首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
钙依赖性突触的可塑性   总被引:3,自引:0,他引:3  
Dou Y  Yan J  Wu YY  Cui RY  Lu CL 《生理科学进展》2001,32(1):35-38
突触前和突触后细胞内钙离子([Ca^2 ]i)在短时程和长时程突触的可塑性中,发挥着重要的住处传递作用。兴奋后残留[Ca^2 ]i,可以激发短时程突触增强。突触前[Ca^2 ]i可以影响被抑制的突触前膜囊泡的更新,并准确编码突前和突触后信息,产生截然相反的长时程突触修(LTP或LTD)。  相似文献   

2.
Trains of action potentials evoked rises in presynaptic Ca2+ concentration ([Ca2+]i) at the squid giant synapse. These increases in [Ca2+]i were spatially nonuniform during the trains, but rapidly equilibrated after the trains and slowly declined over hundreds of seconds. The trains also elicited synaptic depression and augmentation, both of which developed during stimulation and declined within a few seconds afterward. Microinjection of the Ca2+ buffer EGTA into presynaptic terminals had no effect on transmitter release or synaptic depression. However, EGTA injection effectively blocked both the persistent Ca2+ signals and augmentation. These results suggest that transmitter release is triggered by a large, brief, and sharply localized rise in [Ca2+]i, while augmentation is produced by a smaller, slower, and more diffuse rise in [Ca2+]i.  相似文献   

3.
The release of neurotransmitter from presynaptic terminals depends on an increase in the intracellular Ca2+ concentration ([Ca2+]i). In addition to the opening of presynaptic Ca2+ channels during excitation, other Ca2+ transport systems may be involved in changes in [Ca2+]i. We have studied the regulation of [Ca2+]i in nerve terminals of hippocampal cells in culture by the Na(+)-Ca2+ exchanger and by mitochondria. In addition, we have measured changes in the frequency of spontaneous excitatory postsynaptic currents (sEPSC) before and after the inhibition of the exchanger and of mitochondrial metabolism. We found rather heterogeneous [Ca2+]i responses of individual presynaptic terminals after inhibition of Na(+)-Ca2+ exchange. The increase in [Ca2+]i became more uniform and much larger after additional treatment of the cells with mitochondrial inhibitors. Correspondingly, sEPSC frequencies changed very little when only Na(+)-Ca2+ exchange was inhibited, but increased dramatically after additional inhibition of mitochondria. Our results provide evidence for prominent roles of Na(+)-Ca2+ exchange and mitochondria in presynaptic Ca2+ regulation and spontaneous glutamate release.  相似文献   

4.
Nakamura T  Barbara JG  Nakamura K  Ross WN 《Neuron》1999,24(3):727-737
Increases in postsynaptic [Ca2+]i can result from Ca2+ entry through ligand-gated channels or voltage-gated Ca2+ channels, or through release from intracellular stores. Most attention has focused on entry through the N-methyl-D-aspartate (NMDA) receptor in causing [Ca2+]i increases since this pathway requires both presynaptic stimulation and postsynaptic depolarization, making it a central component in models of synaptic plasticity. Here, we report that repetitive synaptic activation of metabotropic glutamate receptors (mGluRs), paired with backpropagating action potentials, causes large, wave-like increases in [Ca2+]i predominantly in restricted regions of the proximal apical dendrites and soma of hippocampal CA1 pyramidal neurons. [Ca2+]i changes of several micromolars can be reached by regenerative release caused by the synergistic effect of mGluR-generated inositol 1,4,5-trisphosphate (IP3) and spike-evoked Ca2+ entry acting on the IP3 receptor.  相似文献   

