首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
2.
CHO cells were synchronized in G1 phase and treated with MMS or HN2. The subsequent rate of DNA replication was found to be reduced in a dose-dependent manner. In addition, 2 X 10(-3 M and 3 X 10(-3) M MMS resulted in a 3--4 h delay prior to the initiation of S phase. If the cells were held for 8 h in hydroxyurea after MMS treatment, no subsequent lag in DNA synthesis was seen after removal of the hydroxyurea. The entry of confluent cells into S phase was found to be delayed 7 h upon trypsinizing and replating. Treatment of these cells with MMS resulted in a reduced rate of DNA replication, but no further delay in its initiation. Repair replication was found to continue at a constant rate for at least 12 h following MMS treatment of cells under all of these conditions. At the concentrations used in these experiments MMS severely inhibited the rate of protein synthesis, but HN2 had little effect. By comparing both the kinetics of repair replication and recovery of protein synthesis with the rate of DNA replication, it was concluded that the initial, severe reduction in rate following MMS treatment was probably due to an inhibition of protein synthesis.  相似文献   

3.
Unscheduled DNA synthesis (UDS), which is considered to be DNA repair, has been studied in early- to mid-spermatid stages of the mouse after combined treatments with X-rays and methyl methanesulfonate (MMS). UDS in spermatids was detected by giving testicular injections of [methyl-3H]thymidine ([3H]dThd) and making use of the fact that no scheduled DNA synthesis occurs in the germ cells after the last S period in primary spermatocytes. X-rays and MMS are each able to induce UDS in mouse spermatids. However, there was a statistically significant reduction in the amount of UDS observed when X-ray exposures of from 200 to 600 R were given 4 h before an i.p. injection of 75 mg/kg of MMS and concurrent testicular injections of [3H]dThd. This reduction in UDS is more than can be explained by the completion of repair of X-ray-induced DNA lesions. We suggest that the reduction in UDS is the result of an X-ray-produced impairment of a least a part of the repair mechanism involved in correcting MMS-induced DNA lesions. When the time interval between a 600-R X-ray exposure and MMS treatment was between 3 and 20 h (latest time interval s;udied) there was a statistically significant reduction of UDS in the spermatids. No significant decrease in UDS response occurred when the time interval between radiation exposure and MMS treatment was less than approximately 3 h.  相似文献   

4.
Chloroquine (ClQ) inhibited the repair of DNA damage produced in cultured rat liver cells by methyl methanesulfonate (MMS). MMS caused fragmentation of single-strand DNA in alkaline sucrose gradients. Repair of the damage was followed by observing the restoration of the normal sedimentation pattern at intervals after treatment. Repair was significant by 7 h and nearly complete at 24 h. Addition of ClQ during the repair peiod markedly reduced the rate of repair. Also, ClQ increased the lethality of MMS, which could be due to the inhibition of repair. ClQ was found to inhibit protein synthesis, but the effect on repair is probably not due entirely to this action since comparable inhibition of protein synthesis by cycloheximide produced a lesser degree of delay in repair.  相似文献   

5.
DNA breaks and repair in mouse leukemia L1210 cells treated with 3 different types of cross-linkers, mitomycin C (MMC), 1-(4-amino-2-methyl-5-pyrimidinyl)-methyl-3-(2-chloroethyl)-3-nitroso ure a hydrochloride (ACNU) and SN-07 (a macromolecular antibiotic), were studied. Measured in D37 values, MMC gave the highest number of cross-links per lethal 'hit' directly after the 1-h treatment in the alkaline elution assay, followed by ACNU and SN-07. A good dose-response increase in induced interstrand DNA cross-linking frequency was observed in cells treated with 2.5-10 micrograms/ml MMC and with 10-100 micrograms/ml ACNU for 1 h with and without 24-h post-incubation. After 6-h post-incubation, the highest frequency of cross-linking was observed in cells treated with 2.5 micrograms/ml MMC and 30 micrograms/ml ACNU, while cross-link production continued in the cells treated with SN-07 for 12-h post-incubation. No significant increase in DNA breaks was observed in cells treated with MMC throughout 24-h post-incubation. The highest frequency of single-strand DNA breaks in cells treated with ACNU was observed immediately after the treatment and they disappeared after 6-h post-incubation. After 24-h post-incubation, a marked enhancement of the DNA breaks was observed in cells treated with SN-07 and the cells contained double-strand DNA breaks also. RNA synthesis was not affected in the cells treated with 10 micrograms/ml MMC and slightly inhibited to 70% of control in those treated with 100 micrograms/ml ACNU, while DNA synthesis in both cells was significantly inhibited after 24-h post-incubation. By contrast, both RNA and DNA synthesis were completely inhibited in cells treated with 8.0 micrograms/ml SN-07.  相似文献   

