首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have recently reported that NY-ESO-1-specific naive CD4+ T cell precursors exist in most individuals but are suppressed by CD4+CD25+ regulatory T cells (Tregs), while memory CD4+ T cell effectors against NY-ESO-1 are found only in cancer patients with spontaneous Ab responses to NY-ESO-1. In this study, we have analyzed mechanisms of CD4+ T cell induction following peptide vaccination in relation to susceptibility to Tregs. Specific HLA-DP4-restricted CD4+ T cell responses were elicited after vaccination with NY-ESO-1(157-170) peptide (emulsified in IFA) in patients with NY-ESO-1-expressing epithelial ovarian cancer. These vaccine-induced CD4+ T cells were detectable from effector/memory populations without requirement for in vitro CD4+CD25+ T cell depletion. However, they were only able to recognize NY-ESO-1(157-170) peptide but not naturally processed NY-ESO-1 protein and had much lower avidity compared with NY-ESO-1-specific pre-existing naive CD4+CD25- T cell precursors or spontaneously induced CD4+ T cell effectors of cancer patients with NY-ESO-1 Ab. We propose that vaccination with NY-ESO-1(157-170) peptide recruits low-avidity T cells with low sensitivity to Tregs and fails to modulate the suppressive effect of Tregs on high-avidity NY-ESO-1-specific T cell precursors.  相似文献   

2.
NY-ESO-1 and LAGE-1 represent highly homologous cancer-germline Ags frequently coexpressed by many human cancers, but not by normal tissues, except testis. In contrast to NY-ESO-1, little is known about spontaneous immune responses to LAGE-1. In the current study, we report on spontaneous LAGE-1-specific CD4(+) T cells isolated from PBLs of patients with advanced LAGE-1(+)/NY-ESO-1(+) melanoma and directed against three promiscuous and immunodominant epitopes. Strikingly, although the three LAGE-1-derived epitopes are highly homologous to NY-ESO-1-derived epitopes, LAGE-1-specific CD4(+) T cells did not cross-react with NY-ESO-1. LAGE-1-specific CD4(+) T cells produced Th1-type and/or Th2-type cytokines and did not exert inhibitory effects on allogenic T cells. We observed that most patients with spontaneous NY-ESO-1-specific responses exhibited spontaneous CD4(+) T cell responses to at least one of the three immunodominant LAGE-1 epitopes. Additionally, nearly half of the patients with spontaneous LAGE-1-specific CD4(+) T cell responses had circulating LAGE-1-specific Abs that recognized epitopes located in the C-terminal portion of LAGE-1, which is distinct from NY-ESO-1. Collectively, our findings define the hierarchy of immunodominance of spontaneous LAGE-1-specific CD4(+) T cell responses in patients with advanced melanoma. These findings demonstrate the capability of LAGE-1 to stimulate integrated cellular and humoral immune responses that do not cross-react with NY-ESO-1. Therefore, they provide a strong rationale for the inclusion of LAGE-1 peptides or protein in vaccine trials for patients with NY-ESO-1(+)/LAGE-1(+) tumors.  相似文献   

3.
Expression of the cancer-testis antigen Taxol resistance–associated gene-3 (TRAG-3) protein is associated with acquired paclitaxel (Taxol) resistance, and is expressed in various cancer types; e.g., breast cancer, leukemia, and melanoma. Thus, TRAG-3 represents an attractive target for immunotherapy of cancer. To identify HLA-A*02.01–restricted epitopes from TRAG-3, we screened cancer patients for spontaneous cytotoxic T-cell responses against TRAG-3–derived peptides. The TRAG-3 protein sequence was screened for 9mer and 10mer peptides possessing HLA-A*02.01–binding motifs. Of 12 potential binders, 9 peptides were indeed capable of binding to the HLA-A*02.01 molecule, with binding affinities ranging from strong to weak binders. Subsequently, lymphocytes from cancer patients (9 breast cancer patients, 12 melanoma patients, and 13 patients with hematopoietic malignancies) were analyzed for spontaneous reactivity against the panel of peptides by ELISpot assay. Spontaneous immune responses were detected against 8 epitope candidates in 7 of 9 breast cancer patients, 7 of 12 melanoma patients, and 5 of 13 patients with hematopoietic malignancies. In several cases, TRAG-3–specific CTL responses were scattered over several epitopes. Hence, no immunodominance of any single peptide was observed. Furthermore, single-peptide responses were detected in 2 of 12 healthy HLA-A2+ donors, but no responses were detectable in 9 HLA-A2 healthy donors or 4 HLA-A2 melanoma patients. The identified HLA-A*02.01–restricted TRAG-3–derived epitopes are targets for spontaneous immune responses in breast cancer, hematopoietic cancer, and melanoma patients. Hence, these epitopes represent potential target structures for future therapeutic vaccinations against cancer, possibly appropriate for strategies that combine vaccination and chemotherapy; i.e., paclitaxel treatment.  相似文献   

