首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flavonoids consist of a large family of compounds, which has been estimated to be more than 10,000 compounds. The structural diversity of these compounds comes from different modification reactions. The O-methylation reaction is one of the most important modification reactions of flavonoids and the resulting O-methylated flavonoids have been shown to display new biological activities. The regioselective and substrate specific O-methylation is mediated by O-methyltranferases (OMTs). To date, 30 flavonoid OMTs (FOMTs) have been biochemically characterized from various plants. FOMTs utilize common reaction mechanisms to transfer a methyl group to the hydroxyl group of the flavonoid. Phylogenetic tree analysis along with biochemical characterization of FOMTs provides clues about their substrate specificity and regioselectivity. FOMTs can be used for the production of O-methylated flavonoids that have a particular biological activity.  相似文献   

2.
[目的]微生物β-葡萄糖苷酶法水解银杏黄酮苷具有重要意义,不过目前这方面的研究极少。因此,本文目的是筛选到水解银杏黄酮苷的酶活高的微生物β-葡萄糖苷酶,并分析其底物选择性机制。[方法]以银杏叶提取物作为唯一碳源富集培养,从贵州传统发酵豆豉中筛选产对银杏黄酮苷水解酶活高的β-葡萄糖苷酶的菌株,并对该菌株进行鉴定。然后比较此β-葡萄糖苷酶对不同底物的选择性,同时测定此酶水解银杏黄酮苷反应的米氏常数Km及最大反应速率Vmax。最后,对不同的底物进行分子对接,分析其底物特异性机制。[结果]结果表明,筛选到的菌株GUXN01所产β-葡萄糖苷酶水解银杏黄酮苷的酶活最高,被鉴定为枯草芽孢杆菌。此β-葡糖糖苷酶对β构型的糖类以及苷类等具有广泛的底物特异性和不同的选择性,尤其对银杏黄酮苷具有很好的亲和性。分子对接研究表明枯草芽孢杆菌β-葡萄糖苷酶对银杏黄酮苷和其他糖苷类具有不同亲和性和选择性的原因主要是酶结构和底物分子结构的相互作用力的差异导致的。[结论]这些发现为GUXN01所产的β-葡萄糖苷酶应用于水解银杏黄酮苷类生产相应苷元奠定了良好的基础。  相似文献   

3.
Legrand  M.  Fritig  B.  Hirth  L. 《Planta》1978,144(1):101-108
Three distinct o-diphenol O-methyltransferases (OMTs) were found in leaves of Nicotiana tabacum, variety Samsun NN. They could be clearly distinguished by differences in elution pattern upon chromatography on DEAE-cellulose and in specificity towards 16 diphenolic substrates. The phenylpropanoids caffeic acid and 5-hydroxyferulic acid, whose importance as lignin precursors is well known, were the best substrates of OMT I, but they were also efficiently methylated by the two other OMTs that showed a broader substrate specificity. The highest rates of methylation were observed by assaying these latter enzymes with catechol, homocatechol and protocatechuic aldehyde. The flavonoid quercetin, the major o-diphenol of tobacco leaves, was a good substrate for OMTs II and III, but was also methylated significantly by OMT I. The tobacco OMTs showed both para-and meta-directing activities with protocatechuic acid, protocatechuic aldehyde and esculetin as substrates. Para-O-methylation of the former substrate arose almost exclusively from OMT I whereas that of the two latter substrates from all three enzymes. In healthy leaves the total O-methylating activity varied very much with the batch of plants whereas the relative contributions of the three enzymes were rather constant. On an average, OMTs I, II and III acounted towards caffeic acid, respectively. In tobacco mosaic virus-infected leaves carrying local necrotic lesions we found the same three OMTs with the same substrate specificities, but with increased activities. The degree of stimulation of both OMTs II and III was 2–3 times greater than that of OMT I when the leaves had a moderate number of lesions, and 3–5 times greater with large number of lesions. It is very likely that the changes in both the pattern of the O-methylating enzymes and the concentrations of the naturally occuring o-diphenolic substrates are related to an increased biosynthesis of lignins and of lignin-like compounds. These aromatic polymers could be involved in the cell wall thickening associated with the hypersensitive reaction and with the resistance to virus spread that occur in the cells surrounding the local lesions.Abbreviations OMT O-methyltransferase - TMV tobacco mosaic virus - SAM S-adenosyl-L-methionine  相似文献   

