首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Variable chlorophyll a (Chl a) fluorescence is composed of a photochemical and a thermal phases of similar amplitudes. The photochemical phase can be induced by a saturating single turnover flash (STF) and reflects the reduction of the Photosystem II (PS II) QA primary electron acceptor. The thermal phase requires multiple turnover flash (MTF) and is somehow related to the reduction of the plastoquinone (PQ) molecules. This article aimed to determine the relative contributions of the QB-bound and the free oxidized PQ molecules to the thermal phase of Chl a fluorescence. We thus measured the interactive effects of exogenous PQ (PQex), of an inhibitor (DCMU) acting at the QB site of PS II and of an artificial quencher, 2-methyl-1,4-naphtoquinone, on Chl a fluorescence levels induced by STF (FF) and MTF (FM) in spinach thylakoids. We observed that: (1) the incorporation of PQex in thylakoids stimulated photosynthetic electron transport but barely affected FF and FM in the absence of DCMU; (2) DCMU significantly increased the amplitude of FF but slightly quenched FM; (3) 2-methyl-1,4-naphtoquinone quenched FM to a larger-extent than FF; (4) DCMU increased the quenching effects of PQex on FF and FM and also, of methyl-1,4-naphtoquinone on FF. These results indicate that: (1) the QB-bound and the free PQ molecules contribute to about 56% and 25%, respectively, to the thermal phase Chl a fluorescence in dark-adapted thylakoids; and (2) the thermal phase of Chl a fluorescence is more susceptible than the photochemical phase to the non-photochemical quenching effect of oxidized quinones. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
The nature of interaction of cytochrome b-559 high potential (HP) with electron transport on the reducing side of photosystem II was investigated by measuring the susceptibility of cytochrome b-559HP to 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) under different conditions. Submicromolar DCMU concentrations decreased the rate of absorbance change corresponding to cytochrome b-559HP photoreduction while the amplitude was lowered at higher concentrations (up to 10 M). Appreciable extents of cytochrome b-559HP photoreduction were observed at DCMU concentrations which completely abolished the electron transport from water to methyl viologen under the same experimental conditions. However, the susceptibility of cytochrome b-559HP to DCMU increased with the degree of cytochrome b-559HP oxidation, induced either by ferricyanide or by illumination of low intensity (2 W/m2) of red light in the presence of 2 M carbonyl cyanide-m-chlorophenylhydrazone. Also, the DCMU inhibition was more severe when the pH increased from 6.5 to 8.5, indicating that the unprotonated form of cytochrome b-559HP is more susceptible to DCMU. These results demonstrate that cytochrome b-559HP can accept electrons prior to the QB site, probably via QA although both QA and QB can be involved to various extents in this reaction. We suggest that the redox state and the degree of protonation of cytochrome b-559HP alter its interaction with the reducing side of photosystem II.Abbreviations ADRY acceleration of the deactivation reactions of the water-splitting system Y - CCCP carbonylcyanide m-chlorophenylhydrazone - FeCN ferricyanide - HP high potential - MV methylviologen CIW-DPB Publication No.1096.  相似文献   

4.
A prolonged (20–24 h) dark incubation of Chlorella pyrenoidosa algae at 37–38° did not diminish the relative yield of the variable chlorophyll fluorescence (F v/F m) and enhanced the relative contribution of the slow phase (sF v) to the kinetics of F v increase. Iodoacetamide, a nonmetabolized glucose analog, 2-deoxyglucose (2-DG), an inhibitor of protein synthesis, cycloheximide, and a decrease in the temperature of dark incubation to 18–20° prevented this sF v increase. Both the illumination of dark-incubated cells and the addition of 2-DG in darkness restored the initial level of sF v. In the light-grown chlorella cells, the relative contribution of sF v reversibly declined with lowering light intensity and increased when 2 was excluded from the bubbling mixture. The authors presume that the slow phase in the kinetics of F v increase is related to the functioning of the fraction of the photosystem II complexes with a destabilized primary quinone acceptor of electron, and the content of these complexes in the cell depends on the plastoquinone redox state.  相似文献   

