首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In both humans and Drosophila melanogaster, UDP-galactose 4'-epimerase (GALE) catalyzes two distinct reactions, interconverting UDP-galactose (UDP-gal) and UDP-glucose (UDP-glc) in the final step of the Leloir pathway of galactose metabolism, and also interconverting UDP-N-acetylgalactosamine (UDP-galNAc) and UDP-N-acetylglucosamine (UDP-glcNAc). All four of these UDP-sugars serve as vital substrates for glycosylation in metazoans. Partial loss of GALE in humans results in the spectrum disorder epimerase deficiency galactosemia; partial loss of GALE in Drosophila melanogaster also results in galactose-sensitivity, and complete loss in Drosophila is embryonic lethal. However, whether these outcomes in both humans and flies result from loss of one GALE activity, the other, or both has remained unknown. To address this question, we uncoupled the two activities in a Drosophila model, effectively replacing the endogenous dGALE with prokaryotic transgenes, one of which (Escherichia coli GALE) efficiently interconverts only UDP-gal/UDP-glc, and the other of which (Plesiomonas shigelloides wbgU) efficiently interconverts only UDP-galNAc/UDP-glcNAc. Our results demonstrate that both UDP-gal and UDP-galNAc activities of dGALE are required for Drosophila survival, although distinct roles for each activity can be seen in specific windows of developmental time or in response to a galactose challenge. By extension, these data also suggest that both activities might play distinct and essential roles in humans.  相似文献   

2.
UDP-galactose 4'-epimerase (GALE) interconverts UDP-galactose and UDP-glucose in the final step of the Leloir pathway. Unlike the Escherichia coli enzyme, human GALE (hGALE) also efficiently interconverts a larger pair of substrates: UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine. The basis of this differential substrate specificity has remained obscure. Recently, however, x-ray crystallographic data have both predicted essential active site residues and suggested that differential active site cleft volume may be a key factor in determining GALE substrate selectivity. We report here a direct test of this hypothesis. In brief, we have created four substituted alleles: S132A, Y157F, S132A/Y157F, and C307Y-hGALE. While the first three substitutions were predicted to disrupt catalytic activity, the fourth was predicted to reduce active site cleft volume, thereby limiting entry or rotation of the larger but not the smaller substrate. All four alleles were expressed in a null-background strain of Saccharomyces cerevisiae and characterized in terms of activity with regard to both UDP-galactose and UDP-N-acetylgalactosamine. The S132A/Y157F and C307Y-hGALE proteins were also overexpressed in Pichia pastoris and purified for analysis. In all forms tested, the Y157F, S132A, and Y157F/S132A-hGALE proteins each demonstrated a complete loss of activity with respect to both substrates. In contrast, the C307Y-hGALE demonstrated normal activity with respect to UDP-galactose but complete loss of activity with respect to UDP-N-acetylgalactosamine. Together, these results serve to validate the wild-type hGALE crystal structure and fully support the hypothesis that residue 307 acts as a gatekeeper mediating substrate access to the hGALE active site.  相似文献   

3.
Jiráková K  Kulda J  Nohýnková E 《Protist》2012,163(3):465-479
Differentiation into infectious cysts (encystation) and multiplication of pathogenic trophozoites after hatching from the cyst (excystation) are fundamental processes in the life cycle of the human intestinal parasite Giardia intestinalis. During encystation, a bi-nucleated trophozoite transforms to a dormant tetra-nucleated cyst enveloped by a protective cyst wall. Nuclear division during encystation is not followed by cytokinesis. In contrast to the well-studied mechanism of cyst wall formation, information on nuclei behavior is incomplete and basic cytological data are lacking. Here we present evidence that (1) the nuclei divide by semi-open mitosis during early encystment; (2) the daughter nuclei coming from different parent nuclei are always arranged in pairs; (3) in both pairs, the nuclei are interconnected via bridges formed by fusion of their nuclear envelopes; (4) each interconnected nuclear pair is associated with one basal body tetrad of the undivided diplomonad mastigont; and (5) the interconnection between nuclei persists through the cyst stage being a characteristic feature of encysted Giardia. Based on the presented results, a model of nuclei behavior during Giardia differentiation is proposed.  相似文献   

