogenous specific phospholipase C inhibited (to 75, 59 and 78% of control for sites 1, 11 and 11, respectively) the PE-N-methyltransferase system. In cultured rat cardiomyocytes the addition of L-methionine, a precursor for the methyl donor S-adenosylmethionine, stimulated PE-N-methylation in a concentration (0.2–300 µM)-dependent manner. Methionine (50 µM) decreased the basal rate of PI-bisphosphate hydrolysis (to 72% of control), but had no effect on the phenylephrine-stimulated PI-bisphosphate hydrolysis. Maximal activation of the PI-bisphosphate breakdown by 30 µM phenylephrine did not affect the rate of PE-N-methylation in the presence of exogenous methionine (50 µM). These findings support the existence of interactions, although discrete, between the enzymes involved in the PE-N-methylation and PI turnover.  相似文献   

10.
Mechanisms of breast cancer progression and invasion, often involve alteration of hormonal signaling, and upregulation and/or activation of signal transduction pathways that input to cell cycle regulation. Herein, we describe a rationally designed first-in-class novel small molecule inhibitor for targeting oncogenic and hormonal signaling in ER-positive breast cancer. BC-N102 treatment exhibits dose-dependent cytotoxic effects against ER+ breast cancer cell lines. BC-N102 exhibited time course- and dose-dependent cell cycle arrest via downregulation of the estrogen receptor (ER), progesterone receptor (PR), androgen receptor (AR), phosphatidylinositol 3-kinase (PI3K), phosphorylated (p)-extracellular signal-regulated kinase (ERK), p-Akt, CDK2, and CDK4 while increasing p38 mitogen-activated protein kinase (MAPK), and mineralocorticoid receptor (MR) signaling in breast cancer cell line. In addition, we found that BC-N102 suppressed breast cancer tumorigenesis in vivo and prolonged the survival of animals. Our results suggest that the proper application of BC-N102 may be a beneficial chemotherapeutic strategy for ER+ breast cancer patients.  相似文献   

11.
Heme oxygenase-1 (HO-1) is a stress protein, which has been suggested to participate in defense mechanisms against agents that may induce oxidative injury, such as angiotensin II (Ang II). The purpose of the present study was to examine the role of human HO-1 in cell-cycle progression. We investigated the effect of Ang II on HO-1 gene expression in serum-deprived media to drive human endothelial cells into G(0)/G(1) (1% FBS) compared to exponentially grown cells (10% FBS). The addition of Ang II (100 ng/ml) to endothelial cells increased HO-1 protein and activity in G(0)/G(1) in a time-dependent manner, reaching a maximum HO-1 level at 16 h. Real-time RT-PCR demonstrated that Ang II increased the levels of HO-1 mRNA in G(0)/G(1) as early as 1 h. The rate of HO-1 induction in response to Ang II was several-fold higher in serum-starved cells compared to cells cultured in continuous 10% FBS. The addition of Ang II increased the generation of 8-epi-isoprostane PGF(2 alpha). Inhibition of HO-1, by Stannis mesoporphyrin (SnMP), potentiated Ang II-mediated DNA damage and generation of 8-epi-isoprostane PGF(2 alpha). These results imply that expression of HO-1 in G(0)/G(1), in the presence of Ang II, may be a key player in attenuating DNA damage during cell-cycle progression. Thus, exposure of endothelial cells to Ang II causes a complex response involving generation of superoxide anion, which may be involved in DNA damage. Upregulation of HO-1 ensures the generation of bilirubin and carbon monoxide (CO) in G(0)/G(1) phase to counteract Ang II-mediated oxidative DNA damage. Inducibility of HO-1 in G(0)/G(1) phase is essential and probably regulated by a complex system involving oxygen species to assure controlled cell growth.  相似文献   