5.
Absorption changes at 325 nm (delta A325) induced by 15 ps laser flashes (lambda = 650 nm) in PS II membrane fragments were measured with picosecond time-resolution. In samples with the reaction centers (RCs) kept in the open state (P I QA) the signals are characterized by a very fast rise (not resolvable by our equipment) followed by only small changes within our time window of 1.6 ns. In the closed state (PI QA-) of the reaction center the signal decays with an average half-life time of about 250 ps. It is shown that under our excitation conditions (E = 2 x 10(14) photons/cm2 per pulse) subtraction of the absorption changes in closed RCs (delta A closed 325) from those in open RCs (delta A open 325) leads to a difference signal which is dominated by the reduction kinetics of QA. From the rise kinetics of this signal and by comparison with data in the literature it is inferred that QA becomes reduced by direct electron transfer from Pheo- with a time constant of about 350 +/- 100 ps.  相似文献   

6.
The way misses happen in oxygen evolution is subject to debate (Govindjee et al. 1985). We recently observed a linear lowering of the miss probability with the flash number (Meunier and Popovic 1989). Therefore, we investigated in Dunaliella tertiolecta the link between the average miss probability and the redox state of plastoquinone after n flashes. The effect of flashes was to oxidize the plastoquinone pool; we found that the oxidation of plastoquinone highly correlated (linear regression: R 2=0.996) with the lowering of the miss probability. The flash frequency was found to affect both the miss probability and the redox state of plastoquinone. When pre-flashes were given using a high flash frequency (10 Hz), the plastoquinone pool was oxidized and misses were low; however, if long dark intervals between flashes were used, the oxidizing effect of flashes was lost and the misses were high. We could not explain our results by assuming equal misses over all S-states; but unequal misses, caused by deactivations, were coherent with our results. We deduced that chlororespiration was responsible for the reduction of plastoquinone in the dark interval between flashes. We compared oxygen evolution with and without benzoquinone, using a low flash frequency (0.5 Hz) for maximum misses. Benzoquinone lowered the misses from 34% to 3%, and raised the amplitude of oxygen evolution by more than a factor of two (2). From this we deduced that the charge carrier C postulated to explain misses (Lavorel and Maison-Peteri 1983) did not account for more than 3% of miss probability in Dunaliella tertiolecta. These results indicate that the misses in oxygen evolution are controlled by the redox state of plastoquinone, through deactivations.  相似文献   

7.
Direct EPR evidence of the photo-generation of superoxide radicals (O2 –.) was obtained by using a novel spin trapping probe in spinach Photosystem II (PS II) membrane fragments. The production of O2 –. was detected by following the formation of 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) superoxide adducts (DEPMPO-OOH). The inhibition of O2 –. formation by 3-(3,4-dichlorophenyl) -1,1-dimethylurea (DCMU) and the 77 K fluorescence spectrum indicated that O2 –. were generated from PS II, not from PS I. The inhibition of O2 –. formation by DCMU also suggested that O2 –. were generated from the QBbinding site, not at a site prior to DCMU blockage. The extrinsic proteins and Mn are very important to eliminate O2 –., showing that the oxygen-evolving system is involved in O2 –. removal rather than production.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