4.
Intratumoral electroporation (IT-EP) with IL-12 cDNA (IT-EP/IL12) can lead to the eradication of established B16 melanoma tumors in mice. Here, we explore the immunological mechanism of the antitumor effects generated by this therapy. The results show that IT-EP/IL12 applied only once resulted in eradication in 70% animals with large established B16 tumors. Tumor eradication required the participation of CD8+ T cells, but not CD4+ T cells and NK cells. IT-EP/IL12 induced antigen-specific CD8+ T cell responses against the immunodominant Trp2(180-188) epitope and generated a systemic response, resulting in significant therapeutic effects against distal, untreated tumors. The therapeutic effect of IT-EP/IL12 was absent in perforin-deficient mice, indicating that tumor elimination occurred through conventional perforin/granzyme lysis by CTLs. Moreover, this therapy induced some degree of immunological memory that protected approximately one-third of the cured mice against a subsequent tumor challenge. Moreover, antitumor efficacy and long-term protection against B16 were significantly improved by concurrent Trp2 peptide immunization through more induction of Ag-specific CTL responses and more attraction of IFN-γ-expressing CD8+ T cells into tumor sites. The antitumor effect of IT-EP/IL12 required the participation of IFN-γ, which was shown to induce MHC class I expression on B16 cells and increase the lytic activity of the CD8+ CTL generated by IT-EP/IL12. The results from these animal studies may help in the development of IT-EP/IL12 for cancer patients.  相似文献   

5.
Recently, we have demonstrated that tumor-specific CD4+ Th cell responses can be rapidly induced in advanced melanoma patients by vaccination with peptide-loaded monocyte-derived dendritic cells. Most patients showed a T cell reactivity against a melanoma Ag 3 (MAGE-3) peptide (MAGE-3(243-258)), which has been previously found to be presented by HLA-DP4 molecules. To analyze the functional and specificity profile of this in vivo T cell response in detail, peptide-specific CD4+ T cell clones were established from postvaccination blood samples of two HLA-DP4 patients. These T cell clones recognized not only peptide-loaded stimulator cells but also dendritic cells loaded with a recombinant MAGE-3 protein, demonstrating that these T cells were directed against a naturally processed MAGE-3 epitope. The isolated CD4+ Th cells showed a typical Th1 cytokine profile upon stimulation. From the first patient several CD4+ T cell clones recognizing the antigenic peptide used for vaccination in the context of HLA-DP4 were obtained, whereas we have isolated from the second patient CD4+ T cell clones which were restricted by HLA-DQB1*0604. Analyzing a panel of truncated peptides revealed that the CD4+ T cell clones recognized different core epitopes within the original peptide used for vaccination. Importantly, a DP4-restricted T cell clone was stimulated by dendritic cells loaded with apoptotic or necrotic tumor cells and even directly recognized HLA class II- and MAGE-3-expressing tumor cells. Moreover, these T cells exhibited cytolytic activity involving Fas-Fas ligand interactions. These findings support that vaccination-induced CD4+ Th cells might play an important functional role in antitumor immunity.  相似文献   

6.
Peptide-based vaccines aimed at the induction of effective T cell responses against established cancers have so far only met with limited clinical success and clearly need to be improved. In a preclinical model of human papillomavirus (HPV)16-induced cervical cancer we show that prime-boost vaccinations with the HPV16-derived 35 amino-acid long peptide E7(43-77), containing both a CTL epitope and a Th epitope, resulted in the induction of far more robust E7-specific CD8(+) T cell responses than vaccinations with the minimal CTL epitope only. We demonstrate that two distinct mechanisms are responsible for this effect. First, vaccinations with the long peptide lead to the generation of E7-specific CD4(+) Th cells. The level of the induced E7-specific CD8(+) T cell response proved to be dependent on the interactions of these Th cells with professional APC. Second, we demonstrate that vaccination with the long peptide and dendritic cell-activating agents resulted in a superior induction of E7-specific CD8(+) T cells, even when T cell help was excluded. This suggests that, due to its size, the long peptide was preferably endocytosed, processed, and presented by professional APCs. Moreover, the efficacy of this superior HPV-specific T cell induction was demonstrated in therapeutic prime-boost vaccinations in which the long peptide admixed with the dendritic cell-activating adjuvant oligodeoxynucleotide-CpG resulted in the eradication of large, established HPV16-expressing tumors. Because the vaccine types used in this study are easy to prepare under good manufacturing practice conditions and are safe to administer to humans, these data provide important information for future clinical trials.  相似文献   

7.
Melan-A/MART1 is a melanocytic differentiation antigen expressed by tumor cells of the majority of melanoma patients and, as such, is considered as a good target for melanoma immunotherapy. Nonetheless, the number of class I and II restricted Melan-A epitopes identified so far remains limited. Here we describe a new Melan-A/MART-1 epitope recognized in the context of HLA-DQa1*0101 and HLA-DQb1*0501, -DQb1*0502 or -DQb1*0504 molecules by a CD4+ T cell clone. This clone was obtained by in vitro stimulation of PBMC from a healthy donor by the Melan-A51-73 peptide previously reported to contain a HLA-DR4 epitope. The Melan-A51-73 peptide, therefore contains both HLA-DR4 and HLA-DQ5 restricted epitope. We further show that Melan-A51-63 is the minimal peptide optimally recognized by the HLA-DQ5 restricted CD4+ clone. Importantly, this clone specifically recognizes and kills tumor cell lines expressing Melan-A and either HLA-DQb1*0501, -DQb1*0504 or -DQb1*0502 molecules. Moreover, we could detect CD4+ T cells secreting IFN-gamma in response to Melan-A51-63 and Melan-A51-73 peptides among tumor infiltrating and blood lymphocytes from HLA-DQ5+ patients. This suggests that spontaneous CD4+ T cell responses against this HLA-DQ5 epitope occur in vivo. Together these data significantly increase the fraction of melanoma patients susceptible to benefit from a Melan-A class II restricted vaccine approach.  相似文献   

8.
Low-frequency CTL and low-titer IgM responses against tumor-associated Ag MUC1 are present in cancer patients but do not prevent cancer growth. Boosting MUC1-specific immunity with vaccines, especially effector mechanisms responsible for tumor rejection, is an important goal. We studied immunogenicity, tumor rejection potential, and safety of three vaccines: 1) MUC1 peptide admixed with murine GM-CSF as an adjuvant; 2) MUC1 peptide admixed with adjuvant SB-AS2; and 3) MUC1 peptide-pulsed dendritic cells (DC). We examined the qualitative and quantitative differences in humoral and T cell-mediated MUC1-specific immunity elicited in human MUC1-transgenic (Tg) mice compared with wild-type (WT) mice. Adjuvant-based vaccines induced MUC1-specific Abs but failed to stimulate MUC1-specific T cells. MUC1 peptide with GM-CSF induced IgG1 and IgG2b in WT mice but only IgM in MUC1-Tg mice. MUC1 peptide with SB-AS2 induced high-titer IgG1, IgG2b, and IgG3 Abs in both WT and MUC1-Tg mice. Induction of IgG responses was T cell independent and did not have any effect on tumor growth. MUC1 peptide-loaded DC induced only T cell immunity. If injected together with soluble peptide, the DC vaccine also triggered Ab production. Importantly, the DC vaccine elicited tumor rejection responses in both WT and MUC1-Tg mice. These responses correlated with the induction of MUC1-specific CD4+ and CD8+ T cells in WT mice, but only CD8(+) T cells in MUC1-Tg mice. Even though MUC1-specific CD4+ T cell tolerance was not broken, the capacity of MUC1-Tg mice to reject tumor was not compromised.  相似文献   

