首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ery A region of the erythromycin biosynthetic gene cluster of Saccharopolyspora erythraea has previously been shown to contain three large open reading frames (ORFs) that encode the components of 6-deoxyerythronolide B synthase (DEBS). Polyclonal antibodies were raised against recombinant proteins obtained by overexpression of 3' regions of the ORF2 and ORF3 genes. In Western blotting experiments, each antiserum reacted strongly with a different high molecular weight protein in extracts of erythromycin-producing S. erythraea cells. These putative DEBS 2 and DEBS 3 proteins were purified and subjected to N-terminal sequence analysis. The protein sequences were entirely consistent with the and DEBS 3 proteins were purified and subjected to N-terminal sequence analysis. The protein sequences were entirely consistent with the translation start sites predicted from the DNA sequences of ORFs 2 and 3. A third high molecular weight protein co-purified with DEBS 2 and DEBS 3 and had an N-terminal sequence that matched a protein sequence translated from the DNA sequence some 155 base pairs upstream from the previously proposed start codon of ORF1.  相似文献   

2.
3.
Using a previously developed expression system based on the erythromycin-producing strain of Saccharopolyspora erythraea, O-methyltransferases from the spinosyn biosynthetic gene cluster of Saccharopolyspora spinosa have been shown to modify a rhamnosyl sugar attached to a 14-membered polyketide macrolactone. The spnI, spnK and spnH methyltransferase genes were expressed individually in the S. erythraea mutant SGT2, which is blocked both in endogenous macrolide biosynthesis and in ery glycosyltransferases eryBV and eryCIII. Exogenous 3-O-rhamnosyl-erythronolide B was efficiently converted into 3-O-(2'-O-methylrhamnosyl)-erythronolide B by the S. erythraea SGT2 (spnI) strain only. When 3-O-(2'-O-methylrhamnosyl)-erythronolide B was, in turn, fed to a culture of S. erythraea SGT2 (spnK), 3-O-(2',3'-bis-O-methylrhamnosyl)-erythronolide B was identified in the culture supernatant, whereas S. erythraea SGT2 (spnH) was without effect. These results confirm the identity of the 2'- and 3'-O-methyltransferases, and the specific sequence in which they act, and they demonstrate that these methyltransferases may be used to methylate rhamnose units in other polyketide natural products with the same specificity as in the spinosyn pathway. In contrast, 3-O-(2',3'-bis-O-methylrhamnosyl)-erythronolide B was found not to be a substrate for the 4'-O-methyltransferase SpnH. Although rhamnosylerythromycins did not serve directly as substrates for the spinosyn methyltransferases, methylrhamnosyl-erythromycins were obtained by subsequent conversion of the corresponding methylrhamnosyl-erythronolide precursors using the S. erythraea strain SGT2 housing EryCIII, the desosaminyltransferase of the erythromycin pathway. 3-O-(2'-O-methylrhamnosyl)-erythromycin D was tested and found to be significantly active against a strain of erythromycin-sensitive Bacillus subtilis.  相似文献   

4.
A mutant strain derived by chemical mutagenesis of Saccharopolyspora erythraea (formerly known as Streptomyces erythreus) was isolated that accumulated erythromycin C and, to a lesser extent, its precursor, erythromycin D, with little or no production of erythromycin A or erythromycin B (the 3"-O-methylation products of erythromycin C and D, respectively). This mutant lacked detectable erythromycin O-methyltransferase activity with erythromycin C, erythromycin D, or the analogs 2-norerythromycin C and 2-norerythromycin D as substrates. A 4.5-kilobase DNA fragment from S. erythraea originating approximately 5 kilobases from the erythromycin resistance gene ermE was identified that regenerated the parental phenotype and restored erythromycin O-methyltransferase activity when transformed into the erythromycin O-methyltransferase-negative mutant. Erythromycin O-methyltransferase activity was detected when the 4.5-kilobase fragment was fused to the lacZ promoter and introduced into Escherichia coli. The activity was dependent on the orientation of the DNA relative to lacZ. We have designated this genotype eryG in agreement with Weber et al. (J.M. Weber, B. Schoner, and R. Losick, Gene 75:235-241, 1989). It thus appears that a single enzyme catalyzes all of the 3"-O-methylation reactions of the erythromycin biosynthetic pathway in S. erythraea and that eryG codes for the structural gene of this enzyme.  相似文献   