5.
Mb1 bipolar cells (ON-type cells) of the goldfish retina have exceptionally large (approximately 10 microns in diameter) presynaptic terminals, and thus, are suitable for investigating presynaptic mechanisms for transmitter release. Using enzymatically dissociated Mb1 bipolar cells under whole-cell voltage clamp, we measured the Ca2+ current (ICa), the intracellular free Ca2+ concentration ([Ca2+]i), and membrane capacitance changes associated with exocytosis and endocytosis. Release of transmitter (glutamate) was monitored electrophysiologically by a glutamate receptor-rich neuron as a probe. L-type Ca2+ channels were localized at the presynaptic terminals. The presynaptic [Ca2+]i was strongly regulated by cytoplasmic Ca2+ buffers, the Na(+)-Ca2+ exchanger and the Ca2+ pump in the plasma membrane. Once ICa was activated, a steep Ca2+ gradient was created around Ca2+ channels; [Ca2+]i increased to approximately 100 microM at the fusion sites of synaptic vesicles whereas up to approximately 1 microM at the cytoplasm. The short delay (approximately 1 ms) of exocytosis and the lack of prominent asynchronous release after the termination of ICa suggested a low-affinity Ca2+ fusion sensor for exocytosis. Depending on the rate of Ca2+ influx, glutamate was released in a rapid phasic mode as well as a tonic mode. Multiple pools of synaptic vesicles as well as vesicle cycling seemed to support continuous glutamate release. Activation of protein kinase C increased the size of synaptic vesicle pool, resulting in the potentiation of glutamate release. Goldfish Mb1 bipolar cells may still be an important model system for understanding the molecular mechanisms of transmitter release.  相似文献   

6.
Serotonin (5-HT) produces presynaptic facilitation and FMRFamide produces presynaptic inhibition in Aplysia sensory neurons. These effects may involve the modulation of Ca2+ influx into sensory neuron terminals during action potentials. Here, we have used the Ca2+ indicator dye fura-2 to monitor directly the effects of 5-HT and FMRFamide on internal Ca2+ concentration ([Ca2+]i). 5-HT caused a 50% increase in the transient rise in [Ca2+]i in response to action potentials, whereas FMRFamide decreased the [Ca2+]i transient by 40%. Neither transmitter altered the resting [Ca2+]i, the time course of recovery of the [Ca2+]i transient, or the [Ca2+]i transients produced by intracellular injection of CaCl2 or inositol 1,4,5-trisphosphate. We conclude that the effects of the transmitters on the action potential-induced [Ca2+]i transient are due to changes in Ca2+ influx and not in intracellular Ca2+ homeostasis.  相似文献   

7.
An in vivo Ca2+ imaging technique was applied to examine the cellular mechanisms for attenuation of wind sensitivity in the identified primary sensory interneurons in the cricket cercal system. Simultaneous measurement of the cytosolic Ca2+ concentration ([Ca2+]i) and membrane potential of a wind-sensitive giant interneuron (GI) revealed that successive air puffs caused the Ca2+ accumulation in dendrites and diminished the wind-evoked bursting response in the GI. After tetanic stimulation of the presynaptic cercal sensory nerves induced a larger Ca2+ accumulation in the GI, the wind-evoked bursting response was reversibly decreased in its spike number. When hyperpolarizing current injection suppressed the [Ca2+]i elevation during tetanic stimulation, the wind-evoked EPSPs were not changed. Moreover, after suprathreshold tetanic stimulation to one side of the cercal nerve resulted in Ca2+ accumulation in the GI's dendrites, the slope of EPSP evoked by presynaptic stimulation of the other side of the cercal nerve was also attenuated for a few minutes after the [Ca2+]i had returned to the prestimulation level. This short-term depression at synapses between the cercal sensory neurons and the GI (cercal-to-giant synapses) was also induced by a depolarizing current injection, which increased the [Ca2+]i, and buffering of the Ca2+ rise with a high concentration of a Ca2+ chelator blocked the induction of short-term depression. These results indicate that the postsynaptic Ca2+ accumulation causes short-term synaptic depression at the cercal-to-giant synapses. The dendritic excitability of the GI may contribute to postsynaptic regulation of the wind-sensitivity via Ca2+-dependent depression.  相似文献   

8.
Beutner D  Voets T  Neher E  Moser T 《Neuron》2001,29(3):681-690
Release of neurotransmitter at the inner hair cell (IHC) afferent synapse is a fundamental step in translating sound into auditory nerve excitation. To study the Ca2+ dependence of the underlying vesicle fusion and subsequent endocytosis, we combined Ca2+ uncaging with membrane capacitance measurements in mouse IHCs. Rapid elevations in [Ca2+]i above 8 microM caused a biphasic capacitance increase corresponding to the fusion of approximately 40,000 vesicles. The kinetics of exocytosis displayed a fifth-order Ca2+ dependence reaching maximal rates of >3 x 10(7) vesicle/s. Exocytosis was always followed by slow, compensatory endocytosis (tau congruent with 15 s). Higher [Ca2+]i increased the contribution of a faster mode of endocytosis with a Ca2+ independent time constant of approximately 300 ms. These properties provide for rapid and sustained transmitter release from this large presynaptic terminal.  相似文献   

