首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aspartic proteinases were purified from sunflower seed extracts by affinity chromatography on a pepstatin A-EAH Sepharose column and by Mono Q column chromatography. The final preparation contained three purified fractions. SDS-PAGE showed that one of the fractions consisted of disulfide-bonded subunits (29 and 9 kDa), and the other two fractions contained noncovalently bound subunits (29 and 9 kDa). These purified enzymes showed optimum pH for hemoglobinolytic activity at pH 3.0 and were completely inhibited by pepstatin A like other typical aspartic proteinases. Sunflower enzymes showed more restricted specificity on oxidized insulin B chain and glucagon than other aspartic proteinases. The cDNA coding for an aspartic proteinase was cloned and sequenced. The deduced amino acid sequence showed that the mature enzyme consisted of 440 amino acid residues with a molecular mass of 47,559 Da. The difference between the molecular size of purified enzymes and of the mature enzyme was due to the fact that the purified enzymes were heterodimers formed by the proteolytic processing of the mature enzyme. The derived amino acid sequence of the enzyme showed 30-78% sequence identity with that of other aspartic proteinases.  相似文献   

2.
The monomeric form of rabbit liver aryl sulfatase A (aryl sulfate sulfohydrolase, EC 3.1.6.1) was covalently coupled to CNBr-activated Sepharose and the catalytic properties of the covalently coupled monomer subunit were examined. The immobilized subunit showed one pH optimum near pH 5.6 which appears to be the characteristic pH optimum of the monomer. The enzyme-Sepharose complex exhibited the characteristic anomalous kinetic behavior at pH 5.5 but there was no turnover-induced inactivation of the immobilized enzyme at pH 4.5. The covalently coupled subunit column was examined for its ability to act as a subunit affinity chromatography medium. It was found that dissolved aryl sulfatase A was removed from solution at pH 4.5 and pH 5.0, I = 0.2, and became associated with the affinity column of Sepharose-aryl sulfatase A. The retained subunit of the enzyme could subsequently be quantitatively eluted with 0.2 m Tris-HCl, pH 7.5. Extraneous protein such as bovine serum albumin did not measureably affect the rate or equilibrium for association of the enzyme to the covalently bound subunit. The extent of binding of the enzyme to the affinity column was found to be strongly dependent on the time of equilibration and on the pH. About 90% of the enzyme was retained after 24 h at pH 5.0, I = 0.2. Under otherwise comparable conditions, use of Sepharose-6MB resulted in slightly faster association than did Sepharose-4B. Under the experimental conditions employed, the total capacity of the affinity column was approx 50% of the total aryl sulfatase A coupled to the Sepharose. The rabbit liver subunit column also permits the purification of several other aryl sulfatase A enzymes. Thus, the subunit affinity column provides a simple, convenient, and rapid procedure for the isolation of most mammalian aryl sulfatase A enzymes as well as for studying inter- and intraspecific subunit association interactions.  相似文献   

3.
The trhombin-like activities from the snake venoms of two subspecies of Bothrops atrox, moojeni (type I) and marajoensis (type II), were purified to homogeneity by affinity chromatography on a support consisting of the inhibitor, p-aminobenzamidine, linked to Sepharose 4B with a spacer of diaminodipropylaminosuccinate. At room temperature the enzyme was not bound to the affinity support but rather was retarded in relation to the unbound protein. As a result the thrombin-like activity eluted in a large volume following the main protein fraction. However, at 4 degrees the enzyme was absorbed to the affinity support and could be eluted specifically with the ligand benzamidine (0.15 M). Optimal conditions for column loading and washing were 0.05 M Tris.HCl/0.4 M NaCl, pH 9.0 at 4 degrees. The type I enzyme isolated in this manner showed a single major band on pH 8.9 disc gel electrophoresis as well as two minor bands. Further purification by isoelectric focusing yielded one major and two minor components. All three protein fractions had identical thrombin-like activities and amino acid composition. The major band had a specific activity of 210 to 230 NIH thrombin units/mg, a S20, w of 2.65 S, a molecular weight of 29,000, and an E1% 280 of 15.6. This protein has a carbohydrate content, measured as hexose, glucosamine, and sialic acid, of 27%. From the amino acid and carbohydrate composition a partial specific volume of 0.700 ml/g was calculated. The type I enzyme, purified on affinity chromatography only, did not activate Factor XIII and was free of thromboplastin-like activity. The type II enzyme behaved very differently from the type I on pH 8.9 polyacrylamide disc gels yielding two major bands and two minor bands. The relative amounts of these four bands were not a function of purity. The type II enzyme had a specific activity of 650 to 700 NIH thrombin units/mg, a S20, w of 2.60, and a molecular weight of 31,400.  相似文献   