5.
6.
7.
8.
9.
A previously unidentified set of genes encoding a modular polyketide synthase (PKS) has been sequenced in Saccharopolyspora erythraea, producer of the antibiotic erythromycin. This new PKS gene cluster (pke) contains four adjacent large open reading frames (ORFs) encoding eight extension modules, flanked by a number of other ORFs which can be plausibly assigned roles in polyketide biosynthesis. Disruption of the pke PKS genes gave S. erythraea mutant JC2::pSBKS6, whose growth characteristics and pattern of secondary metabolite production did not apparently differ from the parent strain under any of the growth conditions tested. However, the pke PKS loading module and individual pke acyltransferase domains were shown to be active when used in engineered hybrid PKSs, making it highly likely that under appropriate conditions these biosynthetic genes are indeed expressed and active, and synthesize a novel polyketide product.  相似文献   

10.
Two glycosyltransferase genes, oleG1 and oleG2, and a putative isomerase gene, oleP1, have previously been identified in the oleandomycin biosynthetic gene cluster of Streptomyces antibioticus. In order to identify which of these two glycosyltransferases encodes the desosaminyltransferase and which the oleandrosyltransferase, interspecies complementation has been carried out, using two mutant strains of Saccharopolyspora erythraea, one strain carrying an internal deletion in the eryCIII (desosaminyltransferase) gene and the other an internal deletion in the eryBV (mycarosyltransferase) gene. Expression of the oleG1 gene in the eryCIII deletion mutant restored the production of erythromycin A (although at a low level), demonstrating that oleG1 encodes the desosaminyltransferase required for the biosynthesis of oleandomycin and indicating that, as in erythromycin biosynthesis, the neutral sugar is transferred before the aminosugar onto the macrocyclic ring. Significantly, when an intact oleG2 gene (presumed to encode the oleandrosyltransferase) was expressed in the eryBV deletion mutant, antibiotic activity was also restored and, in addition to erythromycin A, new bioactive compounds were produced with a good yield. The neutral sugar residue present in these compounds was identified as L-rhamnose attached at position C-3 of an erythronolide B or a 6-deoxyerythronolide B lactone ring, thus indicating a relaxed specificity of the oleandrosyltransferase, OleG2, for both the activated sugar and the macrolactone substrate. The oleP1 gene located immediately upstream of oleG1 was likewise introduced into an eryCII deletion mutant of Sac. erythraea, and production of erythromycin A was again restored, demonstrating that the function of OleP1 is identical to that of EryCII in the biosynthesis of dTDP-D-desosamine, which we have previously proposed to be a dTDP-4-keto-6-deoxy-D-glucose 3, 4-isomerase.  相似文献   

11.
12.
The erythromycin producer, Saccharopolyspora erythraea ER720, was genetically engineered to produce 6,12-dideoxyerythromycin A, a novel erythromycin derivative, as the major macrolide in the fermentation broth. Inspection of the biosynthetic pathway for erythromycin would suggest that production of this compound could be achieved simply through the disruption of two genes, that encoding the erythromycin C-6 hydroxylase (eryF ) and that encoding the erythromycin C-12 hydroxylase (eryK ). The double mutant, however, was found to produce a mixture of 6,12-dideoxyerythromycin A and the precursor, 6-deoxyerythromycin D. Complete conversion to the desired product (to the limit of detection by TLC) was achieved by inserting an additional copy of the eryG gene, encoding the erythromycin 3′′-O-methyltransferase and driven by the ermE* promoter, into the S. erythraea chromosome. Received: 6 October 1997 / Received revision: 27 January 1998 / Accepted: 24 February 1998  相似文献   