9.
The role of internal stores and plasma membrane Ca2+ pumps in controlling [Ca2+]i during agonist stimulation and their regulation by agonists are not well understood. We report here measurements of intracellular ([Ca2+]i) and extracellular ([Ca2+]o) Ca2+ concentrations in agonist-stimulated pancreatic acini in an effort to directly address these questions. Stimulation of acini suspended in Ca(2+)-free or Ca(2+)-containing medium with Ca2+ mobilizing agonists resulted in a typical transient increase in [Ca2+]i. Thapsigargin, a specific inhibitor of internal Ca2+ pumps, inhibited the rate of [Ca2+]i reduction after agonist stimulation by approximately 40%. Under the same conditions, thapsigargin had no effect on the rate of the unidirectional Ca2+ efflux across the plasma membrane as revealed by measurements of [Ca2+]o. These findings suggest that internal Ca2+ pumps actively remove Ca2+ from the cytosol during continued agonist stimulation. The correlation between the reduction in [Ca2+]i and the increase in [Ca2+]o showed that Ca2+ efflux from cells stimulated with agonist and thapsigargin represent Ca2+ efflux across the plasma membrane. Inhibition of cells exposed to agonist and thapsigargin with a specific antagonist sharply reduced the rates of the [Ca2+]i decrease and the accompanied [Ca2+]o increase. Hence, at comparable [Ca2+]i, Ca2+ efflux from stimulated cells was about 3-fold faster than that from resting cells, indicating that agonists directly activate the plasma membrane Ca2+ pump. To study the role of [Ca2+]i increase in plasma membrane Ca2+ pump activation the acini were loaded with 1,2-bis-(2-aminophenoxyethane-N,N,N',N')-tetraacetic acid (BAPTA), and [Ca2+]o was measured during agonist stimulation. Surprisingly, although BAPTA completely prevented the increase in [Ca2+]i, Ca2+ efflux rate was reduced by only 34%. These findings provide the first evidence for Ca(2+)-independent activation of the plasma membrane Ca2+ pump by Ca2+ mobilizing agonists.  相似文献   

10.
Stimulation-induced changes in presynaptic free calcium concentration ([Ca2+]i) were examined by fluorescent imaging at the spiny lobster excitor motor nerve terminals. The Ca2+ removal process in the terminal was analyzed based on a single compartment model, under the assumption that the Ca2+ removal rate from the terminal cytoplasm is proportional to nth power of [Ca2+]i. During 100 nerve stimuli at 10-100 Hz, [Ca2+]i reached a plateau that increased in a less-than-linear way with stimulation frequency, and the power index, n, was about 2. In the decay time course after stimulation, n changed with the number of stimuli from about 1.4 after 10 stimuli to about 2 after 100 stimuli. With the change of n from 1.4 to 2, the rate became larger at high [Ca2+]i (>1.5 microM), but was smaller at low [Ca2+]i (<1 microM). These results suggest that a cooperative Ca2+ removal mechanism of n = 2, such as mitochondria, may play an important role in the terminal. This view is supported by the gradual increase in the [Ca2+]i plateau during long-term stimulation at 20-50 Hz for 60 s and by the existence of a very slow [Ca2+]i recovery process after this stimulation, both of which may be due to accumulation of Ca2+ in the organelle.  相似文献   

11.
Cultures of rat hippocampal pyramidal neurons were used to examine the roles of excitatory synaptic transmission, NMDA receptors, and elevated [Ca2+]i in the production of excitotoxicity. In integral of 70% of the cells observed, perfusion with Mg2(+)-free, glycine-supplemented medium induced large spontaneous fluctuations or maintained plateaus of [Ca2+]i. [Ca2+]i fluctuations could be blocked by tetrodotoxin, NMDA receptor antagonists, dihydropyridines, or compounds that inhibit synaptic transmission in the hippocampus, but not by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. When cells were treated with Mg2(+)-free, glycine-supplemented medium and examined 24 hr later, integral of 30% of the neurons were found to have died. Cell death could be inhibited by the same agents that reduced [Ca2+]i fluctuations. These results support a role for direct excitatory synaptic transmission, as opposed to the general release of glutamate, in excitotoxicity. A major role for synaptically activated NMDA receptors, rather than kainate/quisqualate receptors, is also indicated. Neuronal death may be produced by abnormal changes in neuronal [Ca2+]i.  相似文献   