4.
5.
One of the final steps in the biosynthesis of the widely used anti-tumor drug daunorubicin in Streptomyces peucetius is the methylation of the 4-hydroxyl group of the tetracyclic ring system. This reaction is catalyzed by the S-adenosyl-L-methionine-dependent carminomycin 4-O-methyltransferase DnrK. The crystal structure of the ternary complex of this enzyme with the bound products S-adenosyl-L-homocysteine and 4-methoxy-epsilon-rhodomycin T has been determined to a 2.35-angstroms resolution. DnrK is a homodimer, and the subunit displays the typical fold of small molecule O-methyltransferases. The structure provides insights into the recognition of the anthracycline substrate and also suggests conformational changes as part of the catalytic cycle of the enzyme. The position and orientation of the bound ligands are consistent with an SN2 mechanism of methyl transfer. Mutagenesis experiments on a putative catalytic base confirm that DnrK most likely acts as an entropic enzyme in that rate enhancement is mainly due to orientational and proximity effects. This contrasts the mechanism of DnrK with that of other O-methyltransferases where acid/base catalysis has been demonstrated to be an essential contribution to rate enhancement.  相似文献   

6.
O-Methyltransferases (OMTs) transfer a methyl group from S-adenosylmethionine to a hydroxyl group of an acceptor. One group of OMTs is the caffeoyl-CoA O-methyltransferase type, which is involved in the biosynthesis of monolignol. In this study, OsOMT26 was cloned from Oryza sativa and the recombinant OsOMT26 protein was characterized. OsOMT26 used not only caffeoyl-CoA as a substrate but also different flavonoids such as luteolin and tricetin. However, when caffeoyl-CoA was used as the substrate, the reactivity of OsOMT26 was approximately 6.6-fold better than when either luteolin or tricetin was used. This result demonstrated that OsOMT26 displayed the typical properties characteristic of CCoAOMT. Molecular modeling followed by site-directed mutagenesis was employed to examine why caffeic acid or caffeoyl-CoA was a better substrate than tricetin. One amino acid, Asp210, turned out to be critical for substrate binding, and site-directed mutagenesis of Asp to Glu improved the enzyme’s reactivity toward tricetin.  相似文献   

7.
Flavonoids found in plants most likely undergo a variety of modification reactions such as hydroxylation, glycosylation, and/or methylation. Among these, O-methylation has an effect on the solubility and thus on the antimicrobial activity of the flavonoids. We analyzed the conversion of naringenin with a methyltransferase, SOMT-2, from Glycine max. SOMT-2 was expressed in Escherichia coli as a glutathion S-transferase fusion protein. E. coli harboring SOMT-2 was grown with daidzein, geninstein, apigenin, naringenin, and quercetin, respectively, and reaction products were analyzed with thin layer chromatography and HPLC. SOMT-2 could convert apigenin, daidzein, genistein, and quercetin into the corresponding 4'-O-methylated compounds such as acacetin, formononetin, biochanine A, and 4'-methylated quercetin whereas naringenin turned out to be the best substrate tested. SOMT-2 stoichiometically converted naringenin (4',5,7-trihyroxyflavanone) into a ponciretin (4'-methoxy-5,7-dihydroxyflavanone), whose structure was determined by NMR and LC/mass spectral analyses. Considering the reactions, SOMT-2 may have a regiospecific methylation activity, resulting in transforming 4'-hydroxyl group of flavonoids B-ring to 4'-methyl group.  相似文献   

8.
O-Methyltransferase (OMT) catalyzes the transfer of a methyl group from S-adenosyl methionine (SAM) to hydroxyl groups of methyl acceptors. Two OMTs, PaOMT2 and PaOMT3, from Picea abies showed 93.5% identity at the amino acid level. However, PaOMT3 catalyzed the reaction more efficiently than PaOMT2 with several phenolic compounds, including quercetin and caffeoyl-CoA. To determine the critical amino acids for the different reactivity of the two OMTs, site-directed mutagenesis was carried out. The amino acid proline at position 35 in PaOMT2 and leucine in PaOMT3 is a critical amino acid for their reactivity. Molecular modeling showed that the sequential change triggered by Leu35 resulted in a change in the size of the substrate binding pocket, which could account for the different catalytic reactivity of two OMTs.  相似文献   