6.
DNA Repair in Potorous tridactylus   总被引:4,自引:0,他引:4       下载免费PDF全文
The DNA synthesized shortly after ultraviolet (UV) irradiation of Potorous tridactylis (PtK) cells sediments more slowly in alkali than that made by nonirradiated cells. The size of the single-strand segments is approximately equal to the average distance between 1 or 2 cyclobutyl pyrimidine dimers in the parental DNA. These data support the notion that dimers are the photoproducts which interrupt normal DNA replication. Upon incubation of irradiated cells the small segments are enlarged to form high molecular weight DNA as in nonirradiated cells. DNA synthesized at long times (~ 24 h) after irradiation is made in segments approximately equal to those synthesized by nonirradiated cells, although only 10-15% of the dimers have been removed by excision repair. These data imply that dimers are not the lesions which initially interrupt normal DNA replication in irradiated cells. In an attempt to resolve these conflicting interpretations, PtK cells were exposed to photoreactivating light after irradiation and before pulse-labeling, since photoreactivation repair is specific for only one type of UV lesion. After 1 h of exposure ~ 35% of the pyrimidine dimers have been monomerized, and the reduction in the percentage of dimers correlates with an increased size for the DNA synthesized by irradiated cells. Therefore, we conclude that the dimers are the lesions which initially interrupt DNA replication in irradiated PtK cells. The monomerization of pyrimidine dimers correlates with a disappearance of repair endonuclease-sensitive sites, as measured in vivo immediately after 1 h of photoreactivation, indicating that some of the sites sensitive to the repair endonuclease (from Micrococcus luteus) are pyrimidine dimers. However, at 24 h after irradiation and 1 h of photoreactivation there are no endonuclease-sensitive sites, even though ~ 50% of the pyrimidine dimers remain in the DNA. These data indicate that not all pyrimidine dimers are accessible to the repair endonuclease. The observation that at long times after irradiation DNA is made in segments equal to those synthesized by nonirradiated cells although only a small percentage of the dimers have been removed suggests that an additional repair system alters dimers so that they no longer interrupt DNA replication.  相似文献   

7.
5-Bromodeoxyuridine (BrdU)-induced sister chromatid exchanges (SCEs) are mainly determined during replication on a BrdU-substituted template. The BrdU, once incorporated, is rapidly excised as uracil (U), and the gap is repaired with the incorporation of BrdU from the medium, which leads to further repair. During the second S period in BrdU medium, this process continues as the strand acts as template. Experiments suggest that 3-amino-benzamide (3AB) delays the ligation of the gaps formed after U excision, resulting in enhanced SCE levels during the second cycle of BrdU incorporation. When normal templates of G1 cells are treated before BrdU introduction with methyl methanesulphonate (MMS), 3AB in the first cycle doubles the MMS-induced SCEs but has no effect on them during the second cycle. When the BrdU-substituted template is treated with MMS in G1 of the second cycle, 3AB again doubles the SCEs due to MMS and also enhances the SCEs resulting from delays in ligation of the gaps following U excision in the BrdU-substituted template. The repair processes of MMS lesions that are sensitive to 3AB and lead to SCEs take place rapidly, while the repair process of late repairing lesions that lead to SCEs appear to be insensitive to 3AB. A model for SCE induction is proposed involving a single-strand break or gap as the initial requirement for SCE initiation at the replicating fork. Subsequent events represent natural stages in the repair process of a lesion, ensuring replication without loss of genetic information. G1 cells treated with methylnitrosourea (MNU) and grown immediately in BrdU medium rapidly lose the O6-methylguanine from their DNA and the rate of loss is BrdU-dose dependent. The rapid excision of the U lesions can explain the effect of BrdU concentration on SCE reduction following both MNU or MMS treatment.  相似文献   