9.
CD4+ T cell responses to SSX-4 in melanoma patients   总被引:2,自引:0,他引:2  
Genes of the synovial sarcoma X breakpoint (SSX) family are expressed in different human tumors, including melanomas, but not in adult somatic tissues. Because of their specific expression at the tumor site, SSX-encoded Ags are potential targets for anticancer immunotherapy. In this study, we have analyzed CD4+ T cell responses directed against the Ag encoded by SSX-4. Upon in vitro stimulation of PBMC from four melanoma patients bearing Ag-expressing tumors with a pool of long peptides spanning the protein sequence, we detected and isolated SSX-4-specific CD4+ T cells recognizing several distinct antigenic sequences, mostly restricted by frequently expressed HLA class II alleles. The majority of the identified sequences were located within the Krüppel-associated box domain in the N-terminal region of the protein, indicating a high potential immunogenicity of this region. Together our data document the existence of CD4+ T cells specific for multiple SSX-4 derived sequences in circulating lymphocytes from melanoma patients and encourage further studies to assess the impact of SSX-4-specific T cell responses on disease evolution in cancer patients.  相似文献   

10.
The use of DNA vaccines for generating antigen-specific CD8+ T cell responses has been well established. However, little is known about the quantitative and qualitative aspects of CD8+ T cell responses and protective immunity generated after repeated DNA vaccinations. We used human papillomavirus (HPV) type-16 E7 as a model tumor antigen in an E7-expressing tumor model, TC-1, to assess the influence of the frequency of DNA vaccinations on E7-specific immunological and antitumor responses. Mice were vaccinated with 1–4 inoculations of pcDNA3-E7 DNA. Immunological assays and tumor protection experiments were performed to assess the effect of repeated E7 DNA vaccination on E7-specific T cells and E7-expressing tumors. Our results demonstrated that mice receiving an increased number of E7 DNA vaccinations exhibited higher E7-specific CTL activity, a rapid expansion of E7-specific IFN--secreting CD8+ T cells upon stimulation with E7 antigen, and a stronger antitumor effect against an E7-expressing tumor. Furthermore, we found that increasing the number of E7 DNA vaccinations followed by vaccinia booster enhanced the functional avidity of E7-specific CD8+ T cells. Our data suggest that quantitative and qualitative characteristics of antigen-specific CD8+ T cell responses and the ensuing protective antitumor effect can be influenced by the frequency of DNA vaccinations. These results have important clinical implications for the use of naked DNA vaccines in cancer immunotherapy.  相似文献   

11.
MAGE-3 is the most commonly expressed cancer testis Ag and thus represents a prime target for cancer vaccines, despite infrequent natural occurrence of MAGE-3-specific immune responses in vivo. We report in this study the successful induction of Ab, CD8(+), and CD4(+) T cells in nonsmall cell lung cancer patients vaccinated with MAGE-3 recombinant protein. Two cohorts were analyzed: one receiving MAGE-3 protein alone, and one receiving MAGE-3 protein with adjuvant AS02B. Of nine patients in the first cohort, three developed marginal Ab titers and another one had a CD8(+) T cell response to HLA-A2-restricted peptide MAGE-3 271-279. In contrast, of eight patients from the second cohort vaccinated with MAGE-3 protein and adjuvant, seven developed high-titered Abs to MAGE-3, and four had a strong concomitant CD4(+) T cell response to HLA-DP4-restricted peptide 243-258. One patient simultaneously developed CD8(+) T cells to HLA-A1-restricted peptide 168-176. The novel monitoring methodology used in this MAGE-3 study establishes that protein vaccination induces clear CD4(+) T cell responses that correlate with Ab production. This development provides the framework for further evaluating integrated immune responses in vaccine settings and for optimizing these responses for clinical benefit.  相似文献   