8.
The sensitivity of the D-1 and D-2 polypeptide subunits of photosystem II towards trypsin treatment of the thylakoid membrane has been probed with specific antibodies. As long known, electron flow from water to ferricyanide becomes inhibitor insensitive after this trypsin treatment. We show that under these conditions the D-2 polypeptide is cut by trypsin at arg 234. Also the D-1 polypeptide is cut, probably at arg 238. When short time trypsination of the membrane is done in the presence of inhibitors, electron flow also becomes inhibitor insensitive and the D-2 polypeptide is still cut, but the D-1 polypeptide is cut only under certain conditions. A protection of the D-1 polypeptide is possible with inhibitors of photosystem II of the DCMU/triazine-type and with an artificial acceptor quinone, but not with inhibitors of the phenol-type. In hexane extracted membranes plastoquinone has been removed from the QB site. Both the D-1 and D-2 polypeptides are more trypsin sensitive in such preparations. The D-1, but not the D-2 polypeptide is protected when plastoquinone has been readded to the membrane before the trypsin digestion.The results show that plastoquinone, artificial quinones and inhibitors of photosystem II at the QB site, but also carotene to a lesser extent, have an effect on the conformation of both the D-1 and D-2 polypeptide. it is postulated that the amino acid sequence around arginine 238 of the D-1 polypeptide is part of the QB binding niche. Furthermore this sequence is modified or its conformation is changed if the QB site is occupied by either plastoquinone or a DCMU-type inhibitor because under these conditions arginine 238 is less accessible to the trypsin. If the QB site, however, is empty, the amino acid sequence with arg 238 is very trypsin sensitive. This property of modulation or the conformation of the amino acid sequence of the D-1 polypeptide by the state of the QB site is likely to be relevant also for the events in the rapid turnover of the D-1 polypeptide.Abbreviations BNT 2-bromo-4-nitro-thymol - DCMU dichlorophenyldimethylurea - PMSF phenylmethylsulfonylfluoride - SDS sodium dodecylsulfate  相似文献   

9.
The question of plastoquinone (PQ) concentration and its stoichiometry to photosystem I (PSI) and PSII in spinach chloroplasts is addressed here. The results from three different experimental approaches were compared. (a) Quantitation from the light-induced absorbance change at 263 nm (A263) yielded the following ratios (mol:mol); Chl:PQ=70:1, PQ:PSI=9:1 and PQ:PSII=7:1. The kinetics of PQ photoreduction were a monophasic but non-exponential function of time. The deviation of the semilogarithmic plots from linearity reflects the cooperativity of several electron transport chains at the PQ pool level. (b) Estimates from the area over the fluorescence induction curve (Afl) tend to exaggerate the PQ pool size because of electron transfer via PSI to molecular oxygen (Mehler reaction) resulting in the apparent increase of the pool of electron acceptors. The reliability of the Afl method is increased substantially upon plastocyanin inhibition by KCN. (c) Quantitation of the number of electrons removed from PQH2 by PSI, either under far-red excitation or after the addition of DCMU to preilluminated chloroplasts, is complicated due to the competitive loss of electrons from PQH2 to molecular oxygen. The latter is biphasic reaction occurring with half-times of about 2 s (30–40% of PQH2) and of about 60 s (60–70% of PQH2).Abbreviations Afl area over the fluorescence induction curve - Chl chlorophyll - Cyt cytochrome - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PQ plastoquinone - PS photosystem - P700 reaction center of PSI - Q primary quinone acceptor of PSII - Tricine N-tris (hydroxymethyl) methyl glycine - Triton X-100 octyl phenoxy polyethoxyethanol  相似文献   

10.
The green alga Chlamydomonas reinhardtii is a facultative heterotroph and, when cultured in the presence of acetate, will synthesize chlorophyll (Chl) and photosystem (PS) components in the dark. Analysis of the thylakoid membrane composition and function in dark grown C. reinhardtii revealed that photochemically competent PS II complexes were synthesized and assembled in the thylakoid membrane. These PS II centers were impaired in the electron-transport reaction from the primary-quinone electron acceptor, QA, to the secondary-quinone electron acceptor, QB (QB-nonreducing centers). Both complements of the PS II Chl a–b light harvesting antenna (LHC II-inner and LHC II-peripheral) were synthesized and assembled in the thylakoid membrane of dark grown C. reinhardtii cells. However, the LHC II-peripheral was energetically uncoupled from the PS II reaction center. Thus, PS II units in dark grown cells had a -type Chl antenna size with only 130 Chl (a and b) molecules (by definition, PS II units lack LHC II-peripheral). Illumination of dark grown C. reinhardtii caused pronounced changes in the organization and function of PS II. With a half-time of about 30 min, PS II centers were converted froma QB-nonreducing form in the dark, to a QB-reducing form in the light. Concomitant with this change, PS II units were energetically coupled with the LHC II-peripheral complement in the thylakoid membrane and were converted to a PS II form. The functional antenna of the latter contained more than 250 Chl(a+b) molecules. The results are discussed in terms of a light-dependent activation of the QA-QB electron-transfer reaction which is followed by association of the PS II unit with a LHC II-peripheral antenna and by inclusion of the mature form of PS II (PS II) in the membrane of the grana partition region.Abbreviations Chl chlorophyll - PS photosystem - QA primary quinone electron acceptor of PS II - QB secondary quinone electron acceptor of PS II - LHC light harvesting complex - F0 non-variable fluorescence yield - Fplf intermediate fluorescence yield plateau leyel - Fmax maximum fluorescence yield - Fi initial fluorescence yield increase from F0 to Fpl (Fpl–F0) - Fv total variable fluorescence yield (Fm–F0) - DCMU dichlorophenyl-dimethylurea  相似文献   

