首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidase electrode measurements have shown that the neurotoxin metabolite 1-methyl-4-phenyl-2,3-dihydropyridinium autoxidizes to hydrogen peroxide and 1-methyl-4-phenylpyridinium in a reaction promoted by iron chelates. The mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity is discussed in the light of these findings.  相似文献   

2.
The one-electron reduction product of 1-methyl-4-phenyl-2,3-dihydropyridinium ion has been generated by pulse radiolysis and its absorption spectrum recorded. This radical was found to decay by second-order kinetics (2k = 9.5 x 10(8) M-1 s-1) to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenyl-2,3-dihydropyridinium ion. Reactions of the above radical species and that formed by one-electron reduction of 1-methyl-4-phenylpyridinium ion, which can also be generated by one-electron oxidation of 1-methyl-4-phenyl-1,2-dihydropyridine, with a number of molecules of biochemical interest have been studied. The one-electron reduction product of oxidised nicotinamide adenine dinucleotide efficiently reduced 1-methyl-4-phenyl-2,3-dihydropyridinium ion (k = 2.2 x 10(9) M-1 s-1). The relevance of these results in relation to redox cycling, a possible mechanism for 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity, is discussed.  相似文献   

3.
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is a neurotoxin causing symptoms that resemble those observed in patients suffering from Parkinson's disease. However, in animal or human organisms, MPTP is converted to MPDP(+) (1-methyl-4-phenyl-2,3-dihydropyridinium) and further to MPP(+) (1-methyl-4-phenylpyridinium); the latter compound is the actual neurotoxin. In this report, we demonstrate that MPDP(+) and MPP(+) can form stacking complexes with methylxanthines (caffeine and penthoxifylline), which leads to significant impairment of the biological activity of these toxins (as measured by their mutagenicity).  相似文献   

4.
The toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, intravitreally injected in goldfish eye, involves interplexiform retinal neurons and depletes tyrosine hydroxylase immunoreactivity and dopamine levels. This induced neurotoxicity was prevented by the concomitant administration in nontoxic doses (10 μg) of quinolinic acid, an endogenous structural analogue of N-methyl -aspartate with excitotoxic properties. Quinolinic acid is ineffective on the retinal degeneration induced by 1-methyl-4- phenylpyridinium ion. This fact suggests that quinolinic acid inhibits the MAO-B oxidation of 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine. MK-801, a noncompetitive antagonist of glutamate NMDA-receptors, exerts partial protective effects on MPTP-induced delayed toxicity in mammals. In the goldfish eye, MK-801, injected in low concentration, and in conjunction with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine or 1-methyl-4-phenylpyridinium ion, did not prevent retinal neurodegeneration. Ten μg of MK-801 alone did not affect retinal neurons, while a higher concentration (20 μg) causes the chromatolysis of some photoreceptor nuclei.  相似文献   

5.
Since the discovery of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism, it has been postulated that (a) MPTP-like toxin(s) such as 1,2,3,4-tetrahydroisoquinoline (TIQ) may induce Parkinson's disease. As the neuronal degeneration in MPTP-induced parkinsonism is thought to be caused by the inhibition of the mitochondrial respiration by 1-methyl-4-phenylpyridinium ion (MPP+), we studied the effects of TIQ-like alkaloids including dopaminederived ones on the mitochondrial respiration using mouse brains. TIQ, tetrahydropapaveroline (THP), and tetrahydropapaverine (THPV) produced significant inhibition of the state 3 and 4 respiration and respiratory control ratio supported by glutamate + malate, the activity of Complex 1 and the ATP synthesis. Among those compounds, THPV was most potent. Toxic properties of these compounds on mitochondria were quite similar to that of MPP+. Our results support the hypothesis that (a) MPTP- or MPP+-like substance(s) may be responsible for the nigral degeneration in Parkinson's disease.Abbreviations used MPTP 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine - MPP+ 1-methyl-4-phenylpyridinium ion - ATP adenosine triphosphate - ADP Adenosine diphosphate - TCL tricarboxylic acid - TIQ cycle: 1,2,3,4-Tetrahydroisoquinoline - THPV Tetrahydropapaverine - THP Tetrahydropaveroline  相似文献   

6.