12.
Immunodominance hierarchies operating in immune responses to viral Ags limit the diversity of the elicited CD8 T cell responses. We evaluated in I-A(b+)/A2-HHD-II and HLA-DR1(+)/A2-DR1 mice the HLA-A*0201-restricted, multispecific CD8 T cell responses to the human CMV tegument phosphoprotein pp65 (pp65) Ag. Vaccination of mice with pp65-encoding DNA elicited high IFN-γ(+) CD8 T cell frequencies to the pp65(495-503)/(e6) epitope and low responses to the pp65(320-328)/(e3) and pp65(522-530)/(e8) epitopes. Abrogation of the e6-specific immunity efficiently enhanced e3- and e8-specific T cell responses by a pp65(Δ501-503) DNA vaccine. The immunodominant e6-specific (but not the e3- and e8-specific) CD8 T cell response critically depends on CD4 T cell help. Injection of monospecific DNA- or peptide-based vaccines encoding the e3 or e8 (but not the e6) epitope into mice elicited CD8 T cells. Codelivering the antigenic peptides with different heterologous CD4 T cell helper epitopes enhanced e6-specific (but not e3- or e8-specific) CD8 T cell responses. Similarly, homologous CD4 T cell help, located within an overlapping (nested) pp65(487-503) domain, facilitated induction of e6-specific CD8 T cell responses by peptide-based vaccination. The position of the e6 epitope within this nested domain is not critical to induce the immunodominant, e6-specific CD8 T cell response to the pp65 Ag. Distant CD4 T cell epitope(s) can thus provide efficient help for establishing pp65-e6 immunodominance in vaccinated mice. These results have practical implications for the design of new T cell-stimulating vaccines.  相似文献   

13.
Human papillomavirus (HPV), particularly type 16 (HPV-16), is present in more than 99% of cervical cancers. The HPV oncoproteins E6 and E7 are constantly expressed and therefore represent ideal targets for HPV vaccine development. We previously developed DNA vaccines encoding calreticulin (CRT) linked to HPV-16 E7 and generated potent E7-specific CD8(+) T-cell immune responses and antitumor effects against an E7-expressing tumor. Since vaccines targeting E6 also represent an important strategy for controlling HPV-associated lesions, we developed a DNA vaccine encoding CRT linked to E6 (CRT/E6). Our results indicated that the CRT/E6 DNA vaccine, but not a wild-type E6 DNA vaccine, generated significant E6-specific CD8(+) T-cell immune responses in vaccinated mice. Mapping of the immunodominant epitope of E6 revealed that an E6 peptide comprising amino acids (aa) 48 to 57 (E6 aa48-57), presented by H-2K(b), is the optimal peptide and that the region of E6 comprising aa 50 to 57 represents the minimal core sequence required for activating E6-specific CD8(+) T lymphocytes. We also demonstrated that E6 aa48-57 contains cytotoxic T-lymphocyte epitopes naturally presented by E6-expressing TC-1 cells. Vaccination with a CRT/E6 but not a CRT/mtE6 (lacking aa 50 to 57 of E6) DNA vaccine could protect vaccinated mice from challenge with E6-expressing TC-1 tumors. Thus, our data indicate that E6 aa48-57 contains the immunodominant epitope and that a CRT/E6 DNA vaccine may be useful for control of HPV infection and HPV-associated lesions.  相似文献   

14.
We have demonstrated previously that the administration of CTLA-4 blockade has mediated objective cancer regression and autoimmunity in patients with metastatic melanoma. To explore the mechanism of these in vivo effects, we have studied the changes in lymphocyte phenotype and function in patients receiving anti-CTLA-4 Ab (MDX-010). Patients with stage IV melanoma or renal cell cancer were treated every 3 wk with an anti-CTLA-4 Ab with or without peptide immunization. Pheresis samples were analyzed using flow cytometry to determine lymphocyte cell surface markers. Gene expression analyses and proliferation assays were conducted on purified T cell subsets. Anti-CTLA-4 Ab did not inhibit the suppressive activity of CD4+CD25+ cells in vitro or in vivo. In addition, there was no decrease in the expression of CD4+CD25+ cells in whole PBMC, nor a decrease in Foxp3 gene expression in the CD4+ or CD4+CD25+ purified cell populations posttreatment. The percentage of CD4+, CD8+, CD4+CD25+, and CD4+CD25- T cells in PBMC expressing the activation marker HLA-DR increased following anti-CTLA-4 Ab administration. Therefore, our results suggest that the antitumor effects of CTLA-4 blockade are due to increased T cell activation rather than inhibition or depletion of T regulatory cells.  相似文献   