11.
Ducruet  J.M. 《Photosynthetica》1999,37(2):335-338
F0 fluorescence and thermoluminescence (TL) were recorded simultaneously on various dark-adapted leaf samples. Above 40 °C, a sharp peak of TL coincided with the onset of the heat-induced F0 rise. It results from a back-transfer of an electron from the secondary QB -to the primary acceptor QA of photosystem 2, followed by a luminescence-emitting recombination with Tyr-D1. This demonstrates that the critical temperature at which the F0 starts rising also corresponds to a shift towards the left of the QA↔QB - equilibrium. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Inhibition of Photosystem II (PS II) activity induced by continuous light or by saturating single turnover flashes was investigated in Ca2+-depleted, Mn-depleted and active PS II enriched membrane fragments. While Ca2+- and Mn-depleted PS II were more damaged under continuous illumination, active PS II was more susceptible to flash-induced photoinhibition. The extent of photoinactivation as a function of the duration of the dark interval between the saturating single turnover flashes was investigated. The active centres showed the most photodamage when the time interval between the flashes was long enough (32 s) to allow for charge recombination between the S2 or S3 and QB to occur. Illumination with groups of consecutive flashes (spacing between the flashes 0.1 s followed by 32 s dark interval) resulted in a binary oscillation of the loss of PS II-activity in active samples as has been shown previously (Keren N, Gong H, Ohad I (1995), J Biol Chem 270: 806–814). Ca2+- and Mn-depleted PS II did not show this effect. The data are explained by assuming that charge recombination in active PS II results in a back reaction that generates P680 triplet and thence singlet oxygen, while in Ca2+- and Mn-depleted PS II charge recombination occurs through a different pathway, that does not involve triplet generation. This correlates with an up-shift of the midpoint potential of QA in samples lacking Ca2+ or Mn that, in term, is predicted to result in the triplet generating pathway becoming thermodynamically less favourable (G.N. Johnson, A.W. Rutherford, A. Krieger, 1995, Biochim. Biophys. Acta 1229, 201–207). The diminished susceptibility to flash-induced photoinhibition in Ca2+- and Mn-depleted PS II is attributed at least in part to this mechanism. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
We have measured the flash-induced absorbance difference spectrum attributed to the formation of the secondary radical pair, P+Q, between 270 nm and 1000 nm at 77 K in photosystem II of the chlorophyll d containing cyanobacterium, Acaryochloris marina. Despite the high level of chlorophyll d present, the flash-induced absorption difference spectrum of an approximately 2 ms decay component shows a number of features which are typical of the difference spectrum seen in oxygenic photosynthetic organisms containing no chlorophyll d. The spectral shape in the near-UV indicates that a plastoquinone is the secondary acceptor molecule (QA). The strong C-550 change at 543 nm confirms previous reports that pheophytin a is the primary electron acceptor. The bleach at 435 nm and increase in absorption at 820 nm indicates that the positive charge is stabilized on a chlorophyll a molecule. In addition a strong electrochromic band shift, centred at 723 nm, has been observed. It is assigned to a shift of the Qy band of the neighbouring accessory chlorophyll d, ChlD1. It seems highly likely that it accepts excitation energy from the chlorophyll d containing antenna. We therefore propose that primary charge separation is initiated from this chlorophyll d molecule and functions as the primary electron donor. Despite its lower excited state energy (0.1 V less), as compared to chlorophyll a, this chlorophyll d molecule is capable of driving the plastoquinone oxidoreductase activity of photosystem II. However, chlorophyll a is used to stabilize the positive charge and ultimately to drive water oxidation.  相似文献   