4.
Deficiency of UDP-galactose 4'-epimerase is implicated in type III galactosemia. Two variants, p.K161N-hGALE and p.D175N-hGALE, have been previously found in combination with other alleles in patients with a mild form of the disease. Both variants were studied in vivo and in vitro and showed different levels of impairment. p.K161N-hGALE was severely impaired with substantially reduced enzymatic activity, increased thermal stability, reduced cofactor binding and no ability to rescue the galactose-sensitivity of gal10-null yeast. Interestingly p.K161N-hGALE showed less impairment of activity with UDP-N-acetylgalactosamine in comparison to UDP-galactose. Differential scanning fluorimetry revealed that p.K161N-hGALE was more stable than the wild-type protein and only changed stability in the presence of UDP-N-acetylglucosamine and NAD(+). p.D175N-hGALE essentially rescued the galactose-sensitivity of gal10-null yeast, was less stable than the wild-type protein but showed increased stability in the presence of substrates and cofactor. We postulate that p.K161N-hGALE causes its effects by abolishing an important interaction between the protein and the cofactor, whereas p.D175N-hGALE is predicted to remove a stabilizing salt bridge between the ends of two α-helices that contain residues that interact with NAD(+). These results suggest that the cofactor binding is dynamic and that its loss results in significant structural changes that may be important in disease causation.  相似文献   

5.
Giardia intestinalis is the causative agent of human giardiasis, a common diarrheal illness worldwide. Despite its global distribution and prevalence, many questions regarding its basic biology and metabolism remain unanswered. In this study, we examine the accumulation and degradation of glycogen, an important source of stored carbon and energy, during the in vitro growth and differentiation of G. intestinalis . We report that, as G. intestinalis progresses through its growth cycle, cultures of trophozoites accumulate glycogen during the lag and early logarithmic phases of growth and then utilize this compound during their remaining logarithmic growth. As cultures enter the stationary phase of growth, they re-accumulate glycogen stores. The activity of glycogen phosphorylase, an enzyme involved in glycogen metabolism, also varied throughout in vitro trophozoite growth. During the in vitro induction of trophozoite differentiation into water-resistant cyst forms, the cultures initially accumulated stores of glycogen which diminished throughout transition to the cyst form. This observation is suggestive of a role for glycogen in the differentiation process. These studies represent the first thorough analysis of changes in glycogen content and glycogen phosphorylase activity during G. intestinalis growth and differentiation.  相似文献   

6.
Despite the prevalence of giardiasis little is known about the host-parasite specificity. With Giardia intestinalis-suckling mouse model, the success of infestation was depending on the parasite form, cyst or trophozoite, and, for the same parasite form, on the studied strain. Furthermore, the intestinal modification during the wean were unfavourable to Giardia intestinalis colonization.  相似文献   

7.
The in vitro excystation process in Giardia intestinalis was studied by transmission electron microscopy (TEM). Untreated cysts served as controls. The excystation process was monitored by examination of organisms after the in vitro induction and at several times during the incubation phase. The control cyts had a thick wall, made of microfibrils, that appeared not to contain any weak areas. The peritrophic space extended between the cyst wall and the organism peripherally, the space was delimited by a thin cytoplasmic layer, "the outer cytoplasmic envelope" that subtended the cyst wall. During the in vitro incubation, the trophozoite cytoplasm retracted from the wall; thus, the peritrophic space became progressively larger. The outer cytoplasmic envelope detached from the cyst wall, then broke up forming numerous small vesicles lodged between the wall and the organism. The tight arrangement of the wall microfibirils was lost. Electron-dense vacuoles appeared in the peripheral cytoplasm of the trophozoite. The organism emerged through the posterior end of the cyst, leaving behind the empty husk. Emergence was followed by cell division. The possible interrelationships of biochemical and mechanical factors affecting the process of excystation are discussed in light of the present TEM findings.  相似文献   