15.
p97 is a human tumor-associated Ag present on most melanoma cells that represents a possible target for immunologic attack. To evaluate the capacity of T cells reactive with this protein to promote elimination of melanoma cells expressing p97, a murine model was developed by transfecting a C3H/HeN melanoma with the p97 cDNA, generating p97-specific CD4+ T cells by in vivo immunization of C3H/HeN mice with a vaccinia/p97 recombinant virus followed by in vitro cloning with soluble p97 protein, and determining whether these CD4+ T cells could mediate rejection of pulmonary metastases. Characterization of the T cell clones demonstrated the presence of both I-Ak and I-Ek-restricted clones, although the majority of clones recognized p97 in the context of I-Ek. Analysis of clonal specificity using truncated p97 proteins revealed that at least three epitopes were immunogenic, and further studies with overlapping 15-amino acid peptides from a region of the p97 molecule defined by these truncated proteins identified an immunodominant epitope responsible for the majority of the I-Ek response. The T cell clones were not capable of directly recognizing the p97-expressing melanoma cells but responded to the tumor if syngeneic APC were present to process the tumor-derived p97 Ag. The therapeutic efficacy of these CD4+ T cell clones was evaluated in an adoptive therapy model in which mice bearing metastatic pulmonary lesions were treated by i.v. administration of the p97-specific cells. Despite the inability of the CD4+ clones to directly respond to or lyse the tumor cells, the clones were effective in promoting tumor eradication. In vitro studies demonstrated that this may have reflected secretion of lymphokines that activated macrophages to lyse the tumor. The results suggest that noncytolytic p97-specific CD4+ T cell clones can be effective in therapy of pulmonary melanoma metastases. Moreover, if human T cells reactive with the p97 protein could be generated, the expression of this tumor-associated Ag in melanoma cells might be adequate for such T cells to mediate a therapeutic antitumor response.  相似文献   

16.
The growth of immunogenic tumors in immunocompetent individuals is one of the oldest conundrums in tumor immunology. Although the ability of mouse CD8+ T cells to control transplanted tumors is well documented, little is known about their impact on autochthonous tumors. To gain insight into the role of CD8+ T cells during the course of cancer development, we produced a novel model of spontaneous melanoma. The metallothionein (MT)-ret/AAD mouse is transgenic for the RET oncogene and the chimeric MHC molecule AAD (alpha1-alpha2 domains of HLA-A2 linked to alpha3 domain of H2-Dd). This model recapitulates the natural history of human melanoma, and expression of the AAD molecule makes it suitable for analyzing CD8+ T cell responses directed against peptide Ags that have been previously identified in HLA-A2+ melanoma patients. We found that, as tumors grow, mice develop a broad melanoma-specific CD8+ T cell response. Occurrence of cutaneous nodules is not affected by CD8+ T cell depletion, showing that although CD8+ T cells are functional, they have no effect on established cutaneous tumors. However, depleted mice die from visceral disease much earlier than controls, showing that CD8+ T cells control metastasis spreading and disease progression. Antigenic modulation is observed in visceral metastases, suggesting that visceral nodules may be subject to immunoediting. Our data demonstrate that growth of melanoma in the MT-ret/AAD model involves several tolerance mechanisms sequentially. They also reveal a different role for CD8+ T cells toward early stage of cutaneous tumors and late visceral metastatic stage of the disease.  相似文献   

17.
CD4+ T cells contribute importantly to the antitumor T cell response, and thus, long peptides comprising CD4 and CD8 epitopes may be efficient cancer vaccines. We have previously identified an overexpressed antigen in melanoma, MELOE-1, presenting a CD8+ T cell epitope, MELOE-136–44, in the HLA-A*0201 context. A T cell repertoire against this epitope is present in HLA-A*0201+ healthy subjects and melanoma patients and the adjuvant injection of TIL containing MELOE-1 specific CD8+ T cells to melanoma patients was shown to be beneficial. In this study, we looked for CD4+ T cell epitopes in the vicinity of the HLA-A*0201 epitope. Stimulation of PBMC from healthy subjects with MELOE-126–46 revealed CD4 responses in multiple HLA contexts and by cloning responsive CD4+ T cells, we identified one HLA-DRβ1*1101-restricted and one HLA-DQβ1*0603-restricted epitope. We showed that the two epitopes could be efficiently presented to CD4+ T cells by MELOE-1-loaded dendritic cells but not by MELOE-1+ melanoma cell-lines. Finally, we showed that the long peptide MELOE-122–46, containing the two optimal class II epitopes and the HLA-A*0201 epitope, was efficiently processed by DC to stimulate CD4+ and CD8+ T cell responses in vitro, making it a potential candidate for melanoma vaccination.  相似文献   