14.
The relationship between the structure of reconstituted plastoquinone derivatives and their ability to recover the Hill reaction was investigated by extraction and reconstitution of lyophilized chloroplasts from spinach, followed by monitoring DCIP photoreduction at 600 nm. The results show that: It is not essential that the plastoquinone side chain be an isoprenoid or a phytol; the activity increases with increasing length of the side chain up to 13–15 carbon atoms; for chains longer than 15 carbon atoms, the activity is practically constant. Lipophilic groups (such as -Br) in the side chain increased the activity, hydrophilic groups (such as -OH) decreased the activity. Conjugated double bonds in the side chain decreased the activity greatly, but non-conjugated double bonds had almost no effect on the activity, indicating a requirement of flexibility of the side chain. The activity is decreased in the order of PQ, UbiQ and MQ, showing a large effect of the ring structure.Abbreviations DCIP 2,6-dichlorophenolindophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - QA primary electron acceptor in PS II reaction centers - QB secondary electron acceptor in PS II reaction centers - PQ n plastoquinones with an isoprenoid side chain (n, number of the isoprenoid units in the side chain) - PQ-n synthetic plastoquinones with alkyl side chain (n, number of the carbon atoms in the alkyl side chain) - PQ-n synthetic plastoquinones with a double bond in the alkyl side chain - UQ n ubiquinones with an isoprenoid side chain (n, number of the isoprenoid units in the side chain) - UQ-n synthetic ubiquinones with alkyl side chain (n, number of the carbon atoms in the akyl side chain) - MQ-n 2-alkyl-1,4-naphthoquinone (n, number of the carbon atoms in the alkyl side chain)  相似文献   

15.
Intensity of 2 s delayed fluorescence (DF) as a function of steady-state actinic light intensity was investigated in pea chloroplasts in the presence of 10 M DCMU. The light saturation curve of DF was approximated by a sum of two hyperbolic components which differ by an order of magnitude in the half-saturating incident light intensity. The relative contribution of the amplitudes of the components was practically independent of cation (Na+ and Mg2+) concentration and a short-term heating of the chloroplasts at 45°C. The component saturating at low incident light intensity was selectively suppressed by 100 M DCMU or by 1 mol g-1 Chl oleic acid. DF intensity following excitation by a single saturating 15 s flash was equal to the intensity of the component saturating at a low incident light intensity. Upon flash excitation, the maximum steady-state DF level was found to be attained only after a series of saturating flashes. It is concluded that the two components of the DF light saturation curves are related to PS II centres heterogeneity in quantum yield of stabilization of the reduced primary quinone acceptor.Abbreviations DF Delayed fluorescence - L1- and L2-components DF components saturating at low and high incident light intensity, respectively - I incident light intensity - L DF intensity - P680 reaction centre chlorophyll of PS II - QA and QB primary and secondary quinone acceptors of PS II, respectively  相似文献   

16.
Photosynthesis mutations were induced in maize lines bearing the transposable DNA element system, Mutator. Two Photosystem I mutants (hcf101 and hcf104) which were isolated are described here. Maize plants homozygous for the hcf104 mutation are seedling lethal and exhibit a high in vivo chlorophyll fluorescence yield. They lack 60% of CP1, P700 and PSI-specific electron transport activity relative to normal sibling plants. The comparable depletion of these three measures of PS I content conforms to the pattern reported for many other PS I-deficient mutants. Maize plants homozygous for hcf101 are seedling lethal and also exhibit high in vivo chlorophyll fluorescence yield. They lack 80–90% of CP1 and P700 but sustain steady state levels of PS I-specific electron transport activity at 70% of normal. Previous reports of similar apparent PS I hyperactivity are discussed and an explanation for the elevated steady state level of PS I electron transport activity in hcf101 is proposed.Abbreviations CP1 chlorophyll-protein complex 1 - hcf high chlorophyll fluorescent - LHCI Light harvesting chlorophyll-protein complex I - PAGE polyacrylamide gel electrophoresis - P700 reaction center pigment of PS I - PQ plastoquinone  相似文献   