4.
The reaction of Mucor miehei protease with concanavalin A was followed by a turbidimetric assay in the pH range 5-8. At pH 4.0, no turbidity developed but binding of the enzyme to concanavalin A could be demonstrated by gel filtration. Two fractions of apparent molecular weight 65000 and 52000 were isolated, the 65000 molecular weight species apparently representing a protomer of concanavalin A (24000) bound to the enzyme. An analysis of the circular dichroism spectrum of this complex suggested that protomer binding results in a conformational change in the enzyme which is associated with a 30% increase in proteolytic activity. At pH 6.0, the enzyme was strongly bound to columns of concanavalin A Sepharose but could be removed by including alpha-methyl D-glucoside and NaC1 in the elution buffer. Some column degradation occurred at room temperature but was not detectable at 4 degrees C where rapid elution of the enzyme resulted in a greater than 90% yield of highly active protein. Periodate-oxidized Mucor miehei protease and Mucor renin did not react with concanavalin A and were not bound to the affinity column.  相似文献   

5.
Surface receptors of guinea pig peritoneal macrophages specific for the Fc region of IgG (Fc gamma receptor) were isolated and identified as a surface-radioiodinated component with a molecular weight of 44,000 that bound in an Fc-specific manner to IgG2 of guinea pig immunoglobulin immobilized in any of the following three different ways: IgG2 antibody in insoluble immune complex, IgG2 antibody bound to antigen-coupled Sepharose, and IgG2 covalently coupled to Sepharose. In order to obtain the Fc gamma receptor retaining the binding activity, the Fc-binding component was isolated by IgG2 affinity chromatography in which mild acidic buffer (pH 5.0-4.0) was chosen to elute the component bound to the affinity column. Forty-five to sixty-two percent of the eluted radioactivity was shown to rebind to the IgG2-affinity column. The bound fraction showed a single radioactive peak of 44,000 daltons in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The Fc-binding component isolated by the affinity chromatography behaved similarly in gel filtration in the presence of a detergent, as did the detergent-solubilized Fc gamma receptor before isolation by affinity chromatography. These results suggested that the Fc gamma receptor was isolated in a native form. Furthermore, it was confirmed that the isolated Fc gamma receptor is distinct from actin or the actin-like protein (DNase I-binding protein) which had been reported to bind to IgG-affinity column.  相似文献   

6.
RNase T2 bound to an affinity adsorbent, 5'-adenylate-aminohexyl-Sepharose 4B, specifically at pH 4.5. The colorless enzyme was eluted only by the simultaneous addition of 2'(3')-AMP (1 mM) and NaCl (greater than 1 M) at pH 4.5. By applying this affinity chromatography to the purification of RNase T2, pure enzyme with a specific activity of 60 was obtained in only four steps and the yield was about 10 times higher than that of the previous purification method. This enzyme preparation was found to be heterogeneous in molecular weight and was separated into two fractions on Sephadex G-75 gel filtration. As the smaller enzyme with a molecular weight of 36,000 was identical with RNase T2 in every property examined, we tentatively designated the larger one with an apparent molecular weight of 80,000 as high molecular weight RNase T2 (RNase T2-L). RNase T2-L was still heterogeneous and was separated into five fractions, RNases T2-L 1-5, by repeated Sephadex G-150 gel filtration. The amino acid and carbohydrate analyses revealed that each of these fractions has a protein moiety in common with RNase T2 and the heterogeneities were due to the carbohydrate content, mainly galactose content.  相似文献   

7.
Interactions between different corneal proteoglycans.   总被引:1,自引:0,他引:1       下载免费PDF全文
Proteoglycans were extracted from bovine cornea with 4M-guanidinium chloride and purified by CsCl-density-gradient centrifugation. Under associative conditions two fractions were found: one capable of forming assemblies of high molecular weight and another lacking this property. The heavier fraction (density 1.59 g/ml) was eluted as a single retarded peak from Sepharose 2B, but on DEAE-Sephadex chromatography, gave two peaks: the first (eluted with 0.75 M-NaCl) contained mainly proteochondroitin sulphate and the second (eluted with 1.25 M-NaCl) mainly proteokeratan sulphate. Each of these proteoglycans was more retarded on Sepharose 2B than was the original sample from density-gradient centrifugation. Re-aggregation was obtained by recombination of the two fractions. The lighter fraction (density 1.44 g/ml), containing predominantly keratan sulphate chains, was eluted from DEAE-Sephadex as a single peak with 1.25 M-NaCl and was retarded on Sepharose 2B: this fraction was not able to form aggregates with proteochondroitin sulphate. Chemical analyses of the carbohydrate and protein moieties of the proteoglycans from DEAE-Sephadex confirmed that, in the cornea, different subunits are present with characteristic aggregation properties and hydrodynamic volumes.  相似文献   

