首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metazoans limit origin firing to once per cell cycle by oscillations in cyclin-dependent kinases and the replication licensing inhibitor geminin. Geminin inhibits pre-replication complex assembly by preventing Cdt1 from recruiting the minichromosome maintenance proteins to chromatin. Geminin depletion results in genomic over-replication in Drosophila and human cell lines. Here, we show that loss of geminin affects other cell cycle-dependent events in addition to DNA replication. Geminin inactivation causes centrosome overduplication without passage through mitosis in human normal and cancer cells. Centrosomes are microtubule-organizing centres that are duplicated during S phase and have an important role in the fidelity of chromosome transmission by nucleating the mitotic spindle. Consistent with this, geminin-depleted cells show multiple mitotic defects, including multipolar spindles, when driven into mitosis by checkpoint abrogation. These results show that the consequences of geminin loss exceed its immediate role in DNA replication and extend to promoting chromosome mis-segregation in mitosis.  相似文献   

2.
The proliferation of vascular smooth muscle cells (VSMCs) plays a major role in the pathogenesis of many cardiovascular diseases. Geminin regulates DNA replication and cell cycle progression and plays a key role in the proliferation of cancer cells. We therefore hypothesized that geminin regulates the proliferation of VSMCs. The present study demonstrates that the level of geminin expression was low in quiescent VSMCs (approximately 90% and 10% of cells in the G1 and in S/G2/M phases of the cell cycle, respectively), increased as more cells entered in S/G2/M, and then decreased as cells exited S/G2/M. Further, angiotensin II and norepinephrine stimulated expression of geminin in VSMCs. However, the DNA content, nuclear morphology, percentage of cells at different stages of the cell cycle, and rate of proliferation of VSMCs from which geminin was either depleted or overexpressed were all similar. These findings indicate geminin functions differently in VSMCs than it does in cancer cell lines and that it may provide a target for treating cancers without affecting normal cells.  相似文献   

3.
4.
It was recently found that overexpression of the trypsin gene in tumor cells stimulates their growth in culture and in nude mice. In the present study, expression of trypsin in various human cancer cell lines and tissues was studied by gelatin zymography and immunoblotting before and after enterokinase treatment and by immunohistochemistry. The analyses showed that many stomach, colon, and breast cancer cell lines secreted trypsinogens-1 and/or -2, as well as an unidentified serine proteinase of about 70 kDa, into culture medium. Lung cancer cell lines secreted 18- and 19-kDa unidentified trypsin-like proteins. Stomach cancer cell lines frequently secreted active trypsin, suggesting that they produced an endogenous activator of trypsinogen, most likely enterokinase. Active trypsin formed a complex with a soluble form of Alzheimer amyloid precursor protein (sAPP), a Kunitz-type trypsin inhibitor, which was secreted by all cell lines tested. This indicated that sAPP is a primary inhibitor of secreted trypsin. Immunohistochemical analysis showed that trypsin(ogen) was frequently expressed at high levels in stomach and colon cancers, but scarcely in breast cancers. In the stomach cancers, the trypsin immunoreactivity was higher in the malignant, non-cohesive type than in the cohesive type. These results support the hypothesis that tumor-derived trypsin is involved in the malignant growth of tumor cells, especially stomach cancer cells.  相似文献   

5.
6.
Genomic DNA replication is tightly controlled to ensure that DNA replication occurs once per cell cycle; loss of this control leads to genomic instability. Geminin, a DNA replication inhibitor, plays an important role in regulation of DNA replication. To investigate the role of human geminin in the maintenance of genomic stability, we eliminated geminin by RNA interference in human cancer cells. Depletion of geminin led to overreplication and the formation of giant nuclei in cells that had wild-type or mutant p53. We found that overreplication caused by depletion of geminin activated both Chk1 and Chk2, which then phosphorylated Cdc25C on Ser216, resulting in its sequestration outside the nucleus, thus inhibiting cyclin B-Cdc2 activity. This activated G(2)/M checkpoint prevented cells with overreplicated DNA from entering mitosis. Addition of caffeine, UCN-01, or inhibitors of checkpoint pathways or silencing of Chk1 suppressed the accumulation of overreplicated cells and promoted apoptosis. From these results, we conclude that geminin is required for suppressing overreplication in human cells and that a G(2)/M checkpoint restricts the proliferation of cells with overreplicated DNA.  相似文献   

7.
8.
9.
We recently identified Eph receptor A10 (EphA10) as a novel breast cancer-specific protein. Moreover, we also showed that an in-house developed anti-EphA10 monoclonal antibody (mAb) significantly inhibited proliferation of breast cancer cells, suggesting EphA10 as a promising target for breast cancer therapy. However, the only other known report for EphA10 was its expression in the testis at the mRNA level. Therefore, the potency of EphA10 as a drug target against cancers other than the breast is not known. The expression of EphA10 in a wide variety of cancer cells was studied and the potential of EphA10 as a drug target was evaluated. Screening of EphA10 mRNA expression showed that EphA10 was overexpressed in breast cancer cell lines as well as in prostate and colon cancer cell lines. Thus, we focused on prostate cancers in which EphA10 expression was equivalent to that in breast cancers. As a result, EphA10 expression was clearly shown in clinical prostate tumor tissues as well as in cell lines at the mRNA and protein levels. In order to evaluate the potential of EphA10 as a drug target, we analyzed complement-dependent cytotoxicity effects of anti-EphA10 mAb and found that significant cytotoxicity was mediated by the expression of EphA10. Therefore, the idea was conceived that the overexpression of EphA10 in prostate cancers might have a potential as a target for prostate cancer therapy, and formed the basis for the studies reported here.  相似文献   

10.
Previous studies have shown that key enzymes involved in lipid metabolic pathways are differentially expressed in normal compared with tumor tissues. However, the precise role played by dysregulated expression of lipid metabolic enzymes and altered lipid homeostasis in carcinogenesis remains to be established. Fatty acid synthase is overexpressed in a variety of cancers, including breast and prostate. The purpose of the present study was to examine the expression patterns of additional lipid metabolic enzymes in human breast and prostate cancers. This was accomplished by analysis of published expression databases, with confirmation by immunoblot assays. Our results indicate that the fatty acid-activating enzyme, long-chain fatty acyl-CoA synthetase 4 (ACSL4), is differentially expressed in human breast cancer as a function of estrogen receptor alpha (ER) status. In 10 separate studies, ACSL4 messenger RNA (mRNA) was overexpressed in ER-negative breast tumors. Of 50 breast cancer cell lines examined, 17 (89%) of 19 ER-positive lines were negative for ACSL4 mRNA expression and 20 (65%) of 31 ER-negative lines expressed ACSL4 mRNA. The inverse relationship between ER expression and ACSL4 expression was also observed for androgen receptor status in both breast and prostate cancers. Furthermore, loss of steroid hormone sensitivity, such as that observed in Raf1-transfected MCF-7 cells and LNCaP-AI cells, was associated with induction of ACSL4 expression. Ablation of ACSL4 expression inMDA-MB-231 breast cancer cells had no effect on cell proliferation; however, sensitivity to the cytotoxic effects of triacsin C was increased three-fold in the cells lacking ACSL4.  相似文献   

11.
Complement 1q-binding protein (C1qbp) is a mitochondrial protein reported to be upregulated in cancer. However, whether C1qbp plays a tumor suppressive or tumorigenic role in the progression of cancer is controversial. Moreover, the exact effects of C1qbp on cell proliferation, migration and death/survival have not been definitely proven. To this end, we comprehensively examined the effects of C1qbp on mitochondrial-dependent cell death, proliferation and migration in both normal and breast cancer cells using genetic gain- and loss-of-function approaches. In normal fibroblasts, overexpression of C1qbp protected the cells against staurosporine-induce apoptosis, increased proliferation, decreased cellular ATP and increased cell migration in a wound-healing assay. In contrast, the opposite effects were observed in fibroblasts depleted of C1qbp by RNA interference. C1qbp expression was found to be markedly elevated in 4 different human breast cancer cell lines as well as in ductal and adenocarcinoma tumors from breast cancer patients. Stable knockdown of C1qbp by shRNA in the aggressive MDA-MB-231 breast cancer cell line greatly reduced cell proliferation, increased ATP levels and decreased cell migration compared with control shRNA-transfected cells. Moreover, C1qbp knockdown elicited a significant increase in doxorubicin-induced apoptosis in the MDA-MB-231 cells. Finally, C1qbp upregulation was not restricted to breast cancer cells and tumors, as levels of C1qbp were also found to be significantly elevated in both human lung and colon cancer cell lines and carcinomas. Together, these results establish a pro-tumor, rather than antitumor, role for C1qbp and indicate that C1qbp could serve as a molecular target for cancer therapeutics.Key words: mitochondria, cell proliferation, cell migration, cell death, tumor cells  相似文献   