17.
An electrometrical technique was used to investigate proton-coupled electron transfer between the primary plastoquinone acceptor QA and the oxidized non-heme iron Fe3+ on the acceptor side of photosystem II core particles incorporated into phospholipid vesicles. The sign of the transmembrane electric potential difference Δψ (negative charging of the proteoliposome interior) indicates that the iron–quinone complex faces the interior surface of the proteoliposome membrane. Preoxidation of the non-heme iron was achieved by addition of potassium ferricyanide entrapped into proteoliposomes. Besides the fast unresolvable kinetic phase (τ ∼ 0.1 μs) of Δψ generation related to electron transfer between the redox-active tyrosine YZ and QA, an additional phase in the submillisecond time domain (τ ∼ 0.1 ms at 23°C, pH 7.0) and relative amplitude ∼ 20% of the amplitude of the fast phase was observed under exposure to the first flash. This phase was absent under the second laser flash, as well as upon the first flash in the presence of DCMU, an inhibitor of electron transfer between QA and the secondary quinone QB. The rate of the additional electrogenic phase is decreased by about one-half in the presence of D2O and is reduced with the temperature decrease. On the basis of the above observations we suggest that the submillisecond electrogenic reaction induced by the first flash is due to the vectorial transfer of a proton from external aqueous phase to an amino acid residue(s) in the vicinity of the non-heme iron. The possible role of the non-heme iron in cyclic electron transfer in photosystem II complex is discussed.  相似文献   

18.
Based on the electron-transport properties on the reducing side of the reaction center, photosystem II (PS II) in green plants and algae occurs in two distinct forms. Centers with efficient electron-transport from QA to plastoquinone (QB-reducing) account for 75% of the total PS II in the thylakoid membrane. Centers that are photochemically competent but unable to transfer electrons from QA to QB (QB-nonreducing) account for the remaining 25% of total PS II and do not participate in plastoquinone reduction. In Dunaliella salina, the pool size of QB-nonreducing centers changes transiently when the light regime is perturbed during cell growth. In cells grown under moderate illumination intensity (500 E m-2s-1), dark incubation induces an increase (half-time 45 min) in the QB-nonreducing pool size from 25% to 35% of the total PS II. Subsequent illumination of these cells restores the steady-state concentration of QB-nonreducing centers to 25%. In cells grown under low illumination intensity (30 µE m–2s–1), dark incubation elicits no change in the relative concentration of QB-nonreducing centers. However, a transfer of low-light grown cells to moderate light induces a rapid (half-time 10 min) decrease in the QB-nonreducing pool size and a concomitant increase in the QB-reducing pool size. These and other results are explained in terms of a pool of QB-nonreducing centers existing in a steady-state relationship with QB-reducing centers and with a photochemically silent form of PS II in the thylakoid membrane of D. salina. It is proposed that QB-nonreducing centers are an intermediate stage in the process of damage and repair of PS II. It is further proposed that cells regulate the inflow and outflow of centers from the QB-nonreducing pool to maintain a constant pool size of QB-nonreducing centers in the thylakoid membrane.Abbreviations Chl chlorophyll - PS photosystem - QA primary quinone electron acceptor of PS II - QB secondary quinone electron acceptor of PS II - LHC light harvesting complex - Fo non-variable fluorescence yield - Fpl intermediate fluorescence yield plateau level - Fmax maximum fluorescence yield - Fi mitial fluorescence yield increase from Fo to Fpl(Fpl-Fo) - Fv total variable fluorescence yield (Fmax-Fo) - DCMU dichlorophenyl-dimethylurea  相似文献   