12.
Squid giant axons were injected with aequorin and tetraethylammonium and were impaled with hydrogen ion sensitive, current and voltage electrodes. A newly designed horizontal microinjector was used to introduce the aequorin. It also served, simultaneously, as the current and voltage electrode for voltage clamping and as the reference for ion-sensitive microelectrode measurements. The axons were usually bathed in a solution containing 150 mM each of Na+, K+, and some inert cation, at either physiological or zero bath Ca2+ concentration [( Ca2+]o), and had ionic currents pharmacologically blocked. Voltage clamp pulses were repeatedly delivered to the extent necessary to induce a change in the aequorin light emission, a measure of axoplasmic ionized Ca2+ level, [( Ca2+]i). Alternatively, membrane potential was steadily held at values that represented deviations from the resting membrane potential observed at 150 mM [K+]o (i.e. approximately -15 mV). In the absence of [Ca2+]o a significant steady depolarization brought about by current flow increased [Ca2+]i (and acidified the axoplasm). Changes in internal hydrogen activity, [H+]i, induced by current flow from the internal Pt wire limited the extent to which valid measurements of [Ca2+]i could be made. However, there are effects on [Ca2+]i that can be ascribed to membrane potential. Thus, in the absence of [Ca2+]o, hyperpolarization can reduce [Ca2+]i, implying that a Ca2+ efflux mechanism is enhanced. It is also observed that [Ca2+]i is increased by depolarization. These results are consistent with the operation of an electrogenic mechanism that exchanges Na+ for Ca2+ in squid giant axon.  相似文献   

13.
At fertilisation, repetitive increases in the intracellular Ca2+ concentration, [Ca2+]i, drive the completion of meiosis and initiate the development of the quiescent egg into an embryo. Although the requirement for an ATP supply is evident, the relative roles of potential ATP sources remains unclear in the mammalian egg, and the specific role of mitochondria in [Ca2+]i regulation as well as in the sperm-triggered [Ca2+] oscillations is unknown. We have used fluorescence and luminescence imaging to investigate mitochondrial activity in single mouse eggs. Simultaneous imaging of mitochondrial redox state (NADH and flavoprotein autofluorescence) and [Ca2+]i revealed that sperm-triggered [Ca2+] oscillations are transmitted to the mitochondria where they directly stimulate mitochondrial activity. Inhibition of mitochondrial oxidative phosphorylation caused release of Ca2+ from the endoplasmic reticulum because of local ATP depletion. Mitochondrial ATP production is an absolute requirement for maintaining a low resting [Ca2+]i and for sustaining sperm-triggered [Ca2+] oscillations. Luminescence measurements of intracellular [ATP] from single eggs confirmed that mitochondrial oxidative phosphorylation is the major source of ATP synthesis in the dormant unfertilised egg. These observations show that a high local ATP consumption is balanced by mitochondrial ATP production, and that balance is critically poised. Mitochondrial ATP supply and demand are thus closely coupled in mouse eggs. As mitochondrial ATP generation is essential to sustain the [Ca2+] signals that are crucial to initiate development, mitochondrial integrity is clearly fundamental in sustaining fertility in mammalian eggs.  相似文献   

14.
Transmembrane calcium influx induced by ac electric fields.   总被引:2,自引:0,他引:2  
Exogenous electric fields induce cellular responses including redistribution of integral membrane proteins, reorganization of microfilament structures, and changes in intracellular calcium ion concentration ([Ca2+]i). Although increases in [Ca2+]i caused by application of direct current electric fields have been documented, quantitative measurements of the effects of alternating current (ac) electric fields on [Ca2+]i are lacking and the Ca2+ pathways that mediate such effects remain to be identified. Using epifluorescence microscopy, we have examined in a model cell type the [Ca2+]i response to ac electric fields. Application of a 1 or 10 Hz electric field to human hepatoma (Hep3B) cells induces a fourfold increase in [Ca2+]i (from 50 nM to 200 nM) within 30 min of continuous field exposure. Depletion of Ca2+ in the extracellular medium prevents the electric field-induced increase in [Ca2+]i, suggesting that Ca2+ influx across the plasma membrane is responsible for the [Ca2+]i increase. Incubation of cells with the phospholipase C inhibitor U73122 does not inhibit ac electric field-induced increases in [Ca2+]i, suggesting that receptor-regulated release of intracellular Ca2+ is not important for this effect. Treatment of cells with either the stretch-activated cation channel inhibitor GdCl3 or the nonspecific calcium channel blocker CoCl2 partially inhibits the [Ca2+]i increase induced by ac electric fields, and concomitant treatment with both GdCl3 and CoCl2 completely inhibits the field-induced [Ca2+]i increase. Since neither Gd3+ nor Co2+ is efficiently transported across the plasma membrane, these data suggest that the increase in [Ca2+]i induced by ac electric fields depends entirely on Ca2+ influx from the extracellular medium.  相似文献   

