首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At least six important factors that determine productivity in mass algal cultures have been identified. These are (1) the culture depth or optical cross section, (2) turbulence, (3) nutrient content and supply, (4) cultivation procedure, (5) biomass concentration and areal density, and (6) photo-acclimation. Since the efficient capturing of light energy relates to high productivities and efficiencies, all potential losses and inefficiencies need to be managed and eliminated. Photoinhibition could reduce areal productivities by up to 30% and more, where photoinhibition is the decline in photosynthetic rates at supra-optimal irradiancies. It is, however, unclear whether this occurs in high density and turbulent mass algal cultures. Using chlorophyll a fluorescence, it was possible to show how the maximum quantum efficiency of dark adapted cells (Φmax) decreased at midday conditions of high irradiancies. Neither photochemical (qP) nor, to a lesser extent, non-photochemical quenching (qN), could explain the midday depression. Using chlorophyll a fluorescence transient analyses it was shown that, although light absorption increased towards midday, the captured energy was essentially lost as heat dissipation. This was clearly shown in low-density cultures where the average light per cell was high, compared to denser cultures where the effects of high light exposure were significantly reduced. In low-density cultures, more than 60% of the reaction centres (RCs) became “silent”, meaning that they neither reduce QA, nor return their excitation energy to the antenna. At higher cell densities, losses due to photoinhibition and the number of “silent RCs” were much reduced. Elucidation of the relationship between active RCs and productivity should be a priority for optimising photobioreactor productivity. This paper was presented at the 10th International Conference of the International Society for Applied Phycology in Kunming, China.  相似文献   

2.
The effect of the rate of mixing on productivity of algal mass in relation to photon flux density and algal concentration was quantitatively evaluated in cultures ofSpirulina platensis grown in a newly designed flat-plate photobioreactor. Special emphasis was placed on elucidating the principles underlying efficient utilization of high photon flux density for maximal productivity of algal-mass. Whereas the rate of mixing exerted little influence on productivity and photosynthetic efficiency in cultures of relatively low algal density, its effect became ever more significant as algal concentration was increased. Maximal mixing-enhanced cell concentrations and productivity of biomass were obtained at the highest light intensity used. At each level of incident light intensity, maximum productivity and photosynthetic efficiency could be achieved only when algal concentration and mixing rates were optimized. The higher the intensity of the light source, the higher became the optimal culture density, highest algal concentrations and productivity of biomass being obtained at the highest light intensity used. The rate of mixing required careful optimization: when too low, maximal productivity resulting from the most efficient utilization of light could not be obtained. Too high a rate of mixing resulted in cell damage and reduced output rate.Author for correspondence  相似文献   

3.
Because algal cells are so efficient at absorbing incoming light energy, providing more light energy to photobioreactors would simply decrease energy conversion efficiency. Furthermore, the algal biomass productivity in photobioreactor is always proportional to the total photosynthetic rate. In order to optimize the productivity of algal photobioreactors (PBRs), the oxygen production rate should be estimated. Based on a simple model of light penetration depth and algal photosynthesis, the oxygen production rate in high-density microalgal cultures could be calculated. The estimated values and profiles of oxygen production rate by this model were found to be in accordance with the experimental data. Optimal parameters for PBR operations were also calculated using the model.  相似文献   

4.
It has been reported that flashing light enhances microalgal biomass productivity and overall photosynthetic efficiency. The algal growth kinetics and oxygen production rates under flashing light with various flashing frequencies (5 Hz-37 kHz) were compared with those under equivalent continuous light in photobioreactors. A positive flashing light effect was observed with flashing frequencies over 1 kHz. The oxygen production rate under conditions of flashing light was slightly higher than that under continuous light. The cells under the high frequency flashing light were also observed to be healthier than those under continuous light, particularly at higher cell concentrations. When 37 kHz flashing light was applied to an LED-based photobioreactor, the cell concentration was higher than that obtained under continuous light by about 20%. Flashing light may be a reasonable solution to overcome mutual shading, particularly in high-density algal cultures.  相似文献   