19.
To establish a system for over-production of PSII-L protein which is a component of photosystem II (PSII) complex, a plasmid designated as pMAL-psbL was constructed and expressed in Escherichia coli JM109. A fusion protein of PSII-L and maltose-binding proteins (53 kDa on SDS-PAGE) was accumulated in E. coli cells to a level of 10% of the total protein upon isopropyl--D-thiogalactopyranoside (IPTG) induction. The carboxyl-terminal part of 5.0 kDa was cleaved from the fusion protein and purified by an anion exchange column chromatography in the presence of detergents. This 5.0 kDa protein was identified as PSII-L by amino-terminal amino acid sequence analysis and the chromatographic behavior on an anion exchange gel. A few types of mutant PSII-L were also prepared by the essentially same procedure except for using plasmids which contain given mutations in psbL gene. Plastoquinone-9 (PQ-9) depleted PSII reaction center core complex consisting of D1, D2, CP47, cytochrome b-559 (cyt b-559), PSII-I and PSII-W was reconstituted with PQ-9 and digalactosyldiglyceride (DGDG) together with the wild-type or mutant PSII-L produced in E. coli or isolated PSII-L from spinach. Significant difference between the wild-type PSII-L proteins from E. coli and spinach was not recognized in the effectiveness to recover the photo-induced electron transfer activity in the resulting complexes. The analysis of stoichiometry of PQ-9 per reaction center in the PQ-9 reconstituted PS II revealed that two molecules of PQ-9 were reinserted into a reaction center independent of the presence or absence of PSII-L. These results suggest that PSII-L recovers the electron transfer activity in the reconstituted RC by a mechanism different from the stabilization of PQ-9 in the QA site of PSII. Ubiquinone-10 (UQ-10), but not plastoquinone-2 (PQ-2), substituted PQ-9 for recovering the PSII-L supported electron transfer activity in the reconstituted PSII reaction center complexes. The results obtained with the mutant PSII-L proteins revealed that the carboxyl terminal part rather than amino terminal part of PSII-L is crucial for recovering the electron transfer activity in the reconstituted complexes.  相似文献   

20.
Twenty-five years ago, non-photochemical quenching of chlorophyll fluorescence by oxidised plastoquinone (PQ) was proposed to be responsible for the lowering of the maximum fluorescence yield reported to occur when leaves or chloroplasts were treated in the dark with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of electron flow beyond the primary quinone electron acceptor (QA) of photosystem (PS) II [C. Vernotte, A.L. Etienne, J.-M. Briantais, Quenching of the system II chlorophyll fluorescence by the plastoquinone pool, Biochim. Biophys. Acta 545 (1979) 519-527]. Since then, the notion of PQ-quenching has received support but has also been put in doubt, due to inconsistent experimental findings. In the present study, the possible role of the native PQ-pool as a non-photochemical quencher was reinvestigated, employing measurements of the fast chlorophyll a fluorescence kinetics (from 50 μs to 5 s). The about 20% lowering of the maximum fluorescence yield FM, observed in osmotically broken spinach chloroplasts treated with DCMU, was eliminated when the oxidised PQ-pool was non-photochemically reduced to PQH2 by dark incubation of the samples in the presence of NAD(P)H, both under anaerobic and aerobic conditions. Incubation under anaerobic conditions in the absence of NAD(P)H had comparatively minor effects. In DCMU-treated samples incubated in the presence of NAD(P)H fluorescence quenching started to develop again after 20-30 ms of illumination, i.e., the time when PQH2 starts getting reoxidised by PS I activity. NAD(P)H-dependent restoration of FM was largely, if not completely, eliminated when the samples were briefly (5 s) pre-illuminated with red or far-red light. Addition to the incubation medium of HgCl2 that inhibits dark reduction of PQ by NAD(P)H also abolished NAD(P)H-dependent restoration of FM. Collectively, our results provide strong new evidence for the occurrence of PQ-quenching. The finding that DCMU alone did not affect the minimum fluorescence yield F0 allowed us to calculate, for different redox states of the native PQ-pool, the fractional quenching at the F0 level (Q0) and to compare it with the fractional quenching at the FM level (QM). The experimentally determined Q0/QM ratios were found to be equal to the corresponding F0/FM ratios, demonstrating that PQ-quenching is solely exerted on the excited state of antenna chlorophylls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号