首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Many terrestrial plant species are able to form symbiotic associations with arbuscular mycorrhizal fungi. Here we have identified three cDNA clones representing genes whose expression is induced during the arbuscular mycorrhizal symbiosis formed between Medicago truncatula and an arbuscular mycorrhizal fungus, Glomus versiforme. The three clones represent M. truncatula genes and encode novel proteins: a xyloglucan endotransglycosylase-related protein, a putative arabinogalactan protein (AGP), and a putative homologue of the mammalian p110 subunit of initiation factor 3 (eIF3). These genes show little or no expression in M. truncatula roots prior to formation of the symbiosis and are significantly induced following colonization by G. versiforme. The genes are not induced in roots in response to increases in phosphate. This suggests that induction of expression during the symbiosis is due to the interaction with the fungus and is not a secondary effect of improved phosphate nutrition. In situ hybridization revealed that the putative AGP is expressed specifically in cortical cells containing arbuscules. The identification of two mycorrhiza-induced genes encoding proteins predicted to be involved in cell wall structure is consistent with previous electron microscopy data that indicated major alterations in the extracellular matrix of the cortical cells following colonization by mycorrhizal fungi.  相似文献   

3.
Xyloglucan endotransglucosylase/hydrolases (XTH) are enzymes that catalyze the hydrolysis and transglycosylation of xyloglucan polymers in plant cell walls. Previously, we isolated a cDNA from mycorrhizal roots of Medicago truncatula that is predicted to encode an XTH [van Buuren, M.L., Maldonado-Mendoza, I.E., Trieu, A.T., Blaylock, L.A., Harrison, M.J., 1999. Novel genes induced during an arbuscular mycorrhizal (AM) symbiosis between M. truncatula and G. versiforme. Mol. Plant-Microb. Interact. 12, 171-181.]. Here, we identified the corresponding XTH gene, designated Mt-XTH1. The Mt-XTH1 gene contains four exons separated by three introns and resides on a 15-kb Xba1 fragment adjacent to a second XTH gene designated Mt-XTH2. Mt-XTH2 shares the same exon-intron structure as Mt-XTH1. Exons 2, 3 and 4 and introns 1 and 2 are identical to Mt-XTH1, while exon 1 and intron 3 are divergent, both in sequence and in length. Mt-XTH1 is induced following colonization of the roots by AM fungi but does not respond to changes in phosphate status. Analysis of transgenic roots expressing an Mt-XTH1 promoterColon, two colonsuidA fusion revealed that the Mt-XTH1 promoter directs expression in cells throughout the root system with significantly higher levels of activity in mycorrhizal roots. Mt-XTH1 expression is elevated not only in the regions of the roots colonized by the fungus, but also at sites distal to the infected regions. These expression patterns are consistent with activation in response to a systemic signal.  相似文献   

4.
This study of functional diversity considers symbiotic associations between two plant species, Medicago truncatula and Lycopersicon esculentum, and seven species of arbuscular mycorrhizal fungi (AMF). The objective was to integrate physiological analyses with molecular techniques to test whether functional diversity between AMF species is not only apparent at the level of mycorrhiza formation, plant nutrient uptake and plant growth, but also at the molecular level as observed by variation in the root expression of plant genes involved in the plant's P-starvation response. The seven species of AMF varied widely in their influence on the root expression of MtPT2 and Mt4 from M. truncatula and LePT1 and TPSI1 from L. esculentum. At one extreme was Glomus mosseae, whereby its colonization of M. truncatula resulted in the greatest reduction in MtPT2 and Mt4 gene expression and the highest level of P uptake and growth, while at the other extreme was Gigaspora rosea, whereby colonization resulted in the highest levels of MtPT2 and Mt4 gene expression and the lowest P uptake and growth. The expression of LePT1 and TPSI1 within the roots of L. esculentum was low and relatively uniform across the seven mycorrhizas, reflecting the ability of this cultivar to maintain low and constant shoot P levels despite root colonization by a broad selection of AMF. This study extends current understanding of functional diversity and shows that plants can respond differently to AMF, not only at the level of colonization, nutrient uptake and growth, but also at the level of gene expression.  相似文献   

5.
6.
The majority of vascular flowering plants are able to form symbiotic associations with arbuscular mycorrhizal fungi. These symbioses, termed arbuscular mycorrhizas, are mutually beneficial, and the fungus delivers phosphate to the plant while receiving carbon. In these symbioses, phosphate uptake by the arbuscular mycorrhizal fungus is the first step in the process of phosphate transport to the plant. Previously, we cloned a phosphate transporter gene involved in this process. Here, we analyze the expression and regulation of a phosphate transporter gene (GiPT) in the extra-radical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices during mycorrhizal association with carrot or Medicago truncatula roots. These analyses reveal that GiPT expression is regulated in response to phosphate concentrations in the environment surrounding the extra-radical hyphae and modulated by the overall phosphate status of the mycorrhiza. Phosphate concentrations, typical of those found in the soil solution, result in expression of GiPT. These data imply that G. intraradices can perceive phosphate levels in the external environment but also suggest the presence of an internal phosphate sensing mechanism.  相似文献   