12.
13.
Chlorobium limicola has been proposed to assimilate CO2 autotrophically via a reductive tricarboxylic acid cycle rather than via the Calvin cycle. This proposal has been a matter of considerable controversy. In order to determine which pathway is operative, the bacterium was grown on a mineral salts medium with CO2 as the main carbon source supplemented with specifically labeled 14C-pyruvate, and the incorporation of 14C into alanine (intracellular pyruvate), aspartate (oxaloacetate), glutamate (-ketoglutarate), and glucose (hexosephosphate) was measured in exponentially growing cells in long term labeling experiments. During growth in presence of pyruvate, 20% of the cell carbon were derived from pyruvate in the medium, 80% from CO2. Since pyruvate was not oxidized to CO2, only those compounds should become labeled which were synthesized from CO2 via pyruvate.The three amino acids and glucose were found to be labeled. Alanine had one fifth the specific radioactivity of the extracellular pyruvate, indicating that 20% of the intracellular pyruvate pool were derived from pyruvate in the medium, 80% were synthesized from CO2. Glucose had twice the specific radioactivity of alanine, showing that hexosephosphate synthesis from CO2 proceeded via the pyruvate pool. The latter finding is not consistent with the operation of the Calvin cycle, in which pyruvate is not an intermediate. The specific radioactivities of aspartate (oxaloacetate) and of glutamate (-ketoglutarate) were practically identical but considerably lower than that of alanine ( intracellular pyruvate). These findings are compatible with the operation of a reductive tricarboxylic acid cycle as mechanism of autotrophic CO2 fixation. Degradation studies of the cell components support this interpretation. Offprint requests to: G. Fuchs  相似文献   

14.
Menopause occurs as consequence of ovarian senescence that leads to a drop of oestrogen hormone. The decreased oestrogen levels combined with the impairment of the redox system may contribute to the increased risk of postmenopausal cardiovascular disease. Supplementation with antioxidants may be an alternative to reduce cardiovascular risk. The study evaluated the effect of dietary supplementation with docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and α-lipoic acid (LA) for a period of 16 weeks on oxidative stress biomarkers in the hearts of ovariectomized 3-month-old rats. Ovariectomy did not increase the level of the damage markers malondialdehyde and carbonyl, and both were decreased by LA supplementation. Ovariectomy increased the levels of the endogenous antioxidants glutathione, vitamin C and H2O2 consumption, after restoration by DHA, EPA, and LA supplementation. Vitamin E, glutathione peroxidase, glutathione-S-transferase, and superoxide dismutase are not altered by ovariectomy. Lipid and protein damage are not increased after ovariectomy and a portion of the endogenous antioxidants concomitantly increased, suggesting that hearts may be protected by these antioxidants. DHA, EPA, and LA restored these endogenous antioxidants, showing that all evaluated supplements are effective in modulating the antioxidant redox system in the heart. LA showed additional effect on redox markers, decreasing lipid and protein damage markers.  相似文献   

15.
16.
Perchloric acid extracts of LLC-PK1/Cl4 cells, a renal epithelial cell line, incubated with either [2-13C]glycine l-[3-13C]alanine, or d,l-[3-13C]aspartic acid were investigated by 13C-NMR spectroscopy. All amino acids, except labelled glycine, gave rise to glycolytic products and tricarboxylic acid cycle (TCA) intermediates. For the first time we also observed activity of γ-glutamyltransferase activity and glutathione synthetase activity in LLC-PK1 cells, as is evident from enrichment of reduced glutathione. Time courseS showed that only 6% of the labelled glycine was utilized in 30 min, whereas 31% of l-alanine and 60% of l-aspartic acid was utilized during the same period. 13C-NMR was also shown to be a useful tool for the determination of amino acid uptake in LLC-PK1 cells. These uptake experiments indicated that glycine alanine and aspartic acid are transported into Cl4 cells via a sodium-dependent process. From the relative enrichment of the glutamate carbons, we calculated the activity of pyruvate dehydrogenase to be about 61% of when labelled l-alanine was the only carbon source for LLC-PK1/Cl4 cells. Experiments with labelled d,l-aspartic, however, showed that about 40% of C-3-enriched oxaloacetate (arising from a de-amination of aspartic acid) reached the pyruvate pool.  相似文献   