8.
The twin enzyme glutamate-formiminotransferase and formiminotetrahydrofolate-cyclodeaminase were purified by subsequent ammonium sulphate fractionation, affinity chromatography with tetrahydrofolate covalently bound to Sepharose 4B and following isoelectric focusing. In the presence of formiminoglutamate the major part of the enzyme focused at pH 5.8 and was electrophoretically homogeneous. Another peak with the enzyme activity focusing at pH 4.5 was found in low amount but it was a heterogeneous protein mixture. The presence of formiminoglutamate in the course of affinity chromatography appeared to be necessary for achieving the purified enzyme.  相似文献   

9.
The possibility to purify glucose oxidase from Penicillium vitale on immunosorbent containing specific antibodies to the enzyme covalently bound with Sepharose 4B is studied. The method of affinity chromatography was applied, beside routine methods of fractionating blood serum proteins, to isolate specific antibodies from antiserum of rabbits immunized with glucose oxidase. Immobilized on Sepharose glucose oxidase was used as biospecific sorbent. Specific antibodies to the enzyme were isolated using chromatograpy of gamma-globulins mixture followed by protein desorption from the column with 1 M NaC1 and 3% glucose. Antibodies were immobilized by their covalent binding to activated Sepharose. The immunosorbent obtained was used to purify low active preparation of glucose oxidase by means of affinity chromatography under conditions worked out for the antibodies isolation. The enzyme was eluted from the column with 1 M NaC1 (pH 3.0) containing 3% glucose. 5-Fold purified enzyme preparation was isolated.  相似文献   

10.
1. alpha-Cyano-4-hydroxycinnamate was coupled to Sepharose CL-4B activated with 1,2:3,4-bisepoxybutane. 2. The low-Km rat liver mitochondrial aldehyde dehydrogenase was specifically bound to this affinity medium, and could subsequently be eluted with alpha-cyano-4-hydroxycinnamate. 3. The enzyme purified in this manner had a subunit molecular mass of 55 kDa and a pI of approx. 6.5. A minor component of approx. 57 kDa was also present and had a significantly higher pI value; this may be the precursor for aldehyde dehydrogenase. 4. alpha-Cyanocinnamate and some related compounds were found to be uncompetitive inhibitors of the enzyme. 5. No cytosolic aldehyde dehydrogenase was bound to the affinity column, but a protein from a rat liver post-mitochondrial supernatant with a molecular mass of approx. 25 kDa was bound, and could be eluted subsequently with alpha-cyano-4-hydroxycinnamate.  相似文献   

11.
An affinity column consisting of the specific peptide inhibitor of papain, Gly-Gly (O-benzyl)Tyr-Arg, attached to Sepharose was found to bind the active thiol proteinase papaya peptidase A specifically, but only at an ionic strength significantly higher than the one at which papain is bound. When a mixture of active papaya peptidase A and its irreversibly oxidized contaminant was applied to the column, the active enzyme was bound whereas the inactive material was not. The bound enzyme was released by deionized water and found to contain 1 mol of SH group/mol of protein. The different conditions required for the binding of the two enzymes to the immobilized peptide was shown to reflect different ionic-strength-dependences of the affinity of the two enzymes for the peptide in solution. Whereas the affinity of papain for the inhibitor appears to be insensitive to ionic strength over the range studied, that of papaya peptidase A is ionic-strength-dependent and always lower than that of papain. A rate assay is devised for papaya peptidase A with N-benzyloxycarbonylglycine p-nitrophenyl ester as the substrate at pH 5.5. After calibration against an active-site titration the assay yields the thiol-group concentration without interference from inactive contaminants. For the papaya peptidase A-catalysed hydrolysis of N-benzyloxycarbonylglycine p-nitrophenyl ester at pH 5.5 kcat. was found to be 16.7s-1, which is about 3 times the value found for the same reaction catalysed by papain.  相似文献   