8.
After treatment with methyl methanesulfonate (MMS) or N-methyl-N-nitrosourea (MNU), the mutagenicity and survival of Chinese hamster V79 cells were investigated, as well as the inhibition of daughter DNA synthesis and, using the DNA unwinding technique and hydroxylapatite chromatography, the character of the newly synthesized DNA was studied. It was found that different cytotoxicity and mutagenicity of MMS and MNU was accompanied by different types of DNA synthesis inhibition. The treatment with the former compound resulted in a longer inhibition of DNA synthesis, while the treatment with the latter showed that as early as 2 h after exposure the percentage of nascent DNA increased. Shortly after the exposure to both alkylating agents, the newly synthesized DNA contained a higher number of gaps than control DNA, in dependence on the concentration used. During culturing after treatment, the character of nascent DNA in MMS-treated cells gradually returned to that of control DNA, while MNU-treated cells, for the whole time of our study, synthesized DNA with a larger number of gaps than control DNA. We suggest that the character of nascent daughter DNA reflects the occurrence of lesions in parental DNA. These are repaired within a shorter time in MMS- than in MNU-treated cells. The long-term persistence of lesions in the DNA of MNU-treated cells might be one of the factors responsible not only for the higher cytotoxic but also for the many times higher mutagenic effect of this alkylating agent.  相似文献   

9.
Methyl methanesulfonate (MMS) in the culture medium inhibits the rate of DNA synthesis in HeLa cells in a dose-dependent manner. By using short (5 min) incubations with [3H]thymidine and analyzing the newly made DNA by velocity sedimentation on alkaline sucrose gradients, we found that the first affect of MMS on DNA replication, at 0.5 h after treatment, was inhibition of initiation of replicons. Recovery from this effect seemed to have begun by 2 3/4 h after treatment. The second effect of MMS, which was evident at 2 h after treatment, was to slow or block chain elongation.  相似文献   

10.
Mouse fibroblasts, deficient in DNA polymerase beta, are hypersensitive to monofunctional DNA methylating agents such as methyl methanesulfonate (MMS). Both wild-type and, in particular, repair-deficient DNA polymerase beta null cells are highly sensitized to the cytotoxic effects of MMS by 4-amino-1,8-naphthalimide (4-AN), an inhibitor of poly(ADP-ribose) polymerase (PARP) activity. Experiments with synchronized cells suggest that exposure during S-phase of the cell cycle is required for the 4-AN effect. 4-AN elicits a similar extreme sensitization to the thymidine analog, 5-hydroxymethyl-2'-deoxyuridine, implicating the requirement for an intermediate of DNA repair. In PARP-1-expressing fibroblasts treated with a combination of MMS and 4-AN, a complete inhibition of DNA synthesis is apparent after 4 h, and by 24 h, all cells are arrested in S-phase of the cell cycle. Continuous incubation with 4-AN is required to maintain the cell cycle arrest. Caffeine, an inhibitor of the upstream checkpoint kinases ATM (ataxia telangiectasia-mutated) and ATR (ATM and Rad3-related), has no effect on the early inhibition of DNA synthesis, but cells are no longer able to maintain the block after 8 h. Instead, the addition of caffeine leads to arrest of cells in G(2)/M rather than S-phase after 24 h. Analysis of signaling pathways in cell extracts reveals an activation of Chk1 after treatment with MMS and 4-AN, which can be suppressed by caffeine. Our results suggest that inhibition of PARP activity results in sensitization to MMS through maintenance of an ATR and Chk1-dependent S-phase checkpoint.  相似文献   

11.
DNA fibre autoradiography, after incorporation of high specific activity 3H-thymidine and 3H-deoxycytidine, has been used to investigate repair in DNA fibres from single cells following UV, or methyl-methane sulphonate (MMS) treatment. Asynchronously growing human fibroblasts, leucocytes, and HeLa cells at different phases of the cell cycle have been investigated. Isotope incorporation in repair could be differentiated from that involved in replication by the distribution and density of silver grains along the DNA fibres. Grain distribution due to repair was continuous over long stretches of the fibres and was at a low density, occasionally interspersed with short slightly denser segments. Replication labelling on the other hand, was dense and usually in short tandem segments. Repair labelling was of a similar overall density in fibres from a single cell, but differed in intensity from cell to cell. In mutagen treated Go (leucocytes) or G1 (HeLa cells), repair labelling was not increased by the presence of the DNA inhibitors, hydroxyurea (HU) or 5-fluorodeoxyuridine (FUdR). Repair was not detectable in S cells however, without the use of these inhibitors to reduce endogenous nucleoside production. FUdR enhanced the repair labelling in S cells only slightly, while HU increased it beyond that observed in UV irradiated, HU treated, G1 cells. The intensity of repair labelling in fibres from mutagen treated S cells appears to be proportional to the degree of reduction of DNA chain elongation in replicons.  相似文献   