17.
The ability of insulin to induce alpha1B-adrenoceptor phosphorylation and desensitization was tested in two model systems: rat-1 cells that stably express alpha1B-adrenoceptors, through transfection, and endogenously express insulin receptors and DDT1 MF2 cells that endogenously express both receptors. Insulin induced concentration-dependent increases in the phosphorylation state of the adrenergic receptors in the two models with similar EC50 values (0.5-2 nM). The effect was rapid in the two systems but it was sustained in rat-1 cells and transient in DDT1 MF2 cells. In both cell lines, the insulin-mediated phosphorylation of alpha1B-adrenoceptors was blocked by wortmannin and LY 294002, and by staurosporine and bisindolylmaleimide I, indicating that the effect involved phosphoinositide 3-kinase and protein kinase C activities. The adrenoceptor phosphorylation induced by insulin was associated to desensitization as evidences by a diminished elevation of intracellular calcium in response to noradrenaline. Inhibitors of phosphoinositide 3-kinase and protein kinase C blocked the functional desensitization induced by insulin.  相似文献   

18.
This study investigated whether co-administration of dopamine D1 and D2 agonists might additively inhibit the feeding effect and whether this effect was mediated by the action on hypothalamic neuropeptide Y (NPY). The D1 agonist SKF 38393 (SKF) and D2 agonists apomorphine (APO) or quinpirole (QNP) were administered, alone or in combination, to examine this possibility. In single administration, decreases of daily food intake were observed only in rats treated twice a day with a higher dose of SKF, APO or QNP. However, combined administration of D1 and D2 agonists, with each agent at a dose that alone did not induce anorexia in one daily treatment, exerted a significant effect. These results reveal that co-activation of D1 and D2 receptors can additively reduce daily food intake and body weight. The same treatment also decreased the level of hypothalamic NPY 24 h post-treatment. These results suggest an additive effect during combined activation of D1 and D2 receptor subtypes to decrease food intake and body weight that are mediated by the action of hypothalamic NPY. Similar to the effects seen in healthy rats, combined D1/D2 administration was also effective in the reduction of food intake in diabetic rats, revealing the efficiency of D1/D2 agonist in the improvement of hyperphasia in diabetic animals.  相似文献   

19.
20.
Recently, we proposed the hypothesis that a vicious cycle exists in human hibernating myocardium (HM) between the progression of myocyte degeneration and the development of fibrosis [1]. We now investigated the pathomechanism of this cycle in more detail and established a correlation between the severity of the morphological changes and the degree of postoperative functional recovery of HM.HM was diagnosed by dobutamine echocardiography, thallium-201 scintigraphy and radionuclide ventriculography. Functional recovery was present at 3 months after coronary bypass surgery but remained unchanged at 15 months. Forty patients were subdivided into 2 groups: A with complete and B with incomplete recovery. Biopsies taken during surgery and studied by electron microscopy, immunocytochemistry, rt-PCR, and morphometry revealed myocyte degeneration and inflammatory and fibrinogenic changes in a widened interstitial space. We report here for the first time an upregulation of TGF-1 evident by a 5-fold increase of fibroblasts and macrophages exhibiting a TGF-1 content 3-fold larger than in control, and a > 3-fold increase in TGF-1 mRNA by rt-PCR. The number of angiotensin converting enzyme (ACE) containing structures was increased (n/mm2: control - 11.4, A - 17.6, B - 19.2, control vs. A and B, p < 0.05). Fibrosis was more severe in group B than A or control (%: C - 10.1; A - 21.2; B - 40.6; p < 0.05). Capillary density was significantly reduced (n/mm2: C - 1152; A - 782; B - 579, p < 0.05) and intercapillary distance was widened (m: C - 29.5, A - 36.1, B - 43.3, p < 0.05). The number of CD 3 (n/mm2: C - 5.0; A - 9.6; B - 9.4, ns) and CD 68 positive cells (n/mm2: C - 37.2; A - 80.7; B - 55.0, C vs. A p < 0.05) was elevated in HM as compared to control indicating an inflammatory reaction. Cut-off points for functional recovery are fibrosis > 32%, capillary density < 660/mm2 and intercapillary distance > 39.0 m.In HM a self-perpetuating vicious cycle of tissue alterations leads to progressive replacement fibrosis and continuous intracellular degeneration which should be interrupted by early revascularization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号