18.
Virus-specific CD4+ T cell help and CD8+ cytotoxic T cell responses are critical for maintenance of effective immunity in chronic viral infections. The importance of CD4+ T cells has been documented in HIV infection. To investigate whether a stronger CD4+ T cell response can be induced by modifications to enhance the T1 epitope, the first CD4+ T cell epitope discovered in HIV-1-gp120, we developed a T1-specific CD4+ T cell line from a healthy volunteer immunized with a canarypox vector expressing gp120 and boosted with recombinant gp120. This T1-specific CD4+ T cell line was restricted to DR13, which is common in U.S. Caucasians and African-Americans and very frequent in Africans. Peptides with certain amino acid substitutions in key positions induced enhanced specific CD4+ T cell proliferative responses at lower peptide concentration than the original epitope. This relatively conserved CD4 epitope improved by the epitope enhancement strategy could be a component of a more effective second generation vaccine construct for HIV infection.  相似文献   

19.
In this study, we used HLA-DRB1*0101, DRB1*0401, and DRB1*1501 peptide tetramers combined with cytokine surface capture assays to characterize CD4(+) T cell responses against the immunodominant T cell epitope (peptide 141-155) from the major birch pollen allergen Bet v 1, in both healthy and allergic individuals. We could detect Bet v 1-specific T cells in the PBMC of 20 birch pollen allergic patients, but also in 9 of 9 healthy individuals tested. Analysis at a single-cell level revealed that allergen-specific CD4(+) T cells from healthy individuals secrete IFN-gamma and IL-10 in response to the allergen, whereas cells from allergic patients are bona fide Th2 cells (producing mostly IL-5, some IL-10, but no IFN-gamma), as corroborated by patterns of cytokines produced by T cell clones. A fraction of Bet v 1-specific cells isolated from healthy, but not allergic, individuals also expresses CTLA-4, glucocorticoid-induced TNF receptor, and Foxp 3, indicating that they represent regulatory T cells. In this model of seasonal exposure to allergen, we also demonstrate the tremendous dynamics of T cell responses in both allergic and nonallergic individuals during the peak pollen season, with an expansion of Bet v 1-specific precursors from 10(-6) to 10(-3) among circulating CD4(+) T lymphocytes. Allergy vaccines should be designed to recapitulate such naturally protective Th1/regulatory T cell responses observed in healthy individuals.  相似文献   

20.
The melanocyte differentiation Ag RAB38/NY-MEL-1 was identified by serological expression cloning (SEREX) and is expressed in the vast majority of melanoma lesions. The immunogenicity of RAB38/NY-MEL-1 has been corroborated previously by the frequent occurrence of specific Ab responses in melanoma patients. To elucidate potential CD8 T cell responses, we applied in vitro sensitization with overlapping peptides spanning the RAB38/NY-MEL-1 protein sequence and the reverse immunology approach. The identified peptide RAB38/NY-MEL-1(50-58) exhibited a marked response in ELISPOT assays after in vitro sensitization of CD8 T cells from HLA-A *0201(+) melanoma patients. In vitro digestion assays using purified proteasomes provided evidence of natural processing of RAB38/NY-MEL-1(50-58) peptide. Accordingly, monoclonal RAB38/NY-MEL-1(50-58)-specific T cell populations were capable of specifically recognizing HLA-A2(+) melanoma cell lines expressing RAB38/NY-MEL-1. Applying fluorescent HLA-A2/RAB38/NY-MEL-1(50-58) multimeric constructs, we were able to document a spontaneously developed memory/effector CD8 T cell response against this peptide in a melanoma patient. To elucidate the Ag-processing pathway, we demonstrate that RAB38/NY-MEL-1(50-58) is produced efficiently by the standard proteasome and the immunoproteasome. In addition to the identification of a RAB38/NY-MEL-1-derived immunogenic CD8 T cell epitope, this study is instrumental for both the onset and monitoring of future RAB38/NY-MEL-1-based vaccination trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号