13.
14.
15.
多杀菌素是对农业虫害防治及粮食仓储安全均具有重大意义的农用抗生素.为了深入揭示刺糖多孢菌合成多杀菌素的调控特点,首先通过建立基于报告基因的启动子探测技术,探测了多杀菌素生物合成基因簇的9个启动子活性.并进一步通过荧光定量PCR,分析了这9个基因和不在基因簇内的负责糖基前体供应和鼠李糖合成的4个基因的转录时序,结果表明多杀菌素生物合成基因簇内的9个基因在菌体生长进入稳定期时有较高的转录,这和发酵液中此时开始大量积累多杀菌素一致;同时还发现,簇外的4个与糖基供应相关的基因和基因簇内基因的转录时序不同,它们在菌体生长对数期有较高的转录活性,这暗示多杀菌素聚酮链的合成速率和参与后修饰的糖基底物供应的最优化匹配有可能是提高生物合成多杀菌素的前提和关键.  相似文献   

16.
糖多孢红霉菌多拷贝表达载体pZM的构建   总被引:4,自引:0,他引:4  
对糖多孢红霉菌染色体上红霉素生物合成基因进行改造 ,已经合成了多种红霉素类似物。在糖多孢红霉菌中对红霉素类似物进行结构修饰 ,以pWOR1 0 9质粒为基础构建糖多孢红霉菌多拷贝表达载体pZM。pZM载体带有PermE启动子、fd终止子、多克隆位点、硫链丝菌肽和氨苄青霉素抗性基因、以及在大肠杆菌和糖多孢红霉菌中复制的ColE1ori和pJV1ori复制子 ,系可在大肠杆菌和糖多孢红霉菌中扩增的穿梭质粒。在糖多孢红霉菌中 ,pZM可以表达氨普霉素抗性基因和绿色荧光蛋白基因 ,从糖多孢红霉菌中提取的表达质粒酶切图谱与转化前一致 ,表明pZM是糖多孢红霉菌中多拷贝、稳定的表达载体。  相似文献   

17.
Fusions between regions upstream of eryAI and the aph reporter gene were studied. In high copy number plasmids, DNA extending 262 bp upstream of the EryAI translation start sufficed for full kanamycin/neomycin phosphotransferase (APH) expression in Streptomyces lividans. Low copy number constructs gave similar APH activities in Saccharopolyspora erythraea and S. lividans, in accord with the idea that there is no pathway-specific regulatory gene in this system. © Rapid Science Ltd. 1998  相似文献   

18.
Megalomicin is a therapeutically diverse compound which possesses antiparasitic, antiviral and antibacterial properties. It is produced by Micromonospora megalomicea and differs from the well-known macrolide antibiotic erythromycin by the addition of a unique deoxyamino sugar, megosamine, to the C-6 hydroxyl. We have cloned and sequenced a 48 kb segment of the megalomicin (meg) biosynthetic gene cluster which contains the modular polyketide synthase (PKS) and the complete pathway for megosamine biosynthesis. The similarities and distinctions between the related megalomicin and erythromycin gene clusters are discussed. Heterologous expression of the megalomicin PKS in Streptomyces lividans led to production of 6-deoxyerythronolide B, the same macrolactone intermediate for erythromycin. A 12 kb fragment harbouring the putative megosamine pathway was expressed in Saccharopolyspora erythraea, resulting in the conversion of erythromycin to megalomicin. Considering the extensive knowledge surrounding the genetic engineering of the erythromycin PKS and the familiarity with genetic manipulation and fermentation of S. erythraea, the ability to produce megalomicin in this strain should allow the engineering of novel megalomicin analogues with potentially improved therapeutic activities.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号