15.
Hypoxic pulmonary vasoconstriction (HPV) requires influx of extracellular Ca2+ in pulmonary arterial smooth muscle cells (PASMCs). To determine whether capacitative Ca2+ entry (CCE) through store-operated Ca2+ channels (SOCCs) contributes to this influx, we used fluorescent microscopy and the Ca2+-sensitive dye fura-2 to measure effects of 4% O2 on intracellular [Ca2+] ([Ca2+]i) and CCE in primary cultures of PASMCs from rat distal pulmonary arteries. In PASMCs perfused with Ca2+-free Krebs Ringer bicarbonate solution (KRBS) containing cyclopiazonic acid to deplete Ca2+ stores in sarcoplasmic reticulum and nifedipine to prevent Ca2+ entry through L-type voltage-operated Ca2+ channels (VOCCs), hypoxia markedly enhanced both the increase in [Ca2+]i caused by restoration of extracellular [Ca2+] and the rate at which extracellular Mn2+ quenched fura-2 fluorescence. These effects, as well as the increased [Ca2+]i caused by hypoxia in PASMCs perfused with normal salt solutions, were blocked by the SOCC antagonists SKF-96365, NiCl2, and LaCl3 at concentrations that inhibited CCE >80% but did not alter [Ca2+]i responses to 60 mM KCl. In contrast, the VOCC antagonist nifedipine inhibited [Ca2+]i responses to hypoxia by only 50% at concentrations that completely blocked responses to KCl. The increased [Ca2+]i caused by hypoxia was completely reversed by perfusion with Ca2+-free KRBS. LaCl3 increased basal [Ca2+]i during normoxia, indicating effects other than inhibition of SOCCs. Our results suggest that acute hypoxia enhances CCE through SOCCs in distal PASMCs, leading to depolarization, secondary activation of VOCCs, and increased [Ca2+]i. SOCCs and CCE may play important roles in HPV.  相似文献   

16.
Activity-dependent modulation of synaptic transmission is an essential mechanism underlying many brain functions. Here we report an unusual form of synaptic modulation that depends on Na+ influx and mitochondrial Na(+)-Ca2+ exchanger, but not on Ca2+ influx. In Ca(2+)-free medium, tetanic stimulation of Xenopus motoneurons induced a striking potentiation of transmitter release at neuromuscular synapses. Inhibition of either Na+ influx or the rise of Ca2+ concentrations ([Ca2+]i) at nerve terminals prevented the tetanus-induced synaptic potentiation (TISP). Blockade of Ca2+ release from mitochondrial Na(+)-Ca2+ exchanger, but not from ER Ca2+ stores, also inhibited TISP. Tetanic stimulation in Ca(2+)-free medium elicited an increase in [Ca2+]i, which was prevented by inhibition of Na+ influx or mitochondrial Ca2+ release. Inhibition of PKC blocked the TISP as well as mitochondrial Ca2+ release. These results reveal a novel form of synaptic plasticity and suggest a role of PKC in mitochondrial Ca2+ release during synaptic transmission.  相似文献   

17.
The effect of caffeine on catecholamine secretion and intracellular free Ca2+ concentration [( Ca2+]i) in bovine adrenal chromaffin cells was examined using single fura-2-loaded cells and cell populations. In cell populations caffeine elicited a large (approximately 200 nM) transient rise in [Ca2+]i that was independent of external Ca2+. This rise in [Ca2+]i triggered little secretion. Single cell measurements of [Ca2+]i showed that most cells responded with a large (greater than 200 nM) rise in [Ca2+]i, whereas a minority failed to respond. The latter, whose caffeine-sensitive store was empty, buffered a Ca2+ load induced by a depolarizing stimulus more effectively than those whose store was full. The caffeine-sensitive store in bovine chromaffin cells may be involved in Ca2+ homeostasis rather than in triggering exocytosis.  相似文献   