12.
The ability of ICR 2A frog cells to repair DNA damage induced by ultraviolet irradiation was examined. These cells are capable of photoreactivation but are nearly totally deficient in excision repair. They have the ability to convert the small molecule weight DNA made after irradiation into large molecules but do not show an enhancement in this process when the UV dose is delivered in two separate exposures separated by a 3- or 24-h incubation. Total DNA synthesis is depressed and low molecular weight DNA continues to be synthesized during pulse-labeling as long as 48 h after irradiation. The effects of pyrimidine dimer removal through exposure of UV irradiated cells to photoreactivating light indicate that dimers act as the critical lesions blocking DNA synthesis.  相似文献   

13.
Growing roots of Vicia faba were treated with MH for 5 h, washed for 2 h and exposed to 3H-thymidine (3H-TdR) for additional 2-h periods at 7 h, 24 h and 32 h after the onset of MH treatment, to label DNA. As the replicative DNA synthesis was suppressed by HU, an enhancement of 3H-TdR incorporation into nuclear DNA above the control, as determined by microautoradiography, was considered to be due to unscheduled DNA synthesis induced by the mutagen. A significantly higher incorporation of 3H-TdR into DNA of MH-treated roots occurred, when labelling was applied 7 h after the MH action, whereas at 24 h only slight and at 32 h no enhancement of DNA labelling above control was registered. A 3-14-day storage with 50% water content of V. faba seeds exposed to MH or MMS resulted in a recovery from mutagen-induced chromosomal damage and a significantly higher incorporation of 3H-TdR into nuclear DNA. This supports the hypothesis that recovery from MH- and MMS-induced chromosomal damage is mediated by excision repair during seed storage.  相似文献   

14.
15.
Treatment of hamster embryo cells with diverse classes of chemical carcinogens enhances transformation by a carcinogenic simian adenovirus, SA7. Virus transformed foci selected from plates pretreated with 3-methyl-cholanthrene (MCA), methyl methanesulfonate (MMS) or 7,12-dimethylbenz[a]anthracene (DMBA) and established as cell lines in culture, contained equivalent amounts of SA7 viral genome. However, hamster embryo cultures treated with MMS or nickel sulfate had increased amounts of SA7 DNA integrated into cellular DNA when examined 2--9 days after chemical treatment and viral inoculation. An increased uptake of SA7 DNA was demonstrated in hamster cells treated with MMS during DNA repair synthesis in cells retricted in scheduled DNA synthesis by amino acid deprivation; addition of virus after the repair period did not result in an increased integration of viral DNA. These data suggest that enhancement of viral oncogenesis by chemical carcinogens or mutagens may be related to the formation of additional attachment sites in cellular DNA for insertion of viral DNA, thereby increasing the probability of viral transformation.  相似文献   

16.
In vivo DNA repair occurring in early spermatid stages of the mouse has been studied with four mutagens that are chemical homologs: MMS, EMS, PMS and IMS. Using the well-studied sequence of events that occurs during spermatogenesis and spermiogenesis in the mouse, aatids was measured by the unscheduled incorporation of [3H]dT into these germ cells which were recovered from the caudal epididymides 16 days after chemical treatment. Purification of the caudal sperm DNA at this time verified that the [3H]dT was incorporated into the DNA. For each chemical mutagen a study was made on the level of DNA repair occurring in early spermatids as a function of the administered, in vivo dose. Within experimental errors, all four chemicals produced a linear increase in DNA repair in early spermatids with increasing dose. Only the highest dose of MMS (100 mg/kg) produced a greater repair response than expected for a linear curve. At equimolar doses the most effective chemical in inducing DNA repair was MMS, followed by EMS, IMS and PMS. When testicular injections of [3H]dT were given at the same time as the intraperitoneal injections of the mutagens, the amount of unscheduled incorporation of [3H]dT into the DNA of early spermatids was maximized. Since [3H]dT has been shown to be available for incorporation into germ-cell DNA for only approximately 1 h after injection, all four mutagens must reach the DNA of early spermatids and begin producing "repairable" lesions within 1 h after treatment. The amount of DNA repair occurring at later times after chemical treatment of early spermatids was studied by testicular injections of [3H]dT 1/2, 1, 2 and 3 days after chemical treatment. Repair was still occurring in the early spermatids at 3 days post-treatment; this repair is most likely a manifestation of the finite rate of the repair process rather than resulting from newly alkylated DNA. For MMS and EMS there was a rapid decrease in the level of DNA repair in the first 1/2 day following treatment. This was followed by a much slower, exponential decrease in the level of repair out to 3 days post-treatment. The curves suggest that the amount of repair is proportional to the number of repairable lesions still present in the DNA. For PMS and IMS the level of repair decreases rapidly in the first 1/2 day after treatment and thereafter remains relatively constant through 3 days post-treatment. With all four mutagens, DNA repair in early spermatids was detectable at doses 5 to 10 times lower than those required to observe other genetic end points such as dominant lethals, translocations and specific-locus mutations in any germ-cell stage. The sensitivity of detection of in vivo DNA repair in the germ cells of male mice makes such a system a useful adjunct to other genetic tests for studying chemical mutagenesis in mammals.  相似文献   