8.
Giardia intestinalis trophozoites encyst when they are exposed to bile. During encystment, events related to the inducible synthesis of a novel N-acetyl-D-galactosamine (GalNAc) homopolymer, occur. Within the first 6 h of encystment, mRNA for glucosamine 6-P isomerase (GPI), the first inducible enzyme unique to this pathway appears, oxygen uptake rates double from non-encysting levels, and metronidazole (MTZ) inhibits oxygen uptake. Within 12 h, GPI and its activity are detectable and OU decreases 50% from non-encysting levels; glucose's stimulation and MTZ's inhibition of oxygen uptake cease. In contrast, aspartate uptake remained constant throughout the 40 h monitored. Two genes, gpi 1 and 2 encode for GPI, but only gpi1 is expressed during encystment. Glucosamine 6-P (GlcN6P), the synthetic product of GPI, activates UDP-N-acetylglucosamine (UDP-GlcNAc) pyrophosphorylase, a downstream enzyme, 3 to 5-fold in the direction of UDP-GlcNAc synthesis. UDP-GlcNAc is epimerized to UDP-GalNAc and UDP-GalNAc is polymerized by "cyst wall synthase" (beta 1 --> 3 GalNAc transferase) into a highly insoluble beta 1,3-linked homopolymer. This GalNAc polysaccharide, the major component of cyst wall filaments, forms, in conjunction with polypeptides, the outer cyst wall of Giardia.  相似文献   

9.
Despite its importance for agriculture, bioindustry, and nutrition, the fundamental process of L-ascorbic acid (vitamin C) biosynthesis in plants is not completely elucidated, and little is known about its regulation. The recently identified GDP-Man 3',5'-epimerase catalyzes a reversible epimerization of GDP-D-mannose that precedes the committed step in the biosynthesis of vitamin C, resulting in the hydrolysis of the highly energetic glycosyl-pyrophosphoryl linkage. Here, we characterize the native and recombinant GDP-Man 3',5'-epimerase of Arabidopsis thaliana. GDP and GDP-D-glucose are potent competitive inhibitors of the enzyme, whereas GDP-L-fucose gives a complex type of inhibition. The epimerase contains a modified version of the NAD binding motif and is inhibited by NAD(P)H and stimulated by NAD(P)+. A feedback inhibition of vitamin C biosynthesis is observed apparently at the level of GDP-Man 3',5'-epimerase. The epimerase catalyzes at least two distinct epimerization reactions and releases, besides the well known GDP-l-galactose, a novel intermediate: GDP-L-gulose. The yield of the epimerization varies and seems to depend on the molecular form of the enzyme. Both recombinant and native enzymes co-purified with a Hsp70 heat-shock protein (Escherichia coli DnaK and A. thaliana Hsc70.3, respectively). We speculate, therefore, that the Hsp70 molecular chaperones might be involved in folding and/or regulation of the epimerase. In summary, the plant epimerase undergoes a complex regulation and could control the carbon flux into the vitamin C pathway in response to the redox state of the cell, stress conditions, and GDP-sugar demand for the cell wall/glycoprotein biosynthesis. Exogenous L-gulose and L-gulono-1,4-lactone serve as direct precursors of l-ascorbic acid in plant cells. We propose an L-gulose pathway for the de novo biosynthesis of vitamin C in plants.  相似文献   

10.
Early diverged extant organisms, which may serve as convenient laboratory models to look for and study evolutionary ancient features of eukaryotic cell biology, are rare. The diplomonad Giardia intestinalis, a protozoan parasite known to cause diarrhoeal disease, has become an increasingly popular object of basic research in cell biology, not least because of a genome sequencing project nearing completion. Commensurate with its phylogenetic status, the Giardia trophozoite has a very basic secretory system and even lacks hallmark structures such as a morphologically identifiable Golgi apparatus. The cell's capacity for protein sorting is nevertheless unimpeded, exemplified by its ability to cope with massive amounts of newly synthesized cyst wall proteins and glycans, which are sorted to dedicated Golgi-like compartments termed encystation-specific vesicles (ESVs) generated from endoplasmic reticulum (ER)-derived transport intermediates. This soluble bulk cargo is kept strictly separate from constitutively transported variant surface proteins during export, a function that is dependent on the stage-specific recognition of trafficking signals. Encysting Giardia therefore provide a unique system for the study of unconventional, Golgi-independent protein trafficking mechanisms in the broader context of eukaryotic endomembrane organization and evolution.  相似文献   