7.
8.
Mt4 is a cDNA representing a phosphate-starvation-inducible gene from Medicago truncatula that is down-regulated in roots in response to inorganic phosphate (Pi) fertilization and colonization by arbuscular mycorrhizal fungi. Split-root experiments revealed that the expression of the Mt4 gene in M. truncatula roots is down-regulated systemically by both Pi fertilization and colonization by arbuscular mycorrhizal fungi. A comparison of Pi levels in these tissues suggested that this systemic down-regulation is not caused by Pi accumulation. Using a 30-bp region of the Mt4 gene as a probe, Pi-starvation-inducible Mt4-like genes were detected in Arabidopsis and soybean (Glycine max L.), but not in corn (Zea mays L.). Analysis of the expression of the Mt4-like Arabidopsis gene, At4, in wild-type Arabidopsis and pho1, a mutant unable to load Pi into the xylem, suggests that Pi must first be translocated to the shoot for down-regulation to occur. The data from the pho1 and split-root studies are consistent with the presence of a translocatable shoot factor responsible for mediating the systemic down-regulation of Mt4-like genes in roots.  相似文献   

9.
10.
11.
12.
Harrison MJ  Dewbre GR  Liu J 《The Plant cell》2002,14(10):2413-2429
Many plants have the capacity to obtain phosphate via a symbiotic association with arbuscular mycorrhizal (AM) fungi. In AM associations, the fungi release phosphate from differentiated hyphae called arbuscules, that develop within the cortical cells, and the plant transports the phosphate across a symbiotic membrane, called the periarbuscular membrane, into the cortical cell. In Medicago truncatula, a model legume used widely for studies of root symbioses, it is apparent that the phosphate transporters known to operate at the root-soil interface do not participate in symbiotic phosphate transport. EST database searches with short sequence motifs shared by known phosphate transporters enabled the identification of a novel phosphate transporter from M. truncatula, MtPT4. MtPT4 is significantly different from the plant root phosphate transporters cloned to date. Complementation of yeast phosphate transport mutants indicated that MtPT4 functions as a phosphate transporter, and estimates of the K(m) suggest a relatively low affinity for phosphate. MtPT4 is expressed only in mycorrhizal roots, and the MtPT4 promoter directs expression exclusively in cells containing arbuscules. MtPT4 is located in the membrane fraction of mycorrhizal roots, and immunolocalization revealed that MtPT4 colocalizes with the arbuscules, consistent with a location on the periarbuscular membrane. The transport properties and spatial expression patterns of MtPT4 are consistent with a role in the acquisition of phosphate released by the fungus in the AM symbiosis.  相似文献   

13.
14.
15.
Medicago truncatula, a diploid autogamous legume, is currently being developed as a model plant for the study of root endosymbiotic associations, including nodulation and mycorrhizal colonization. An important requirement for such a plant is the possibility of rapidly introducing and analyzing chimeric gene constructs in root tissues. For this reason, we developed and optimized a convenient protocol for Agrobacterium rhizogenes-mediated transformation of M. truncatula. This unusual protocol, which involves the inoculation of sectioned seedling radicles, results in rapid and efficient hairy root organogenesis and the subsequent development of vigorous "composite plants." In addition, we found that kanamycin can be used to select for the cotransformation of hairy roots directly with gene constructs of interest. M. truncatula composite plant hairy roots have a similar morphology to normal roots and can be nodulated successfully by their nitrogen-fixing symbiotic partner, Sinorhizobium meliloti. Furthermore, spatiotemporal expression of the Nod factor-responsive reporter pMtENOD11-gusA in hairy root epidermal tissues is indistinguishable from that observed in Agrobacterium tumefaciens-transformed lines. M. truncatula hairy root explants can be propagated in vitro, and we demonstrate that these clonal lines can be colonized by endomycorrhizal fungi such as Glomus intraradices with the formation of arbuscules within cortical cells. Our results suggest that M. truncatula hairy roots represent a particularly attractive system with which to study endosymbiotic associations in transgenically modified roots.  相似文献   

16.
Melon (Cucumis melo) roots were inoculated with or without the arbuscular mycorrhizal (AM) fungus Glomus caledonium under low phosphate conditions. High-performance liquid chromatography analysis of the secondary metabolites in butanol extracts from roots revealed that the level of one compound in noninoculated roots showed a significant increase from 30 days postinoculation. No accumulation was observed in mycorrhizal roots and high-phosphate-supplemented roots, indicating that the accumulation of the compound was caused by a phosphate deficiency. The compound was isolated by column chromatography and identified by spectroscopic methods to be a C-glycosylflavone, isovitexin 2'-O-beta-glucoside. The effect of the compound on mycorrhizal colonization in melon roots was examined under low (0.05 mM) and high (2 mM) phosphate conditions. The degree of mycorrhizal colonization in control roots grown under high phosphate conditions (8.8%) was much lower than when grown under low phosphate conditions (22%). The treatment of roots with the compound at concentrations of 20 and 50 microM increased root colonization under both low and high phosphate conditions. In particular, the degrees of mycorrhizal colonization in treated roots grown under high phosphate conditions (25 and 22% at 20 and 50 microM, respectively) were comparable to that in untreated control roots grown under low phosphate conditions (22%). These findings suggest that the phosphate deficiency-induced C-glycosylflavonoid is involved in the regulation of AM fungal colonization in melon roots.  相似文献   