9.
Apigenin, a member of the flavone subclass of flavonoids, has long been considered to have various biological activities. Its glucosides, in particular, have been reported to have higher water solubility, increased chemical stability, and enhanced biological activities. Here, the synthesis of apigenin glucosides by the in vitro glucosylation reaction was successfully performed using a UDP-glucosyltransferase YjiC, from Bacillus licheniformis DSM 13. The glucosylation has been confirmed at the phenolic groups of C-4′ and C-7 positions ensuing apigenin 4′-O-glucoside, apigenin 7-O-glucoside and apigenin 4′,7-O-diglucoside as the products leaving the C-5 position unglucosylated. The position of glucosylation and the chemical structures of glucosides were elucidated by liquid chromatography/mass spectroscopy and nuclear magnetic resonance spectroscopy. The parameters such as pH, UDP glucose concentration and time of incubation were also analyzed during this study.  相似文献   

10.
O-Methyltransferases (OMTs), one of the ubiquitous enzymes in plants, bacteria, and humans, catalyze a methyl-transfer reaction using S-adenosylmethionine and a wide range of phenolics as a methyl donor and acceptor, respectively. Substrates for most bacterial OMTs have largely remained elusive, but recent investigation using BcOMT2, an OMT from Bacillus cereus, suggested that ortho-dihydroxyflavonoids could serve as substrates. To elucidate the functional and structural features of BcOMT2, we expressed, and purified BcOMT2, and crystallized an apoenzyme and its ternary complex in the presence of a flavonoid and S-adenosylhomocysteine. Each crystal diffracted to 1.8 angstroms with its space group of C2 and P2(1)2(1)2(1), respectively. Structural analysis of apo-BcOMT2 and its ternary complex will provide the structural basis of methyltransfer onto (iso)flavonoids in a regiospecific manner.  相似文献   

11.
Kim BG  Lee YJ  Lee S  Lim Y  Cheong Y  Ahn JH 《Journal of biotechnology》2008,138(3-4):107-111
O-Methylated flavonoids are biosynthesized by regioselective flavonoid O-methyltransferases (OMTs), which may account for the limited number of naturally occurring flavonoids in nature. It was previously shown that poplar POMT-7 regioselectively methylates the 7-hydroxyl group of flavones, whereas rice ROMT-9 regioselectively methylates the 3'-hydroxyl group of the substrate. We co-expressed both OMT genes (POMT-7 and ROMT-9) in E. coli and carried out biotransformation experiments of some flavonoids with the transformed E. coli strain. Contrast to the predicted regioselectivity of both POMT-7 and ROMT-9, unexpected methylation reaction products, i.e. 3',4'-O-methylated flavonoids, in addition to the predicted ones, were obtained with luteolin (5,7,3',4'-tetrahydroxyflavone) and quercetin (3,5,7,3',4'-pentahydroxyflavone) as substrates. Reactions using the 3'-O-methyl derivative of luteolin and quercetin by POMT-7 revealed that the enzyme has altered its regioselectivity from the 7- to the 4'-hydroxyl groups. These results are discussed in terms of molecular modeling of POMT-7 in relation to its methyl donor.  相似文献   

12.
The specific substrates, mechanisms, and structures of the bacterial O-methyltransferases (OMTs) are not as well characterized as those of other OMTs. Recent studies have suggested that bacterial OMTs catalyze regiospecific reactions that might be used to produce novel compounds. In this study, we investigated the structural and functional features of an OMT from Bacillus cereus (BcOMT2). This enzyme catalyzes the O-methylation of flavonoids in vitro in an S-adenosylmethionine-dependent and regiospecific manner. We solved the crystal structures of the BcOMT2 apoenzyme and the BcOMT2-S-adenosylhomocysteine (SAH) co-complex at resolutions of 1.8 and 1.2 Å, respectively. These structures reveal that the overall structure of dimeric BcOMT2 is similar to that of the canonical OMT but that BcOMT2 also has a unique N-terminal helical region that is responsible for dimerization. The binding of SAH causes both local and remote conformational changes in the dimer interface that stabilize the dimerization of BcOMT2. SAH binding also causes ordering of residues Glu171 to Gly186, which are disordered in the apoenzyme structure and are known determinants of substrate specificity, and thus contributes to formation of the substrate binding pocket. Our structural analysis indicated a resemblance between the active site of BcOMT2 and that of metal-dependent OMTs. Using mutational analysis, we confirmed that BcOMT2 is a Mg2+-dependent OMT. These results provide structural and functional insights into the dimerization mechanism and substrate specificity of BcOMT2.  相似文献   