11.
Cyclospora cayetanensis is an agent of emerging infectious disease, and a recognized cause of diarrhea in some patients. Also, the flagellated protozoan, Giardia intestinalis, induces a diarrheal illness of the small intestine. Cases of cyclosporiasis are frequently missed, primarily due to the fact that the parasite can be quite difficult to detect in human fecal samples, despite an increasing amount of data regarding this parasite. On the other hand, G. intestinalis can be readily recognized via the microscopic visualization of its trophozoite or cyst forms in stained preparations or unstained wet mounts. In this report, we describe an uncommon case of co-infection with G. intestinalis and C. cayetanensis in an immunocompetent patient with prolonged diarrhea, living in a non-tropical region of Turkey.  相似文献   

12.
Here we describe the efficient synthesis of two oligosaccharide moieties of human glycosphingolipids, globotetraose (GalNAcbeta1-->3Galalpha1-->4Galbeta1-->4Glc) and isoglobotetraose (GalNAcbeta1-->3Galalpha1-->3Galbeta1-->4Glc), with in situ enzymatic regeneration of UDP-N-acetylgalactosamine (UDP-GalNAc). We demonstrate that the recombinant beta-1,3-N-acetylgalactosaminyltransferase from Haemophilus influenzae strain Rd can transfer N-acetylgalactosamine to a wide range of acceptor substrates with a terminal galactose residue. The donor substrate UDP-GalNAc can be regenerated by a six-enzyme reaction cycle consisting of phosphoglucosamine mutase, UDP-N-acetylglucosamine pyrophosphorylase, phosphate acetyltransferase, pyruvate kinase, and inorganic pyrophosphatase from Escherichia coli, as well as UDP-N-acetylglucosamine C4 epimerase from Plesiomonas shigelloides. All these enzymes were overexpressed in E. coli with six-histidine tags and were purified by one-step nickel-nitrilotriacetic acid affinity chromatography. Multiple-enzyme synthesis of globotetraose or isoglobotetraose with the purified enzymes was achieved with relatively high yields.  相似文献   

13.
The UDP-N-acetylglucosamine pyrophosphorylase in Giardia intestinalis (GiUAP) is one of the five inducible enzymes to synthesize UDP-GalNAc, which is an important precursor for cyst wall synthesis. The recombinant UDP-N-acetylglucosamine pyrophosphorylase (rGiUAP) and its mutants G108A and G210A were expressed and identified by SDS-PAGE, size-exclusion chromatography, Western hybridization, and MALDI mass spectrometry. Sequence comparison with other eukaryotic UAPs has identified three specific motifs. Within these motifs alanine substitution for Gly(108) or Gly(210) dramatically reduced the pyrophosphate synthesis, suggesting these amino acids are catalytic residues. Besides, the rGiUAP was found to have relaxed binding to other uridine-based nucleotides, suggesting the substrate binding pocket is specific to uridine rather than phosphate group(s). Moreover, thermal denaturation analysis showed a significant increase in T(m) for the rGiUAP and G108A upon binding of the substrate Mg-UTP. In contrast, G210A showed a decreased T(m) upon binding of Mg-UTP. These results showed that binding of Mg-UTP increases protein stability of the rGiUAP, and the catalytic residue Gly(210) plays a significant role in stabilizing the protein structure. Such stabilization effect induced by substrate binding might be physiologically important as it favors the production of UDP-GlcNAc and hence the downstream GalNAc, which is crucial to survival of Giardia. These results help to define the essential amino acids for catalysis in the GiUAP and reveal the role of Mg-UTP binding in regulation of protein stability.  相似文献   