12.
Targeting of tumor tissues is one of the most powerful approaches to accelerate the efficiency of anticancer treatments. The investigation of effective targets, including proteins specifically and abundantly expressed in abnormal regions, has been one of the most important research topics in cancer therapy. In this study, we performed a proteomic analysis on human breast carcinoma tissues to investigate the tumor-specific protein expression in breast carcinoma. Our study showed that ATP synthase was up-regulated in tumor tissues and was present on the plasma membrane of breast cancer cells. Furthermore, we treated the breast cancer cells with ATP synthase inhibitors and examined the inhibitory efficiency. Aurovertin B, an ATP synthase inhibitor, has strong inhibition on the proliferation of several breast cancer cell lines, but little influence on the normal cell line MCF-10A. Aurovertin B inhibits proliferation of breast cancer cells by inducing apoptosis and arresting cell cycle at the G0/G1 phase. This study showed aurovertin B can be used as an antitumorigenic agent and may be exploited in cancer chemotherapy.  相似文献   

13.
S P Kunapuli  H Singh  P Singh  A Kumar 《Life sciences》1987,40(23):2225-2228
The copper transport protein, ceruloplasmin, is suggested to have a role in cancer since it is involved in angiogenesis and neovascularization. In order to understand the role of ceruloplasmin in malignant cells, we have recently isolated and sequenced a human ceruloplasmin cDNA clone. In the present study, we have investigated the ceruloplasmin gene expression in human colon and breast cancer cell lines. The poly (A) RNA from human colon (WiDr) and human breast (MCF-7) cancer cell lines was analyzed for the presence of ceruloplasmin mRNA. The Northern blot analysis revealed the presence of a 3.7 kb band of ceruloplasmin mRNA in these cell lines. Dot blot analysis revealed that ceruloplasmin mRNA is at least three fold more abundant in tumor cells as compared to normal rat liver.  相似文献   

14.
BACKGROUND: We sought to identify genes with altered expression during human breast cancer progression by applying mRNA comparisons of normal and tumor mammary cell lines with increasingly malignant phenotypes. The gene encoding a new sialyltransferase (STM) was found to be down-regulated in tumor cells. Abnormal expression and enzymatic activities of sialyltransferases in tumor cells result in the formation of tumor-associated carbohydrate antigens that can be used for the better understanding of the disease process and are applied for tumor diagnosis and immunotherapy. Altered glycosylation patterns of the MUC1 mucin, in particular, is a target antigen for immunotherapy of breast and other cancers. MATERIALS AND METHODS: Total RNAs from multiple normal mammary epithelial cell strains and tumor cell lines were compared by differential display and the differential expression of selected cDNAs was confirmed by Northern analyses. Recombinant STM was expressed in COS-7 cells. The substrate and linkage specificity of STM was examined using various oligosaccharides and O-glycosylated proteins as acceptor substrates. The chromosomal localization of the SIATL1 gene was assigned by somatic cell hybrid analysis. RESULTS: A human sialyltransferase gene was identified by differential display as being down-regulated in breast tumor cell lines as compared to normal mammary epithelial cell strains, and the corresponding full-length cDNA (stm) was cloned. The encoded protein of 374 amino acid residues contained the L- and S-sialylmotifs, two catalytic regions conserved in all functional sialyltransferases. Recombinant STM is an active GalNAc alpha2,6-sialyltransferase with Gal beta 1,3 GalNAc-O-Ser/Thr and (+/- Neu5Ac alpha 2,3) Gal beta 1,3GalNAc-O-Ser/Thr acceptor specificity. The SIATL1 gene, encoding STM, was mapped to the long arm of human chromosome 17 at q23-qter, a region that is nonrandomly deleted in human breast cancers. However, Southern analyses indicated that SIATL1 is usually not grossly rearranged in breast tumors. Northern analyses showed that the gene was widely expressed in normal human tissues, as well as in normal breast and prostate epithelial cell lines, but significantly down-regulated or absent in corresponding tumor cell lines. CONCLUSIONS: Our findings suggest that aberrant expression of STM sialyltransferase in tumors could be a feature of the malignant phenotype. In breast cancers, the MUC1 mucin is overexpressed and contains shorter O-glycans as compared to the normal mucin. Because STM catalyzes the synthesis of O-glycans, cloning and characterization of its substrate specificity will contribute to the understanding of the molecular mechanisms underlying the aberrant glycosylation patterns of O-glycans and the formation of mucin-related antigens in human breast cancers.  相似文献   