Background  

Our aim was to determine if pramipexole, a D3 preferring agonist, effectively reduced dopamine neuron and fiber loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model when given at intraperitoneal doses corresponding to clinical doses. We also determined whether subchronic treatment with pramipexole regulates dopamine transporter function, thereby reducing intracellular transport of the active metabolite of MPTP, 1-methyl-4-phenylpyridinium (MPP+).  相似文献   

7.
Inhibition of NADH oxidation by pyridine derivatives   总被引:1,自引:0,他引:1  
The neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, an impurity in an illicit drug, is expressed after its oxidation to 1-methyl-4-phenylpyridinium by monoamine oxidase. The pyridinium is concentrated by carrier-mediated transport into the mitochondria where it inhibits NADH dehydrogenase and, hence, ATP synthesis. Some structurally related compounds have been tested for their effect on the oxidation of NAD+-linked substrates in intact mitochondria, and for the inhibition of the accumulation of the pyridinium into mitochondria and of NADH dehydrogenase activity in a membrane preparation. Some pyridine derivatives are more inhibitory to NADH dehydrogenase than is 1-methyl-4-phenylpyridinium but these are not concentrated into mitochondria by the uptake system. 4-Phenylpyridine, one of the most effective inhibitors, both occurs naturally and is an environmental pollutant.  相似文献   

8.
1-Methyl-4-phenylpyridinium ion, a major brain metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, is an inhibitor of Complex I of the mitochondrial respiratory chain. We have synthesized several analogs of 1-methyl-4-phenylpyridinium ion containing various alkyl groups in the 4' position of the phenyl ring and have tested them for their abilities to inhibit the oxidation of NADH-linked substrates by intact mouse liver mitochondria. These compounds are considerably more potent inhibitors than MPP+ itself, with potency increasing as the length of the alkyl chain increases. The most potent inhibitor, 1-methyl-4-(4'heptylphenyl)pyridinium ion, was about 200 times as effective as MPP+. These analogs should prove to be useful tools for studying the nature of the process whereby MPP+ and its pyridinium analogs interact with Complex I to inhibit mitochondrial respiration.  相似文献   

9.
Intracerebroventricular infusion of epidermal growth factor (EGF) into mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced degeneration of dopaminergic nigrostriatal neurons partially enhanced the content of dopamine (DA) and 3,4-dihydroxyphenylacetic acid as well as the activity of tyrosine hydroxylase in the striatum. EGF also enhanced these parameters in control, unlesioned animals. Neurotrophic activity also was observed in embryonic mesencephalic cultures, where EGF enhanced DA uptake after a lesion with the neurotoxic metabolite of MPTP, 1-methyl-4-phenylpyridinium ion. Our in vivo and in vitro studies suggest that EGF may be a neurotrophic factor for dopaminergic neurons, or may act indirectly by inducing the release of a dopaminergic trophic factor from other cells.  相似文献   

10.
A saturable, specific, high-affinity binding site for [3H]1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine was found in rat brain homogenates. The CNS regional distribution, the subcellular fractionation, and the displacement by pargyline, clorgyline, and deprenyl suggest that this binding site may correspond to monoamine oxidase. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine inhibited the oxidative deamination of dopamine, both in vivo and in vitro. Striatal levels of 3,4-dihydroxyphenylacetic acid were significantly reduced shortly after intravenous administration, and returned to normal values after a few hours. The in vitro formation of 3,4-dihydroxyphenylacetic acid from dopamine was inhibited by concentrations of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine comparable to those of pargyline.  相似文献   

11.
The effects of the neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and its toxic metabolites MPDP+ (1-methyl-4-phenyl-2,3-dihydropyridinium) and MPP+ (1-methyl-4-phenylpyridinium) on liposomal membrane were assessed using fluorescence-polarization and carboxyfluorescein leakage studies as well as in biological membrane preparations. Of the three compounds, MPTP was found to cause the greatest perturbation of membrane followed by MPDP+ and then MPP+. The ability of the three toxins to inhibit cytochrome P-450 enzyme activity (a microsomal membrane-bound enzyme system) was also studied and their relative potency was again found to be MPTP > MPDP+ > MPP+. The changes in the physicochemical property of the liposomal membrane can be related to the ability of the neurotoxin's ability to inhibit cytochrome P-450 activity.  相似文献   