14.
Zhang H  Zhou Y  Bao H  Liu HW 《Biochemistry》2006,45(26):8163-8173
Vi antigen, the virulence factor of Salmonella typhi, has been used clinically as a molecular vaccine. TviB and TviC are two enzymes involved in the formation of Vi antigen, a linear polymer consisting of alpha-1,4-linked N-acetylgalactosaminuronate. Protein sequence analysis suggests that TviB is a dehydrogenase and TviC is an epimerase. Both enzymes are expected to be NAD(+) dependent. In order to verify their functions, TviB and TviC were cloned, expressed in Escherichia coli, and characterized. The C-terminal His(6)-tagged TviB protein, purified from soluble cell fractions in the presence of 10 mM DTT, shows UDP-N-acetylglucosamine 6-dehydrogenase activity and is capable of catalyzing the conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) to UDP-N-acetylglucosaminuronic acid (UDP-GlcNAcA) with a k(cat) value of 15.5 +/- 1.0 min(-)(1). The K(m) values of TviB for UDP-GlcNAc and NAD(+) are 77 +/- 9 microM and 276 +/- 52 microM, respectively. TviC, purified as C-terminal hexahistidine-tagged protein, shows UDP-GlcNAcA 4-epimerase and UDP-N-acetylgalactosamine (UDP-GalNAc) 4-epimerase activities. The K(m) values of TviC for UDP-GlcNAcA and UDP-N-acetylgalactosaminuronic acid (UDP-GalNAcA) are 20 +/- 1 microM and 42 +/- 2 microM, respectively. The k(cat) value for the conversion of UDP-GlcNAcA to UDP-GalNAcA is 56.8 +/- 0.5 min(-)(1), while that for the reverse reaction is 39.1 +/- 0.6 min(-)(1). These results show that the biosynthesis of Vi antigen is initiated by the TviB-catalyzed oxidation of UDP-GlcNAc to UDP-GalNAc, followed by the TviC-catalyzed epimerization at C-4 to form UDP-GalNAcA, which serves as the building block for the formation of Vi polymer. These results set the stage for future in vitro biosynthesis of Vi antigen. These enzymes may also be drug targets to inhibit Vi antigen production.  相似文献   

15.
We have undertaken an extensive survey of a group of epimerases originally named Gne, that were thought to be responsible for inter-conversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc). The analysis builds on recent work clarifying the specificity of some of these epimerases. We find three well defined clades responsible for inter-conversion of the gluco- and galacto-configuration at C4 of different N-acetylhexosamines. Their major biological roles are the formation of UDP-GalNAc, UDP-N-acetylgalactosaminuronic acid (UDP-GalNAcA) and undecaprenyl pyrophosphate-N-acetylgalactosamine (UndPP-GalNAc) from the corresponding glucose forms. We propose that the clade of UDP-GlcNAcA epimerase genes be named gnaB and the clade of UndPP-GlcNAc epimerase genes be named gnu, while the UDP-GlcNAc epimerase genes retain the name gne. The Gne epimerases, as now defined after exclusion of those to be named GnaB or Gnu, are in the same clade as the GalE 4-epimerases for inter-conversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal). This work brings clarity to an area that had become quite confusing. The identification of distinct enzymes for epimerisation of UDP-GlcNAc, UDP-GlcNAcA and UndPP-GlcNAc will greatly facilitate allocation of gene function in polysaccharide gene clusters, including those found in bacterial genome sequences. A table of the accession numbers for the 295 proteins used in the analysis is provided to enable the major tree to be regenerated with the inclusion of additional proteins of interest. This and other suggestions for annotation of 4-epimerase genes will facilitate annotation.  相似文献   

16.
Assembly of a protective cyst wall by Giardia is essential for the survival of the parasite outside the host intestine and for transmission among susceptible hosts. The structure of the G. intestinalis filamentous cyst wall was studied by chemical methods, mass spectrometry, and (1)H nuclear magnetic resonance spectroscopy. Isolated cyst wall material contains carbohydrate and protein in a ratio of 3:2 (w/w), and the carbohydrate moiety is composed of a beta(1-3)-N-acetyl-D-galactopyranosamine homopolymer. Conformational analysis by molecular dynamics and persistence length calculations of GalNAc oligomers in solution demonstrated a flexible structure consisting of left- and right-handed helical elements. It is most likely that in the solid state, the polysaccharide forms ordered helices or possibly multiple helical structures having strong interchain interactions. The highly insoluble nature of the Giardia cyst wall must be due to these strong interchain interactions and, probably, a strong association between the carbohydrate and the protein moiety.  相似文献   