15.
Ring finger protein 2 (RNF2), as a well-known E3 ligase, has an oncogenic role in various cancers. The role of RNF2 in colon cancer is still unknown. The aim of this work is to determine the biological role of RNF2 in colon cancer. We first examined the expression of RNF2 and interferon regulatory factor 4 (IRF4) in colon cancer patients and colon cancer cell lines (SW480 and HCT116). Compared with normal tumor-adjacent tissues, RNF2 was up-regulated whereas IRF4 was down-regulated in the colon cancer tissues. RNF2 was also up-regulated in colon cancer cells with respect to human fetal colon epithelial cells. RNF2 overexpression enhanced the ability of proliferation, migration and invasion of SW480 cells, whereas RNF2 knockdown caused an opposite result in HCT116 cells. Furthermore, a tumor xenograft model was constructed to verify the impact of RNF2 overexpressed-SW480 cells on tumor growth. RNF2 up-regulation elevated Ki-67 proliferation index, accelerated the growth of tumor tissues, and led to severe colon tissue damage in the tumor xenograft mice. In addition, RNF2 interacted with IRF4, and repressed IRF4 protein expression. IRF4 was a substrate of RNF2, and RNF2 promoted the ubiquitination and degradation of IRF4. RNF2 overexpression increased the ability of proliferation, migration and invasion in SW480 cells by promoting the ubiquitination and degradation of IRF4. In conclusion, this work demonstrated that RNF2 promoted tumor growth in colon cancer by regulating ubiquitination and degradation of IRF4. Thus, RNF2 may be served as a potential therapeutic target for colon cancer.  相似文献   

16.
BACKGROUND: Tissue factor (TF) is a glycoprotein which binds factor VIIa. The TF-VIIa complex serves as a potent initiator of the coagulation pathways. TF, an immediate early gene, may also play a role in cell growth. Expression of TF was correlated with some types of cancers. MATERIALS AND METHODS: Normal, immortalized, and tumor human mammary epithelial cells were used in the experiments. The differential display (DD) technique was used to identify genes differentially expressed in the cells. TF expression patterns were examined by Northern blot analysis, immunofluorescence staining of cultured cells, and immunohistochemical staining in human cryostat sections. RESULTS: In a 5-way display, an amplified polymerase chain reaction (PCR) product was found in normal and immortalized human mammary epithelial cells but not in the breast cancer cells. The PCR fragment was cloned and sequenced. The result showed that the fragment was identical to human tissue factor. Northern blot analysis showed that expression level of tissue factor mRNA remained high in growing, quiescent, and senescent normal mammary epithelial cells. Immunofluorescence staining also confirmed tissue factor expression pattern in the cell lines tested. Immunohistochemical staining showed that tissue factor was expressed in the normal luminal and myoepithelial cells of some ducts but not others. No staining was observed in invasive carcinoma cells. However, myoepithelial cell staining was seen in some residual ductal structures in invasive tumors. CONCLUSIONS: This study shows the use of DD to reveal the loss of TF expression pattern in human breast cancer cell lines. Immunohistochemical staining results showed breast carcinoma cells expressed little TF, if any, suggesting that TF is not required for breast tumor cell invasion. The results also indicated that TF expression was independent of the proliferation status of the expressing cells. The expression pattern of TF may be a meaningful marker in the development of breast cancer.  相似文献   

17.
Estrogen effects on mammary gland development and differentiation are mediated by two receptors (ERα and ERβ). Estrogen‐bound ERα induces proliferation of mammary epithelial and cancer cells, while ERβ is important for maintenance of the differentiated epithelium and inhibits proliferation in different cell systems. In addition, the normal breast contains higher ERβ levels compared to the early stage breast cancers, suggesting that loss of ERβ could be important in cancer development. Analysis of ERβ?/? mice has consistently revealed reduced expression of cell adhesion proteins. As such, ERβ is a candidate modulator of epithelial homeostasis and metastasis. Consequently, the aim of this study was to analyze estrogenic effects on adhesion of breast cancer cells expressing ERα and ERβ. As ERβ is widely found in breast cancer but not in cell lines, we used ERα positive T47‐D and MCF‐7 human breast cancer cells to generate cells with inducible ERβ expression. Furthermore, the colon cancer cell lines SW480 and HT‐29 were also used. Integrin α1 mRNA and protein levels increased following ERβ expression. Integrin β1—the unique partner for integrin α1—increased only at the protein level. ERβ expression enhanced the formation of vinculin containing focal complexes and actin filaments, indicating a more adhesive potential. This was confirmed by adhesion assays where ERβ increased adhesion to different extracellular matrix proteins, mostly laminin. In addition, ERβ expression was associated to less cell migration. These results indicate that ERβ affects integrin expression and clustering and consequently modulates adhesion and migration of breast cancer cells. J. Cell. Physiol. 222:156–167, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
The ability of cells to escape apoptosis is critical for carcinogenesis as well as resistance to radiation and chemotherapy. ARC (Apoptosis Repressor with CARD (caspase recruitment domain)) is an unusual inhibitor of apoptosis in that it antagonizes both the extrinsic (death receptor) and intrinsic (mitochondrial/ER) apoptosis pathways. ARC is expressed predominantly in terminally differentiated cells such as cardiac and skeletal myocytes and neurons. Recently, however, the abundance of ARC was noted to be markedly increased in the epithelium of primary human breast cancers compared with benign breast tissue and to confer chemo- and radiation-resistance. Whether the induction of ARC is specific to breast cancer or a more general feature of neoplasia remains unknown. In this study, we assessed the abundance and subcellular localization of ARC in 21 human colon cancer cell lines and in 44 primary human colon adenocarcinomas and adjacent benign colonic tissue. ARC was present at high levels in most colon cancer cell lines and in almost all primary colon cancers compared with corresponding controls. Levels of ARC in the cytoplasm were increased in well, moderately, and poorly differentiated cancers compared with benign tissue, while levels of nuclear ARC were increased only in moderately differentiated tumors. Moreover, epithelial cancers of the ovary and cervix exhibited increased ARC abundance compared with controls. These results demonstrate that ARC is a novel marker of human colon cancer and suggest that it may be a feature of epithelial cancers.  相似文献   