12.
M V Kindt  R E Heikkila 《Life sciences》1986,38(16):1459-1462
Pretreatment of mice with the potent and selective monoamine oxidase B (MAO-B) inhibitor MDL 72145 ((E)-2-(3',4'-dimethoxyphenyl)-3-fluoroallylamine) protected against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Mice treated with MDL 72145 prior to MPTP did not exhibit the decrement in the neostriatal content of dopamine and its metabolites normally seen after MPTP administration. This observation adds further support to the concept that the oxidation of MPTP by MAO-B to its corresponding pyridinium analog, 1-methyl-4-phenylpyridinium (MPP+), is an important feature of the neurotoxic process.  相似文献   

13.
In the present study we demonstrate neuroprotective property of green tea extract and (-)-epigallocatechin-3-gallate in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice model of Parkinson's disease. N-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxin caused dopamine neuron loss in substantia nigra concomitant with a depletion in striatal dopamine and tyrosine hydroxylase protein levels. Pretreatment of mice with either green tea extract (0.5 and 1 mg/kg) or (-)-epigallocatechin-3-gallate (2 and 10 mg/kg) prevented these effects. In addition, the neurotoxin caused an elevation in striatal antioxidant enzymes superoxide dismutase (240%) and catalase (165%) activities, both effects being prevented by (-)-epigallocatechin-3-gallate. (-)-Epigallocatechin-3-gallate itself also increased the activities of both enzymes in the brain. The neuroprotective effects are not likely to be caused by inhibition of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine conversion to its active metabolite 1-methyl-4-phenylpyridinium by monoamine oxidase-B, as both green tea and (-)-epigallocatechin-3-gallate are very poor inhibitors of this enzyme in vitro (770 microg/mL and 660 microM, respectively). Brain penetrating property of polyphenols, as well as their antioxidant and iron-chelating properties may make such compounds an important class of drugs to be developed for treatment of neurodegenerative diseases where oxidative stress has been implicated.  相似文献   

14.
MPTP (1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is converted by monoamine oxidase B to its putative toxic metabolite MPP+ (1-methyl-4-phenylpyridinium ion) via MPDP+ (1-methyl-4-phenyl-2,3-dihydropyridinium ion). Both the parent compound and these two major metabolites were toxic to isolated rat hepatocytes with MPDP+ being the most toxic and MPP+ the least effective. MPP+ produced a slight increase in lipid peroxidation above control levels in hepatocytes, while both MPTP and MPDP+ showed antioxidant effects. The latter two compounds also protected against chemically and nonchemically induced lipid peroxidation in rat liver microsomes. MPDP+ was effective at much lower concentrations than MPTP. MPDP+ was also markedly more efficient when NADPH was used to induce microsomal lipid peroxidation. Lipid peroxidation as a consequence of oxygen radical generation is therefore unlikely to be involved in MPTP toxicity in vitro and the rationale of using chain-breaking antioxidants as protective agents in vivo needs a more careful evaluation.  相似文献   

15.
The reaction of the neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) with monoamine oxidase from a variety of tissues including rat and monkey brain, bovine liver, and human placenta and platelets was found to yield, as a primary product, a reactive photosensitive substance with an absorbance maximum at 345 nm which is not the cation 1-methyl-4-phenylpyridinium ion previously reported as a monoamine oxidase-MPTP metabolite in vivo and in vitro. Our results suggest that the 1-methyl-4-phenyl-pyridinium ion is probably only generated in subsequent nonenzymatic transformations of this reactive monoamine oxidase metabolite. This substance was found to specifically inactivate the B-form of monoamine oxidase by a photo-induced mechanism and to react directly with NADPH and dopamine. Properties of the metabolite and potential significance of its reactions to MPTP neurotoxicity are discussed.  相似文献   