13.
建立了高速逆流色谱分离纯化芹菜素和木犀草素的方法。两相溶剂系统为氯仿-甲醇-水(4:3:2),上相为固定相,下相为流动相进行洗脱。从100mg粗提物中一步分离得到17.0mg芹菜素和22.5mg木犀草素,经高效液相色谱分析,纯度分别为92%和96%。其化学结构由1H和13CNMR鉴定。  相似文献   

14.
Transferrin has been exploited as a potential drug carrier for targeted drug delivery into cancer cells, which express high levels of transferrin receptors. In the present study, we identified specific structural features in flavonoids that were critical for binding to transferrin. Flavanone naringenin and flavonoid apigenin, two flavonoids with characteristic flavonoid core structures were selected for the study of the effects of C2–C3 single bond in the C-ring on transferrin binding. We determined the binding affinities by fluorescence quenching experiments and investigated the binding modes by CD spectra and molecular modeling. Our results demonstrated that naringenin bound transferrin with an affinity almost 100 times higher than that of apigenin attributed to its higher structural flexibility and lower acidity compared with apigenin. Our docking study showed that naringenin had stronger van der Waals interactions with transferrin, which was believed to contribute to its higher binding affinity. We also found that naringenin-binding induced greater increase in the α-helix content in transferrin than apigenin, suggesting that transferrin became more compact upon association with naringenin. Our study demonstrated that naringenin was a ligand for transferrin with good affinity. The results reported herein can facilitate the design and development of drugs that bind transferrin with high affinity.  相似文献   

15.
The inhibitory effects of flavonoids on the human cytochrome P450 1A2 (CYP1A2) were examined. Among flavonoids tested, galangin, kaempferol, chrysin, and apigenin were potent inhibitors. Although apigenin belonging to flavones and genistein belonging to isoflavones are similar in the chemical structures, the inhibitory potencies for CYP1A2 were distinguished markedly between these two flavonoids. In computer‐docking simulation, apigenin interacted with the same mode of cocrystallized α‐naphthoflavone in the active site of CYP1A2, and then the B ring of apigenin was placed close to the heme iron of the enzyme with a single orientation. In contrast, the docked genistein conformation showed two different binding modes, and the A ring of genistein was oriented to the heme iron of CYP1A2. Furthermore, the binding free energy of apigenin was lower than that of genistein. These results demonstrate a possible mechanism that causes the differential inhibitory potencies of apigenin and genistein for CYP1A2. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:230–234, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20328  相似文献   

16.
Catharanthus roseus (Madagascar periwinkle) flavonoids have a simple methylation pattern. Characteristic are B-ring 5' and 3' methylations and a methylation in the position 7 of the A-ring. The first two can be explained by a previously identified unusual O-methyltransferase (CrOMT2) that performs two sequential methylations. We used a homology based RT-PCR strategy to search for cDNAs encoding the enzyme for the A-ring 7 position. Full-length cDNAs for three proteins were characterized (CrOMT5, CrOMT6, CrOMT7). The deduced polypeptides shared 59-66% identity among each other, with CrOMT2, and with CrOMT4 (a previously characterized protein of unknown function). The five proteins formed a cluster separate from all other OMTs in a relationship tree. Analysis of the genes showed that all C. roseus OMTs had a single intron in a conserved position, and a survey of OMT genes in other plants revealed that this intron was highly conserved in evolution. The three cDNAs were cloned for expression of His-tagged recombinant proteins. CrOMT5 was insoluble, but CrOMT6 and CrOMT7 could be purified by affinity chromatography. CrOMT7 was inactive with all compounds tested. The only substrates found for CrOMT6 were 3'-O-methyl-eriodictyol (homoeriodictyol) and the corresponding flavones and flavonols. The mass spectrometric analysis showed that the enzyme was not the expected 7OMT, but a B-ring 4'OMT. OMTs with this specificity had not been described before, and 3',4'-dimethylated flavonoids had not been found so far in C. roseus, but they are well-known from other plants. The identification of this enzyme activity raised the question whether methylation could be a part of the mechanisms channeling flavonoid biosynthesis. We investigated four purified recombinant 2-oxoglutarate-dependent flavonoid dioxygenases: flavanone 3beta-hydroxylase, flavone synthase, flavonol synthase, and anthocyanidin synthase. 3'-O-Methyl-eriodictyol was a substrate for all four enzymes. The activities were only slightly lower than with the standard substrate naringenin, and in some cases much higher than with eriodictyol. Methylation in the A-ring, however, strongly reduced or abolished the activities with all four enzymes. The results suggested that B-ring 3' methylation is no hindrance for flavonoid dioxygenases. These results characterized a new type of flavonoid O-methyltransferase, and also provided new insights into the catalytic capacities of key dioxygenases in flavonoid biosynthesis.  相似文献   