17.
During the symbiotic interaction between Medicago truncatula and the arbuscular mycorrhizal (AM) fungus Glomus intraradices, an endogenous increase in jasmonic acid (JA) occurs. Two full-length cDNAs coding for the JA-biosynthetic enzyme allene oxide cyclase (AOC) from M. truncatula, designated as MtAOC1 and MtAOC2, were cloned and characterized. The AOC protein was localized in plastids and found to occur constitutively in all vascular tissues of M. truncatula. In leaves and roots, MtAOCs are expressed upon JA application. Enhanced expression was also observed during mycorrhization with G. intraradices. A partial suppression of MtAOC expression was achieved in roots following transformation with Agrobacterium rhizogenes harboring the MtAOC1 cDNA in the antisense direction under control of the cauliflower mosaic virus 35S promoter. In comparison to samples transformed with 35SuidA, roots with suppressed MtAOC1 expression exhibited lower JA levels and a remarkable delay in the process of colonization with G. intraradices. Both the mycorrhization rate, quantified by fungal rRNA, and the arbuscule formation, analyzed by the expression level of the AM-specific gene MtPT4, were affected. Staining of fungal material in roots with suppressed MtAOC1 revealed a decreased number of arbuscules, but these did not exhibit an altered structure. Our results indicate a crucial role for JA in the establishment of AM symbiosis.  相似文献   

18.
19.
Feng G  Zhang FS  Li XL  Tian CY  Tang C  Rengel Z 《Mycorrhiza》2002,12(4):185-190
The effect of colonization with the arbuscular mycorrhizal (AM) fungus Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe on the growth and physiology of NaCl-stressed maize plants ( Zea mays L. cv. Yedan 13) was examined in the greenhouse. Maize plants were grown in sand with 0 or 100 mM NaCl and at two phosphorus (P) (0.05 and 0.1 mM) levels for 34 days, following 34 days of non-saline pre-treatment. Mycorrhizal plants maintained higher root and shoot dry weights. Concentrations of chlorophyll, P and soluble sugars were higher than in non-mycorrhizal plants under given NaCl and P levels. Sodium concentration in roots or shoots was similar in mycorrhizal and non-mycorrhizal plants. Mycorrhizal plants had higher electrolyte concentrations in roots and lower electrolyte leakage from roots than non-mycorrhizal plants under given NaCl and P levels. Although plants in the low P plus AM fungus treatment and those with high P minus AM fungus had similar P concentrations, the mycorrhizal plants still had higher dry weights, soluble sugars and electrolyte concentrations in roots. Similar relationships were observed regardless of the presence or absence of salt stress. Higher soluble sugars and electrolyte concentrations in mycorrhizal plants suggested a higher osmoregulating capacity of these plants. Alleviation of salt stress of a host plant by AM colonization appears not to be a specific effect. Furthermore, higher requirement for carbohydrates by AM fungi induces higher soluble sugar accumulation in host root tissues, which is independent of improvement in plant P status and enhances resistance to salt-induced osmotic stress in the mycorrhizal plant.  相似文献   

20.
A microarray carrying 5,648 probes of Medicago truncatula root-expressed genes was screened in order to identify those that are specifically regulated by the arbuscular mycorrhizal (AM) fungus Gigaspora rosea, by Pi fertilisation or by the phytohormones abscisic acid and jasmonic acid. Amongst the identified genes, 21% showed a common induction and 31% a common repression between roots fertilised with Pi or inoculated with the AM fungus G. rosea, while there was no obvious overlap in the expression patterns between mycorrhizal and phytohormone-treated roots. Expression patterns were further studied by comparing the results with published data obtained from roots colonised by the AM fungi Glomus mosseae and Glomus intraradices, but only very few genes were identified as being commonly regulated by all three AM fungi. Analysis of Pi concentrations in plants colonised by either of the three AM fungi revealed that this could be due to the higher Pi levels in plants inoculated by G. rosea compared with the other two fungi, explaining that numerous genes are commonly regulated by the interaction with G. rosea and by phosphate. Differential gene expression in roots inoculated with the three AM fungi was further studied by expression analyses of six genes from the phosphate transporter gene family in M. truncatula. While MtPT4 was induced by all three fungi, the other five genes showed different degrees of repression mirroring the functional differences in phosphate nutrition by G. rosea, G. mosseae and G. intraradices. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号