18.
The roles of the intracellular calcium pool involved in regulating the Ca2+ profile and the neuronal survival rate during development were studied by using thapsigargin (TG), a specific inhibitor of endoplasmic reticulum (ER) Ca2+-ATPase in cultured cerebellar granule neurons. Measuring the neuronal [Ca2+]i directly in the culture medium, we found a bell-shaped curve for [Ca2+]i versus cultured days in cerebellar granule neurons maintained in medium containing serum and 25 mM K+. The progressive increase in [Ca2+]i of the immature granule neurons (1-4 days in vitro) was abolished by TG, which resulted in massive neuronal apoptosis. When the [K+] was lowered from 25 to 5 mM, neither the progressively increasing [Ca2+]i nor the survival of immature granule neurons was significantly changed over 24-h incubation. Similarly, TG caused a dramatic decrease in the [Ca2+]i and survival rate of these immature neurons when switched to 5 mM K+ medium. Following maturation, the granule neurons became less sensitive to TG for both [Ca2+]i and neuronal survival. However, TG can protect mature granule neurons from the detrimental effect of switching to a 5 mM K+ serum-free medium by decreasing [Ca2+]i to an even lower level than in the respective TG-free group. Based on these findings, we propose that during the immature stage, TG-sensitive ER Ca2+-ATPase plays a pivotal role in the progressive increase of [Ca2+]i, which is essential for the growth and maturation of cultured granule neurons.  相似文献   

19.
Stimulation of human neutrophils with f-met-leu-phe, platelet-activating factor, or leukotriene B4 resulted in an increase in [Ca2+]i. The [Ca2+]i rise was greater in the presence than absence of external Ca2+; the component that was dependent on external Ca2+ was blocked by Ni2+, or could be reconstituted by addition of external Ca2+ following discharge of the internal Ca2+ store. These measurements of [Ca2+]i responses provide only indirect evidence for agonist-stimulated Ca2+ entry, and here we have used an alternative approach to demonstrate directly agonist-stimulated divalent cation entry. In the presence of extracellular Mn2+, f-met-leu-phe, leukotriene B4, and platelet-activating factor stimulate a quench in fluorescence of fura-2-loaded human neutrophils. This quench was due to stimulated Mn2+ influx and was blocked by Ni2+. When Mn2+ was added in the continued presence of agonist, after discharge of the internal store of Ca2+, a stimulated quench was seen; this result shows that an elevated [Ca2+]i is not needed for the stimulation of Mn2+ entry. Depolarization by high [K+] or addition of the L-type Ca2+ channel agonist, BAY-R-5417, had little or no effect on either [Ca2+]i or Mn2+ entry. These results show that agonists stimulate divalent cation entry (Ca2+ or Mn2+) by a mechanism independent of changes in [Ca2+]i and unrelated to voltage-dependent Ca2+ channels.  相似文献   

20.
After the seminal work of Ebashi and coworkers which established the essential role of the intracellular Ca2+ concentration ([Ca2+]i) in the regulation of skeletal muscle contraction, we have witnessed an explosive elongation of the list of cell functions that are controlled by the [Ca2+]i. In numerous instances, release of intracellular Ca2+ stores plays important roles in Ca2+ signalling which displays significant variation in spatio-temporal pattern. There are two families of Ca2+ release channels, ryanodine receptors and inositol 1,4,5-trisphosphate (IP3) receptors. These Ca2+ release channels are structurally and functionally similar. In particular, the activity of both types of channels is regulated by the [Ca2+]i. The [Ca2+]i dependence of the Ca2+ release channel activity provides both types of channels with properties of a Ca2+ signal amplifier. This function of the ryanodine receptor is important in striated muscle excitation-contraction coupling, whereas that of the IP3 receptor seems to be the basis of the generation of Ca2+ waves. Thus the wide variety of Ca2+ signalling patterns seem to be critically dependent on the [Ca2+]i dependence of the Ca2+ release channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号