19.
Complement 1q-Binding Protein (C1qbp) is a mitochondrial protein reported to be upregulated in cancer. However, whether C1qbp plays a tumor suppressive or tumorigenic role in the progression of cancer is controversial. Moreover, the exact effects of C1qbp on cell proliferation, migration, and death/survival have not been definitely proven. To this end, we comprehensively examined the effects of C1qbp on mitochondrial-dependent cell death, proliferation, and migration in both normal and breast cancer cells using genetic gain- and loss-of-function approaches. In normal fibroblasts, overexpression of C1qbp protected the cells against staurosporine-induce apoptosis, increased proliferation, decreased cellular ATP, and increased cell migration in a wound-healing assay. In contrast, the opposite effects were observed in fibroblasts depleted of C1qbp by RNA interference. C1qbp expression was found to be markedly elevated in 4 different human breast cancer cell lines as well as in ductal and adenocarcinoma tumors from breast cancer patients. Stable knockdown of C1qbp by shRNA in the aggressive MDA-MB-231 breast cancer cell line greatly reduced cell proliferation, increased ATP levels, and decreased cell migration compared to control shRNA-transfected cells. Moreover, C1qbp knockdown elicited a significant increase in doxorubicin-induced apoptosis in the MDA-MB-231 cells. Finally, C1qbp upregulation was not restricted to breast cancer cells and tumors, as levels of C1qbp were also found to be significantly elevated in both human lung and colon cancer cell lines and carcinomas. Together, these results establish a pro-tumor, rather than anti-tumor, role for C1qbp, and indicate that C1qbp could serve as a molecular target for cancer therapeutics.  相似文献   

20.
Most colon cancers overexpress M3 muscarinic receptors (M3R), and post-M3R signaling stimulates human colon cancer cell proliferation. Acetylcholine (ACh), a muscarinic receptor ligand traditionally regarded as a neurotransmitter, may be produced by nonneuronal cells. We hypothesized that ACh release by human colon cancer cells results in autocrine stimulation of proliferation. H508 human colon cancer cells, which have robust M3R expression, were used to examine effects of muscarinic receptor antagonists, acetylcholinesterase inhibitors, and choline transport inhibitors on cell proliferation. A nonselective muscarinic receptor antagonist (atropine), a selective M3R antagonist (p-fluorohexahydro-sila-difenidol hydrochloride), and a choline transport inhibitor (hemicholinum-3) all inhibited unstimulated H508 colon cancer cell proliferation by approximately 40% (P<0.005). In contrast, two acetylcholinesterase inhibitors (eserine-hemisulfate and bis-9-amino-1,2,3,4-tetrahydroacridine) increased proliferation by 2.5- and 2-fold, respectively (P<0.005). By using quantitative real-time PCR, expression of choline acetyltransferase (ChAT), a critical enzyme for ACh synthesis, was identified in H508, WiDr, and Caco-2 colon cancer cells. By using high-performance liquid chromatography-electrochemical detection, released ACh was detected in H508 and Caco-2 cell culture media. Immunohistochemistry in surgical specimens revealed weak or no cytoplasmic staining for ChAT in normal colon enterocytes (n=25) whereas half of colon cancer specimens (n=24) exhibited moderate to strong staining (P<0.005). We conclude that ACh is an autocrine growth factor in colon cancer. Mechanisms that regulate colon epithelial cell production and release of ACh warrant further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号