16.
C E Lambert  S C Bondy 《Life sciences》1989,44(18):1277-1284
The effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-methyl-4-phenylpyridinium (MPP+) and 1,1-dimethyl-4,4-bipyridinium (paraquat) upon the electrical potential across the plasma and mitochondrial membranes within synaptosomes has been investigated. MPTP selectively depressed plasma membrane potential while MPP+ specifically reduced mitochondrial potential. The structurally similar compound paraquat had no effect on either membrane potential. Enhancement of the lipid peroxidative activity with an Fe-ADP complex depressed both potentials. Paraquat effected increased peroxidative activity in brain homogenates that was less pronounced than that due to Fe-ADP. MPTP reduced basal but stimulated Fe-ADP enhanced peroxidation. The mechanisms underlying the toxicity of MPP+ are likely to differ from those of paraquat, primarily involving impaired mitochondrial function rather than increased oxidative stress.  相似文献   

17.
The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its main metabolite 1-methyl-4-phenylpyridinium ion (MPP+) on the peripheral catecholaminergic system of the rat were investigated. MPTP and MPP+ injections (20 mg/kg i.p.) caused a marked acute depletion of heart noradrenaline, up to 75% twelve hours after the administration, and a decrease of adrenal gland adrenaline. The time-course of the effect of MPTP and MPP+ is reported, together with a decrease in the tyrosine hydroxylase activity after MPTP treatment, more evident in the adrenal glands. Pargyline (50 mg/kg i.p.) is not able to prevent such a neurotoxic peripheral effect.  相似文献   

18.
Abstract: 1-Methyl-4-benzyl-1,2,3,6-tetrahydropyridine (MBzTP), an analogue of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, despite its rapid oxidation by monoamine oxidase B (MAOB), is not neurotoxic. The pyridinium expected to arise from the four-electron oxidation of MBzTP inhibits mitochondrial respiration and the oxidation of NADH in inner membranes and is only moderately less inhibitory than 1-methyl-4-phenylpyridinium. It is also a competitive inhibitor of dopamine uptake by the dopamine transporter and hence likely to be taken up into neurons, despite its relatively high K1 value (K1= 21 μM). Incubation of MBzTP with purified MAO B yields first the dihydropyridinium form, then a mixture of the pyridinium form and another unidentified product, in proportions that depend on the concentrations of MAO B and oxygen. At low MAO B concentration and moderate oxygen concentration, nonenzymatic formation, of the unidentified product predominates. The lack of neurotoxicity of MBzTP appears to be due to the oxidative destruction of the dihydropyridine and consequent failure of accumulation of 1-methyl-4-behzylpyridinium.  相似文献   

19.
N-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) selectively destroys neuronal cell bodies in the neuromelanin-containing substantia nigra of humans and primates. We show that N-methyl-4-phenylpyridine (MPP+), the active metabolite of MPTP, binds to neuromelanin with high affinity. This binding increases at higher pH and is displaced most potently by divalent cations and antimalarial drugs. MPP+ bound intracellularly to neuromelanin may be stored and released gradually, resulting in subsequent damage to neurons of the substantia nigra.  相似文献   

20.
The metabolism of the selective nigrostriatal toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been studied in rat brain mitochondrial incubation mixtures. The 1-methyl-4-phenylpyridinium species MPP+ has been characterized by chemical ionization mass spectral and 1H NMR analysis. Evidence also was obtained for the formation of an intermediate product which, with the aid of deuterium incorporation studies, was tentatively identified as the alpha-carbon oxidation product, the 1-methyl-4-phenyl-2,3-dihydropyridinium species MPDP+. Comparison of the diode array UV spectrum of this metabolite with that of the synthetic perchlorate salt of MPDP+ confirmed this assignment. The oxidation of MPTP to MPDP+ but not of MPDP+ to MPP+ is completely inhibited by 10(-7) M pargyline. MPDP+, on the other hand, is unstable and rapidly undergoes disproportionation to MPTP and MPP+. Based on these results, we speculate that the neurotoxicity of MPTP is mediated by its intraneuronal oxidation to MPDP+, a reaction which appears to be catalyzed by MAO. The interactions of MPDP+ and/or MPP+ with dopamine, a readily oxidizable compound present in high concentration in the nigrostriatum, to form neurotoxic species may account for the selective toxic properties of the parent drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号