17.
Giardia synthesizes UDP-GalNAc during cyst wall formation (encystment) via a pathway of inducible enzymes similar to that used to synthesize chitin or peptidoglycan and that includes the UTP-requiring UDP-N-acetylglucosamine pyrophosphorylase. Although it has never been reported as a regulatory enzyme in any system studied to date, kinetic data including Hill plots demonstrate clearly that UDP-N-acetylglucosamine pyrophosphorylase activity, purified from encysting Giardia, is allosterically activated anabolically by physiological levels of glucosamine 6-phosphate (3 microm). Capillary electrophoresis demonstrates that within 24 h after trophozoites are induced to encyst, the level of glucosamine 6-phosphate increases 3-fold over that of non-encysting cells and that by 48 h into encystment the level of glucosamine 6-phosphate has decreased to non-encysting levels or below. UDP-N-acetylglucosamine pyrophosphorylase protein is present constitutively in encysting as well as non-encysting cells. UDP-N-acetylglucosamine pyrophosphorylase immunoaffinity purified from encysting and non-encysting cells exhibited the same molecular weight, amino acid composition, and circular dichroism spectra. Moreover, regardless of whether the enzyme came from encysting or non-encysting cells, the change in its circular dichroism spectra and up to a 6-fold increase in its specific activity anabolically were due to its activation with glucosamine 6-phosphate. Thus, the data support the idea that UDP-N-acetylglucosamine pyrophosphorylase is a major regulatory point in amino sugar synthesis in encysting Giardia and that its allosteric anabolic activation may shift the equilibrium of this pathway toward UDP-GalNAc synthesis.  相似文献   

18.
The in vitro excystation of Giardia intestinalis was studied to make the osmolarity (from 50 to 500 mosmol/l) and the components of growth medium (MCI saline solution, MCII glucose solution, MCIII nutritive solution) varying. The percentage of excystation, the viability and the generation time were determined. Excystation was observed in the saline solution between 100 to 450 mosmol/l after cyst acid pepsin incubation. The trophozoite viability was increased by glucose addition (60 min in MCI; 300 min in MCII). Only a rich medium (MCIII) permitted a generation time from 225 to 425 mosmol/l.  相似文献   

19.
ABSTRACT. In vitro excystation of Spironucleus muris cysts, purified by sequential sucrose and Percoll gradients from mouse feces, was studied. Three in vitro excystation procedures, used for Giardia , were assessed to determine the most useful method. Excystation was monitored by light microscopy and subsequently characterized by transmission and scanning electron microscopy. Spironucleus muris excysted routinely at a level greater than 90% when induced in Hanks' balanced salt solution containing sodium bicarbonate at pH 2.0 and transferred to Tyrodes' salt solution as an excystation medium. Similarly, high rates of excystation were recorded after induction of S. muris cysts in 0.1 M potassium phosphate buffer (pH 7.0) with sodium bicarbonate and excystation in trypticase-yeast extract-iron medium (TYI medium) or phosphate-buffered saline. A lower rate and percentage of excystation were observed after induction of S. muris cysts in an aqueous hydrochloric acid solution (pH 2.0) followed by excystation in TYI medium. All excystation methods produced extremely active S. muris trophozoites with normal morphology. Nonexcysting S. muris cysts have a wall composed of an outer fibrous and an inner membranous portion. Following induction, numerous vesicles appeared in the peritrophic space. Excystation began by the cyst wall opening at one pole, and the anterior part of the trophozoite protruding from the cyst wall. The trophozoite emerged progressively from the cyst wall and the empty cyst wall appeared to collapse. Excysted trophozoites exhibited normal morphological features of S. muris trophozoites isolated from the mouse intestine.  相似文献   

20.
Because of its efficacy in inactivating waterborne protozoan cysts and oocysts, ozone is frequently used for disinfection of drinking water. The effect of ozone on cysts of Giardia lamblia was investigated in gerbils (Meriones unguiculatus), using an infectivity assay by scanning electron microscopy, immunoblotting, and flow cytometry. Cysts recovered from experimentally infected gerbils were exposed to an initial ozone concentration of 1.5 mg/L for 0, 30, 60, and 120 sec.This treatment resulted in a dose-dependent reduction in cysts concentration, loss of infectivity in gerbils, and profound structural modifications to the cyst wall. Exposure for 60 sec or longer resulted in extensive protein degradation and in the disappearance of a cyst wall and a trophozoite antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号