5.
Chlorophyll fluorescence measurements were used to evaluate the effect of temperature on photoinhibition inSpirulina platensis cultures grown in tubular reactors outdoors. Cultures grown at 35 °C during the day time showed a lower reduction in the Fv/Fm ratio as compared to cultures grown at 25 °C. It is demonstrated that the lower temperature photoinhibited cells can undergo a complete recovery once transferred to low light and higher temperature. This recovery does not take place when 100 µg ml-1 chloramphenicol is added to cells. The recovery is light dependent and cells incubated in the dark at low temperature do not show a recovery in the Fv/Fm ratio. The data presented strongly support the hypothesis that photoinhibition takes place in outdoorSpirulina cultures. At the same time it is demonstrated that fluorescence measurements can be used as a fast reliable indication for photoinhibition in outdoor algal cultures.Author for correspondencePublication No. 69 of the Microalgal Biotechnology Laboratory.  相似文献   

6.
Turbulence in mass algal cultures and the role of light/dark fluctuations   总被引:3,自引:0,他引:3  
In mass algal cultures, some form of agitation is usually provided; among other effects, this moves the organisms though an optically dense profile and provides mixing. During this transport, medium frequency fluctuations in the light energy supply are perceived by the algae, which are of the order of 1 Hz and less. It has been suggested that turbulence with the resultant light/dark cycles of medium frequency enhances productivity. However, turbulence has two major influences in a well mixed system: it facilitates fluctuating light regimes and increases the transfer rates between the growth medium and the cultured organism. An estimation of productivity as oxygen liberation was measured under laminar and turbulent flow rates, and varying light/dark ratios. Increased turbulence, which increased exchange rates of nutrients and metabolites between the cells and their growth medium, together with increased light/dark frequencies, increased productivity and photosynthetic efficiency.  相似文献   

7.
Critical cell density (CCD), the maximum cell concentration without mutual shading in algal cultures, can be used as a new operating parameter for high-density algal cultures and for the application of the flashing light effect on illuminated algal cultures. CCD is a function of average cell volume and light illumination area. The CCD is thus proposed as an index of estimation of mutual shading in algal cultures. Where cell densities are below the CCD, all the cells in photobio-reactors can undergo photosysnthesis at their maximum rate. At cell densities over the CCD, mutual shading will occur and some cells in the illumination chamber cannot grow photoautotrophically. When the cell concentration is higher than the CCD, specific oxygen production rates under flashing light were higher than those under continuous light. The CCD was found to be a useful engineering parameter for the application of flashing light, particularly in high-density algal cultures.  相似文献   

8.
O-Dealkylations of resorufin and coumarin ethers, mediated by microsomal cytochrome P450 mono-oxygenases from animals, plants and microorganisms, are shown here to be performed also by intact cells of the unicellular green algaeChlorella fusca andChlorella sorokiniana. The activity of theO-dealkylation of these ethers was up to tenfold higher withChlorella sorokiniana. Both algae dealkylated methyl-, ethyl-, and pentylethers of resorufin and coumarin. Dealkylation in vivo indicated efficient absorption of methoxy- and ethoxyresorufin, confirmed by the respective absorption kinetics. Piperonylbutoxide and 1-aminobenzotriazole, known inhibitors of plant and mammalian cytochrome P450s, significantly inhibited theO-dealkylase activity of both algal strains. The use of synchronized cultures of both algae revealed that efficiency ofO-dealkylation depends on the stage of the cell cycle: during the growth phase, theO-dealkylase activities increased more than proportional, and the distinct drop in activity during the last hours of the light period indicated the appearance of an endogenous substrate.  相似文献   

9.
The lichenEndocarpon pusillum Hedw. was cultivated under laboratory conditions on agar, silica gel and soil substrate. