首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mouse doublefoot (Dbf) mutant exhibits preaxial polydactyly in association with craniofacial defects. This mutation has previously been mapped to mouse chromosome 1. We have used a positional cloning strategy, coupled with a comparative sequencing approach using available human draft sequence, to identify putative candidates for the Dbf gene in the mouse and in homologous human region. We have constructed a high-resolution genetic map of the region, localizing the mutation to a 0. 4-cM (±0.0061) interval on mouse chromosome 1. Furthermore, we have constructed contiguous BAC/PAC clone maps across the mouse and human Dbf region. Using existing markers and additional sequence tagged sites, which we have generated, we have anchored the physical map to the genetic map. Through the comparative sequencing of these clones we have identified 35 genes within this interval, indicating that the region is gene-rich. From this we have identified several genes that are known to be differentially expressed in the developing mid-gestation mouse embryo, some in the developing embryonic limb buds. These genes include those encoding known developmental signaling molecules such as WNT proteins and IHH, and we provide evidence that these genes are candidates for the Dbf mutation.  相似文献   

2.
The N-methyl-D-aspartate (NMDA) receptors are glutamate-regulated ion channels that are critically involved in important physiological and pathological functions of the mammalian central nervous system. We have identified and characterized the gene encoding the human NMDA receptor subunit NR3A (GRIN3A), as well as the gene (GRIN3B) encoding an entirely novel subunit that we named NR3B, as it is most closely related to NR3A (57.4% identity). GRIN3A localizes to chromosome 9q34, in the region 13-34, and consists of nine coding exons. The deduced protein contains 1115 amino acids and shows 92.7% identity to rat NR3A. GRIN3B localizes to chromosome 19p13.3 and contains, as does the mouse NR3B gene (Grin3b), eight coding exons. The deduced proteins of human and mouse NR3B contain 901 and 900 amino acid residues, respectively (81.6% identity). In situ hybridization shows a widespread distribution of Grin3b mRNA in the brain of the adult rat.  相似文献   

3.
It has recently been shown that UDP-glucose is a potent agonist of the orphan G-protein-coupled receptor (GPCR) KIAA0001. Here we report cloning and analysis of the rat and mouse orthologs of this receptor. In accordance with GPCR nomenclature, we have renamed the cDNA clone, KIAA0001, and its orthologs GPR105 to reflect their functionality as G-protein-coupled receptors. The rat and mouse orthologs show 80% and 83% amino acid identity, respectively, to the human GPR105 protein. We demonstrate by genomic Southern blot analysis that there are no genes in the mouse or rat genomes with higher sequence similarity. Chromosomal mapping shows that the mouse and human genes are located on syntenic regions of chromosome 3. Further analyses of the rat and mouse GPR105 proteins show that they are activated by the same agonists as the human receptor, responding to UDP-glucose and closely related molecules with similar affinities. The mouse and rat receptors are widely expressed, as is the human receptor. Thus we conclude that we have identified the rat and mouse orthologs of the human gene GPR105.  相似文献   

4.
The SCF complex is a type of ubiquitin ligase that consists of the invariable components SKP1, CUL1, and RBX1 as well as a variable component, known as an F-box protein, that is the main determinant of substrate specificity. The Caenorhabditis elegans F-box- and WD40-repeat-containing protein SEL-10 functionally and physically associates with LIN-12 and SEL-12, orthologues of mammalian Notch and presenilin, respectively. We have now identified a gene (which we call Fbxw6) that encodes a mouse homologue (F-box–WD40 repeat protein 6, or FBW6) of SEL-10 and is expressed mainly in brain, heart, and testis. Co-immunoprecipitation analysis showed that FBW6 interacts with SKP1 and CUL1, indicating that these three proteins form an SCF complex. Comparison of the genomic organization of Fbxw6, which is located on mouse chromosome 3.3E3, with that of mouse Fbxw1, Fbxw2, and Fbxw4 showed only a low level of similarity, indicating that these genes diverged relatively early and thereafter evolved independently.  相似文献   

5.
A new autosomal recessive coat color mutant in the Mongolian gerbil (Meriones unguiculatus) is described: recessive yellow. On the dorsal side the mutant has a rich yellow to ginger color. Ventrally it shows the typical creamy white belly of a wild-type Mongolian gerbil. The dorsal yellow hairs have short black tips, and a light olive green base. A clear demarcation line between dorsal and ventral color is present. Crosses between recessive yellow animals and multiple homozygous recessive tester animals (a/a; cchm/cchm; g/g; p/p) resulted only in animals of an agouti (wild-type) phenotype, showing that the new allele is not allelic with any of the known coat color mutations in the Mongolian gerbil. Molecular studies showed that the new mutant is caused by a missence mutation at the extension (E) locus. On a non-agouti background (a/a; e/e) mutant animals look like a dark wild-type agouti. In contrast to wild-type agouti it shows yellow pigmentation and dark ticking at the ventral side, resulting in the absence of a demarcation line. Since black pigment is present in both the agouti and non-agouti variant (A/A; e/e and a/a; e/e), we conclude that recessive yellow in the Mongolian gerbil is non-epistatic to agouti. Additionally we describe a second mutation at the same locus leading to a similar phenotype, however without black pigment and diminishing yellow pigment during life. Fertility and viability of both new mutants are within normal range. The extension (E) gene is known to encode the melanocortin 1 receptor (MC1R). Interestingly, this is the only gene that is known to account for substantial variation in skin and hair color in humans. Many different mutations are known of which some are associated with higher skin cancer incidence.  相似文献   

6.
7.
Ectopic overexpression of the murine agouti gene results in yellow coat color, obesity, hyperinsulinemia, and type II diabetes. We have shown the human homologue of agouti (agouti signaling protein; ASP) to regulate human adipocyte metabolism and lipid storage via a Ca(2+)-dependent mechanism. We have also demonstrated agouti expression in human pancreas, and that ASP stimulates insulin release via a similar Ca(2+)-dependent mechanism. Plasma amylin is also elevated in agouti mutant mice. Amylin is cosecreted with insulin from beta-cells, and overexpression of human amylin in beta-cells in yellow agouti mutant mice resulted in accelerated pancreatic amyloid deposition, severely impaired beta-cell function, and a diabetic phenotype. We report here that ASP stimulates amylin release in both the HIT-T15 beta-cell line and human pancreatic islets in the presence of a wide range of glucose concentrations (0-16.7 mmol/L), similar to its effect on insulin release; this effect was blocked by 30 mumol/L nitrendipine, confirming a Ca(2+)-dependent mechanism. Accordingly, ASP stimulation of amylin release may serve as a compensatory system to regulate blood glucose in yellow agouti mutants.  相似文献   

8.
We sequenced a 173-kb region of mouse chromosome 10, telomeric to the Ifng locus, and compared it with the human homologous sequence located on chromosome 12q15 using various sequence analysis programs. This region has a low density of genes: one gene was detected in the mouse and the human sequences and a second gene was detected only in the human sequence. The mouse gene and its human orthologue, which are expressed in the immune system at a low level, produce a noncoding mRNA. Nonexpressed sequences show a higher degree of conservation than exons in this genomic region. At least three of these conserved sequences are also conserved in a third mammalian species (sheep or cow).  相似文献   

9.
Molecular Markers for the agouti Coat Color Locus of the Mouse   总被引:7,自引:3,他引:4       下载免费PDF全文
The agouti (a) coat color locus of the mouse acts within the microenvironment of the hair follicle to control the relative amount and distribution of yellow and black pigment in the coat hairs. Over 18 different mutations with complex dominance relationships have been described at this locus. The lethal yellow (Ay) mutation is the top dominant of this series and is uniquely associated with an endogenous provirus, Emv-15, in three highly inbred strains. However, we report here that it is unlikely that the provirus itself causes the Ay-associated alteration in coat color, since one strain of mice (YBR-Ay/a) lacks the provirus but still retains a yellow coat color. Using single-copy mouse DNA sequences from the regions flanking Emv-15 we have detected three patterns of restriction fragment length polymorphisms (RFLPs) within this region that can be used as molecular markers for different agouti locus alleles: a wild-type agouti (A) pattern, a pattern which generally cosegregates with the nonagouti (a) mutation, and a pattern which is specific to Emv-15. We have used these RFLPs and a panel of 28 recombinant inbred mouse strains to determine the genetic linkage of these sequences with the agouti locus and have found complete concordance between the two (95% confidence limit of 0.00 to 3.79 centimorgans). We have also physically mapped these sequences by in situ hybridization to band H1 of chromosome 2, thus directly confirming previous assignments of the location of the agouti locus.  相似文献   

10.
Maturity-onset obesity and elevated circulating insulin levels are characteristic of some, but not all, mice bearing the viable yellow mutation (Avy) at the agouti locus. The expression of the Avy/a genotype in individual mice, which become obese and which remain lean is determined during prenatal development by as yet unidentified conditions in the dam's reproductive tract. One Avy/a phenotype is identified by a mottled yellow coat and characterized by adult obesity, elevated circulating insulin levels, and impaired glucose tolerance. These mice are notably more susceptible to hyperplasia and neoplasia. The alternative Avy/ a phenotype has a pseudoagouti coat, remains lean, is normoinsulinemic and normoglycemic, and in numerous other characteristics resembles congeneic lean black (a/a) littermates. Obese mottled yellow and lean pseudoagouti Avy/a mice differ in capacity to support the growth of ascites cells, in the growth response to castration, and in hepatic glutathione S-transferase activity, erythrocyte fragility, immune function, and susceptibility to Plasmodium yoelii pathogenesis. Our working hypothesis is that the constellation of characteristics, except coat color pattern, which differentiate the obese yellow mice from their lean littermates, is largely a consequence of the elevated circulating insulin levels that induce increased lipogenesis and decreased lipolysis, increased DNA and protein synthesis, increased mitosis in sensitive tissues, and increased proliferation of transformed cells.  相似文献   

11.
The tilted (tlt) mouse carries a recessive mutation causing vestibular dysfunction. The defect in tlt homozygous mice is limited to the utricle and saccule of the inner ear, which completely lack otoconia. Genetic mapping of tlt placed it in a region orthologous with human 4p16.3-p15 that contains two loci, DFNA6 and DFNA14, responsible for autosomal dominant, nonsyndromic hereditary hearing impairment. To identify a possible relationship between tlt in mice and DFNA6 and DFNA14 in humans, we have refined the mouse genetic map, assembled a BAC contig spanning the tlt locus, and developed a comprehensive comparative map between mouse and human. We have determined the position of tlt relative to 17 mouse chromosome 5 genes with orthologous loci in the human 4p16.3-p15 region. This analysis identified an inversion between the mouse and human genomes that places tlt and DFNA6/14 in close proximity.  相似文献   

12.
The dorsal fur in yellow F1 mice (F1-Ay) between C3H/HeJ and C57BL/6J-Ay is darker than that in C57BL/6J-Ay. Moreover, yellow F2 mice (F2-Ay) exhibit a wide spectrum of coat color phenotypes in terms of lightness and darkness. Quantitative trait locus (QTL) analysis on F2-Ay identified three significant modifier loci that accounted for darkening of the coat color on chromosomes 1 (Dmyaq1 and Dmyaq2) and 15 (Dmyaq3), and the C3H/HeJ allele at these loci increased the darkness. Because agouti F2 mice (F2-A) also exhibited a spectrum of coat color phenotypes, the question of whether these QTLs had any effects on F2-A was examined. Dmyaq1 and Dmyaq2 were shown to increase the darkness in F2-A, whereas Dmyaq3 did not. The results showed that Dmyaq1-Dmyaq3 were parts of determinants responsible for the sable (darker modification of yellow) coat color phenotype, and that Dmyaq1 and Dmyaq2 were parts of determinants responsible for the umbrous (darker modification of agouti) coat color phenotype. It is, thus, demonstrated that both the sable and the umbrous phenotypes resulted from multigenic contributions, and that they shared genetic bases, as had been implied for several decades.  相似文献   

13.
We have characterized genomic loci encoding translation elongation factor 1Bα (eEF1Bα) in mice and humans. Mice have a single structural locus (named Eef1b2) spanning six exons, which is ubiquitously expressed and maps close to Casp8 on mouse chromosome 1, and a processed pseudogene. Humans have a single intron-containing locus, EEF1B2, which maps to 2q33, and an intronless paralogue expressed only in brain and muscle (EEF1B3). Another locus described previously, EEF1B1, is actually a processed pseudogene on chromosome 15 corresponding to an alternative splice form of EEF1B2. Our study illustrates the value of comparative mapping in distinguishing between processed pseudogenes and intronless paralogues.  相似文献   

14.
The genetics of coat colors in the mongolian gerbil (Meriones unguiculatus)   总被引:2,自引:0,他引:2  
Genetic studies demonstrated three loci controlling coat colors in the Mongolian gerbil. F1 hybrids of white gerbils with red eyes and agouti gerbils with wild coat color had the agouti coat color. The segregating ratio of agouti and white in the F2 generation was 3:1. In the backcross (BC) generation (white x F1), the ratio of the agouti and white coat colors was 1:1. Next, inheritance of the agouti coat color was investigated. Matings between agouti and non-agouti (black) gerbils produced only agouti gerbils. In the F2 generation, the ratio of agouti to non-agouti (black) was 3:1. There was no distortion in the sex ratios within each coat color in the F1, F2 and BC generations. This indicated that the white coat color of gerbils is governed by an autosomal recessive gene which should be named the c allele of the c (albino) locus controlling pigmentation, and the agouti coat color is controlled by an autosomal dominant gene which might be named the A allele of the A (agouti) locus controlling pigmentation patterns in the hair. The occurrence of the black gerbil demonstrated clearly the existence of the b (brown) locus, and it clearly indicated that the coat colors of gerbils can basically be explained by a, b, and c loci as in mice and rats.  相似文献   

15.
We have identified a migraine locus on chromosome 19p13.3/2 using linkage and association analysis. We isolated 48 single-nucleotide polymorphisms within the locus, of which we genotyped 24 in a Caucasian population comprising 827 unrelated cases and 765 controls. Five single-nucleotide polymorphisms within the insulin receptor gene showed significant association with migraine. This association was independently replicated in a case-control population collected separately. We used experiments with insulin receptor RNA and protein to investigate functionality for the migraine-associated single-nucleotide polymorphisms. We suggest possible functions for the insulin receptor in migraine pathogenesis.  相似文献   

16.
17.
We systematically searched for sequences influencing the expression of the mouse monocyte chemoattractant protein-1 (MCP-1) gene (Scya2) by mapping DNase I hypersensitive sites (HS) in the chromatin of mesangial cells in a 40-kb interval around the gene. We found nine HS located between -24 kb and +12.7 kb. Three HS coincided with previously known regulatory sequences (HS-2.4, HS-1.0, and HS-0.2). We tested two of the previously unknown HS located far upstream of Scya2 (HS-19.4 and HS-16.3) in transfection experiments using luciferase reporter constructs and mouse mesangial cells as recipients. In transient transfections, both HS had a moderate effect on basal promoter activity as well as promoter activity stimulated by tumor necrosis factor-alpha. In stable transfection experiments, we found much higher activity. A DNA fragment containing HS-19.4 and HS-16.3 caused a considerable increase in the number of stably integrated luciferase copies. We determined the nucleotide sequence of the 5' flanking region to -28.6 kb. Computer-assisted sequence analysis did not yield evidence of an additional gene. These HS are located within the 5' flanking region of a gene cluster consisting of Scya2 (MCP-1), Scya7 (MCP-3), Scya11 (eotaxin), Scya12 (MCP-5), and Scya8 (MCP-2). This report represents the first comprehensive chromatin analysis of the mouse MCP-1 locus leading to the identification of a complex regulatory region located far upstream of Scya2.  相似文献   

18.
The alleles at the agouti locus in mice determine whether eumelanin or pheomelanin is synthesized by the follicular melanocytes. Previous studies have indicated the dermis as the site of action of the agouti alleles, while implying that the epidermis plays only a passive role. Using methods of dermal-epidermal recombinations of embryonic yellow (Ay) and nonagouti (a) mouse skin, the study reported here indicates that the epidermis, as well as the dermis, plays a role in the action of the agouti alleles. When yellow dermis is recombined with nonagouti epidermis, the hairs produced contain only pheomelanin, thus substantiating the role of the dermis. However, the reciprocal combination of nonagouti dermis and yellow epidermis also produces hairs containing pheomelanin, indicating a more important role for the epidermis. The role of the dermal-epidermal interactions in the action of the alleles at the agouti locus is discussed.  相似文献   

19.
Agouti: from mouse to man, from skin to fat   总被引:25,自引:0,他引:25  
The agouti protein regulates pigmentation in the mouse hair follicle producing a black hair with a subapical yellow band. Its effect on pigmentation is achieved by antagonizing the binding of alpha-melanocyte stimulating hormone (alpha-MSH) to melanocortin 1 receptor (Mc1r), switching melanin synthesis from eumelanin (black/brown) to phaeomelanin (red/yellow). Dominant mutations in the non-coding region of mouse agouti cause yellow coat colour and ectopic expression also results in obesity, type 11 diabetes, increased somatic growth and tumourigenesis. At least some of these pleiotropic effects can be explained by antagonism of other members of the melanocortin receptor family by agouti protein. The yellow coat colour is the result of agouti chronically antagonizing the binding of alpha-MSH to Mc1r and the obese phenotype results from agouti protein antagonizing the binding of alpha-MSH to Mc3r and/or Mc4r. Despite the existence of a highly homologous agouti protein in humans, agouti signal protein (ASIP), its role has yet to be defined. However it is known that human ASIP is expressed at highest levels in adipose tissue where it may antagonize one of the melanocortin receptors. The conserved nature of the agouti protein combined with the diverse phenotypic effects of agouti mutations in mouse and the different expression patterns of human and mouse agouti, suggest ASIP may play a role in human energy homeostasis and possibly human pigmentation.  相似文献   

20.
The pattern of gene expression in mouse Gr-1(+) myeloid progenitor cells   总被引:1,自引:0,他引:1  
Chen J  Rowley DA  Clark T  Lee S  Zhou G  Beck C  Rowley JD  Wang SM 《Genomics》2001,77(3):149-162
To understand the pattern of gene expression in mouse myeloid progenitor cells, we carried out a genome-wide analysis of gene expression in mouse bone marrow Gr-1(+) cells using SAGE and GLGI techniques. We identified 22,033 unique SAGE tags with quantitative information from 73,869 collected SAGE tags. Among these unique tags, 64% match known sequences, including many genes important for myeloid differentiation, and 36% have no matches to known sequences and are likely to represent novel genes. We compared the expression of mouse Gr-1(+) and human CD15(+) myeloid progenitor cells and showed that the pattern of gene expression of these two cell populations had some similarities. We also compared the expression of mouse Gr-1(+) myeloid progenitor cells with that of mouse brain tissue and found a highly tissue-specific manner of gene expression in these two samples. Our data provide a basis for studying altered gene expression in myeloid disorders using mouse models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号