17.
S-Adenosyl-l-methionine (AdoMet)-dependent O-methyltransferases (OMTs) catalyze the transmethylation of a variety of phenolics in bacteria, plants, and humans. To rapidly characterize phenolic OMT activities, we adapted Gibbs’ reagent, the dye originally used for detecting phenols, to develop a convenient assay method for measuring the catalytic properties of enzymatic transmethylation of phenolics. We demonstrated that Gibbs’ reagent reacted with phenolics yielding distinct absorptive characters that we used to further develop the assay to monitor the reactivities of phenolic OMTs. To validate the method, we identified two caffeate/5-hydroxyferulate 3/5-O-methyltransferases (COMTs) from the black cottonwood, Populus trichocarpa. Together with a few other plant type I OMTs, we demonstrated that our Gibbs’ reagent-mediated colorimetric assay could reliably determine the functions and kinetic parameters of phenolic OMTs. Because Gibbs’ reagent reacting with different regioselectively modified phenolics displays different colorimetric properties, the assay method can be used to monitor both substrate specificity and the regioselectivity of phenolic OMTs.  相似文献   

18.
Ko JH  Kim BG  Hur HG  Lim Y  Ahn JH 《Plant cell reports》2006,25(7):741-746
Secondary plant metabolites undergo several modification reactions, including glycosylation. Glycosylation, which is mediated by UDP-glycosyltransferase (UGT), plays a role in the storage of secondary metabolites and in defending plants against stress. In this study, we cloned one of the glycosyltransferases from rice, RUGT-5 resulting in 40–42% sequence homology with UGTs from other plants. RUGT-5 was functionally expressed as a glutathione S-transferase fusion protein in Escherichia coli and was then purified. Eight different flavonoids were used as tentative substrates. HPLC profiling of reaction products displayed at least two peaks. Glycosylation positions were located at the hydroxyl groups at C-3, C-7 or C-4′ flavonoid positions. The most efficient substrate was kaempferol, followed by apigenin, genistein and luteolin, in that order. According to in vitro results and the composition of rice flavonoids the in vivo substrate of RUGT-5 was predicted to be kaempferol or apigenin. To our knowledge, this is the first time that the function of a rice UGT has been characterized.  相似文献   

19.
20.
The medicinal plant Camptotheca acuminata accumulates camptothecin, 10‐hydroxycamptothecin, and 10‐methoxycamptothecin as its major bioactive monoterpene indole alkaloids. Here, we describe identification and functional characterization of 10‐hydroxycamptothecin O‐methyltransferase (Ca10OMT), a member of the Diverse subclade of class II OMTs. Ca10OMT is highly active toward both its alkaloid substrate and a wide range of flavonoids in vitro and in this way contrasts with other alkaloid OMTs in the subclade that only utilize alkaloid substrates. Ca10OMT shows a strong preference for the A‐ring 7‐OH of flavonoids, which is structurally equivalent to the 10‐OH of 10‐hydroxycamptothecin. The substrates of other alkaloid OMTs in the subclade bear little similarity to flavonoids, but the 3‐D positioning of the 7‐OH, A‐ and C‐rings of flavonoids is nearly identical to the 10‐OH, A‐ and B‐rings of 10‐hydroxycamptothecin. This structural similarity likely explains the retention of flavonoid OMT activity by Ca10OMT and also why kaempferol and quercetin aglycones are potent inhibitors of its 10‐hydroxycamptothecin activity. The catalytic promiscuity and strong inhibition of Ca10OMT by flavonoid aglycones in vitro prompted us to investigate the potential physiological roles of the enzyme in vivo. Based on its regioselectivity, kinetic parameters and absence of 7‐OMT flavonoids in vivo, we conclude that the major and likely only substrate of Ca10OMTin vivo is 10‐hydroxycamptothecin. This is likely accomplished by Ca10OMT being kept spatially separated at the tissue levels from potentially inhibitory flavonoid aglycones, and flavonoid aglycones being rapidly glycosylated to non‐inhibitory flavonoid glycosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号