12.
p-Hydroxyacetophenone was coupled to epoxy-activated Sepharose 6B to generate an affinity chromatographic matrix to purify aldehyde dehydrogenase. Purified beef liver mitochondrial aldehyde dehydrogenase specifically bound to the support and could be eluted with p-hydroxyacetophenone. A post-ammonium sulfate (30-55%) fraction of bovine liver was applied to the affinity gel column and aldehyde dehydrogenase was effectively purified, although not to complete homogeneity, indicating the potential selectivity of the matrix. Both beef liver cytosolic and mitochondrial aldehyde dehydrogenase bound to the column. A post-Cibacron blue Sepharose Cl-6B affinity-fractionated liver mitochondrial aldehyde dehydrogenase was purified to complete homogeneity by p-hydroxyacetophenone-Sepharose, thus eliminating the need for the isoelectric focusing step often employed. p-Hydroxyacetophenone was found to be a competitive inhibitor against propionaldehyde and noncompetitive against NAD. Escherichia coli lysates of recombinantly expressed aldehyde dehydrogenase were purified from E. coli lysates with one major 25-kDa protein contaminant also binding to the column, as detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The 25-kDa contaminant was found to be chloramphenicol acetyl transferase from sequence analysis and binding studies.  相似文献   

13.
A beta-D-galactosidase from bovine liver was purified to apparent homogeneity. The major purification step was affinity chromatography on a column of D-galactose attached to a Sepharose support activated with divinyl sulfone. Affinity media prepared by binding ligands to Sepharose activated with cyanogen bromide were unsuitable for purification of the enzyme, even though such media have been used to purify beta-D-galactosidases from other sources. The molecular weight of the denatured enzyme was 67,000. The molecular weight of the native enzyme at pH 7.0 was 68,000, and at pH 4.5 or 5.0, was 141,000. These data suggest that the enzyme has a single, fundamental subunit with a molecular weight of 67,000, and that the enzyme exists as a monomer at pH 7.0, and a dimer at pH 4.5 or 5.0. The Vmax values of the enzyme with p-nitrophenyl beta-D-galactoside, p-nitrophenyl beta-D-fucoside, lactose, and beta-Gal-(1----4)-beta-GlcNAc-1---- OC6H4NO2 -p were 10,204, 11,550, 9,479, and 8,859 nmol/min/mg of protein, respectively, and the Km values for these substrates were 0.08, 14.9, 14.2, and 1.6mM, respectively. D-Galactose, beta-D- galactosylamine , p-aminophenyl 1-thio-beta-D-galactoside, and D- galactono -1,4-lactone were competitive inhibitors of the enzyme, with Ki values of 0.9, 0.6, 0.6, and 0.8mM, respectively. The enzyme catalyzed the transfer of the D-galactosyl group from p-nitrophenyl beta-D-galactoside to D-glucose. The pH optimum of the enzyme was 4.5, and the pI was 4.7.  相似文献   

14.
Cathepsin L-like enzyme was purified from the body wall of the sea cucumber Stichopus japonicus by an integral method involving ammonium sulfate precipitation and a series of column chromatographies on DEAE Sepharose CL-6B, Sephadex G-75, and TSK-GEL. The molecular mass of the purified enzyme was estimated to be 63 kDa by SDS-PAGE. The enzyme cleaved N-carbobenzoxy-phenylalanine-arginine7-amido-4-methylcoumarin with K(m) (69.92 microM) and k(cat) (12.80/S) hardly hydrolyzed N-carbobenzoxy-arginine-arginine 7-amido-4-methylcoumarin and L-arginine 7-amido-4-methylcoumarin. The optimum pH and temperature for the purified enzyme were found to be 5.0 and 50 degrees C. It showed thermal stability below 40 degrees C. The activity was inhibited by sulfhydryl reagents and activated by reducing agents. These results suggest that the purified enzyme was a cathepsin L-like enzyme and that it existed in the form of its enzyme-inhibitor complex or precursor.  相似文献   

15.
A procedure for the purification of aldehyde dehydrogenase from bakers' yeast (Saccharomyces cerevisiae) is reported. Treatment with acid, heat and organic solvents was avoided and chromatographic and filtration techniques in the presence of phenylmethylsulfonylfluoride were mainly used. An affinity chromatography step using the reactive dye Cibacron blue F3G-A, which was covalently bound to Sepharose 4B, was found to be essential. The enzyme was bound to and then released from the dye. The purified enzyme was shown to be homogeneous by gel filtration, disc electrophoresis and SDS electrophoresis. The molecular weight of the purified enzyme determined by gel filtration was 170,000, which agreed with that of the enzyme in the crude extract. The enzyme was composed of subunits of a molecular weight of 57,000. The specific activity of the enzyme was 20 units per mg of protein under the standard assay conditions. The substrate specificity, the relative maximal velocity, the michaelis constants, the pH optimum, the stability and the activation energy of the enzyme are reported.  相似文献   