17.
The technique of sedimentation in alkaline sucrose was used to examine the formation and repair of single-strand (SS) breaks in cultured mammalian cells that were treated with methyl methanesulfonate (MMS), methyl nitrosourea (MNUA), 4-nitroquinoline-1-oxide (4NQO) or UV-light. The SS breaks induced by MMS and 4NQO were largely repaired by HeLa cells during a 5-h post-treatment incubation. The SS breaks induced by MNUA and UV-light were not repaired by HeLa cells. L-cells were not able to repair the SS breaks induced by any of the agents, which correlates with the deficiency of these cells for repair synthesis of DNA. The following conclusions are discussed. MNUA and UV-light produce modifications in DNA which are not repaired but are translated into SS breaks in alkali. MMS produces SS breaks intracellularly but these are not derived from a simple depurination of methylated purines. 4NQO produces a modification in DNA which is translated into an SS break in alkali but which can be removed by an intracellular process.  相似文献   

18.
When Syrian hamster embryo cells were pretreated with a weak chemical carcinogen, methyl methanesulfonate (MMS) or ethyl methanesulfonate (EMS), or with a physical agent such as X-irradiation prior to being exposed to a potent cancer-producing chemical, transformation (crisscrossing of cells not seen in control) occurred up to nine times more often than when the cells were not pretreated. The degree of enhancement appears independent of carcinogen dose. The transformation frequency associated with the carcinogens benzo(a)pyrene (BP), dimethylbenz(a)anthracene (DMBA), 3-methylcholanthrene (MCA), N-acetoxy-2-acetylaminofluorene (AcAAF), and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) was increased. There are similarities in the enhancement produced by pretreatment of hamster cells with X-irradiation and with alkylating agents: with both, maximum enhancement occurred approx. 48 h after treatment and lethality attributable to the pretreatment was 10–20% relative to control. However, enhancement produced by X-irradiation pretreatment was slightly greater than that obtained with MMS. The exact cause of the enhancement in transformation resulting from the interaction of these agents is not yet known, but the enhancement associated with MMS pretreatment cannot be related to partial cell synchronization or disruption in the cell cycle. Hamster cells pretreated with 250 μM of MMS demonstrated no alteration in normal cel DNA synthesis through 48-h post-treatment. Analysis of unscheduled DNA synthesis by autoradiography or by alkaline sucrose gradients indicated that the damaged DNA was rapidly repaired after treatment. Therefore, repair of DNA damage as it is now understood is probably not involved.  相似文献   

19.
We examined repair replication of HeLa cell deoxyribonucleic acid (DNA) in cells infected with mengovirus or Newcastle disease virus or treated with puromycin. Cellular DNA was damaged by ultraviolet light and then pulse-labeled with (3)H-thymidine. Autoradiographic analysis of non-S-phase DNA synthesis (repair replication) showed that there was no inhibition of this process at a time when overall cellular DNA synthesis was severely inhibited by either virus infection or puromycin treatment.  相似文献   

20.
Treatment of base excision repair-proficient mouse fibroblasts with the DNA alkylating agent methyl methanesulfonate (MMS) and a small molecule inhibitor of PARP-1 results in a striking cell killing phenotype, as previously reported. Earlier studies showed that the mechanism of cell death is apoptosis and requires DNA replication, expression of PARP-1, and an intact S-phase checkpoint cell signaling system. It is proposed that activity-inhibited PARP-1 becomes immobilized at DNA repair intermediates, and that this blocks DNA repair and interferes with DNA replication, eventually promoting an S-phase checkpoint and G(2)-M block. Here we report studies designed to evaluate the prediction that inhibited PARP-1 remains DNA associated in cells undergoing repair of alkylation-induced damage. Using chromatin immunoprecipitation with anti-PARP-1 antibody and qPCR for DNA quantification, a higher level of DNA was found associated with PARP-1 in cells treated with MMS plus PARP inhibitor than in cells without inhibitor treatment. These results have implications for explaining the extreme hypersensitivity phenotype after combination treatment with MMS and a PARP inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号