16.
Rabbit muscle troponin complex covalently bound to CNBr-activated Sepharose 4B was shown to interact with soluble lactate dehydrogenase with a stoichiometry of 2 mol lactate dehydrogenase/mol of troponin. The presence of Ca2+ influenced the strength of association (the KD values of 0.73 and 2.3 microM were determined in the presence of 200 microM EGTA or 100 microM Ca2+, respectively). In the absence of Ca2+, the affinity of lactate dehydrogenase to troponin was strongly pH-dependent, reaching a maximum in the region of pH 6.0-7.0. No change of catalytic activity was observed as a result of interaction between lactate dehydrogenase and troponin, the enzyme appeared capable of functioning in the bound form.  相似文献   

17.
The behaviour ofN-acetyllactosamine-type oligosaccharides and glycopeptides on a column of mistletoe lectin I (MLI) immobilized on Sepharose 4B was examined. The immobilized lectin does not show any affinity for asialo-N-glycosylpeptides and related oligosaccharides, which possess one to four unmaskedN-acetyllactosamine sequences. However, substitution of at least one of theN-acetyllactosamine sequences by sialic acid residues, either at O-3 or O-6 of galactose, slightly enhances the affinity of the lectin. Such sialylatedN-glycosylpeptides or oligosaccharides are eluted from the lectin column by the starting buffer as retarded fractions. Surprisingly, the affinity of the immobilized MLI is higher for P1 antigen-containing glycopeptide isolated from turtle-dove ovomucoid and for glycopeptides from bovine thyroglobulin containing terminal non-reducing Gal1–3Gal sequences. These structures are strongly bound on the lectin column and their elution is obtained with 0.15M galactose in the starting buffer.In memory of Hartmut Franz.  相似文献   

18.
The trehalase of Chaetomium aureum was purified about 196-fold with a yield of 51% from the culture filtrate by ammonium sulfate fractionation, DEAE-cellulose column chromatography, acetone fractionation, and Sephadex G-100 gel filtration. The enzyme preparation was homogeneous on disc electrophoresis. The enzyme was most active at pH 4.0 and 50°C. The enzyme was stable from pH 4.0 to 9.0 on 12 h incubation at 37°C. The molecular weight of the enzyme was estimated to be 450,000 by gel filtration on a column of Sepharose 6B, and 115,000 by SDS polyacrylamide gel electrophoresis. This indicated that the enzyme might consist of 4 subunits. The isoelectric point of the enzyme was pH 4.0. The enzyme was active specifically on trehalose and not active on the other disaccharides tested.  相似文献   

19.
Blue Dextran has been coupled covalently to Sepharose-4B to purify the enzymatic complex NAD(P)H-nitrate reductase (EC 1.6.6.2) from the green alga Ankistrodesmus braunii by affinity chromatography. The optimum conditions for the accomplishment of the chromatographic process have been determined. The adsorption of nitrate reductase on Blue Dextran Sepharose is optimum when a phosphate buffer of low ionic strength and pH 6.5-7.0 is used. Once the enzyme has been bound to Blue Dextran Sepharose, it can be specifically eluted by addition of NADH and FAD to the washing buffer. However, none of the nucleotides added separately is able to promote the elution of the enzyme from the column. The elution can be also achieved, but not specifically, by increasing the ionic strength of the buffer with KCl. These results have made possible a procedure for the purification of A. braunii nitrate reductase which led to electrophoretic homogeneity, with an overall yield of 70% and a specific activity of 49 units/mg of protein.  相似文献   

20.
Porcine pancreatic phospholipase A2 (PLA2) was immobilized to Sepharose 4B and porcine serum was passed through this affinity column. Bound substances were eluted by an EDTA-containing buffer and fractionated in a Sepharose 6B column. A single protein peak of the eluate from the latter column was found to inhibit PLA2 activity in a dose-dependent manner in an assay system using radioactive lecithin as a substrate and porcine pancreatic PLA2 as the enzyme source. The serum fraction containing the PLA2 inhibitory protein(s) (PIP) appeared inhomogeneous on SDS-polyacrylamide gel electrophoresis with two major bands close to each other, corresponding to a molecular weight of approximately 60,000. It was concluded that PIP might act as a protective principle against autodigestion in acute pancreatitis and other inflammatory diseases as well as playing a regulatory role in prostaglandin metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号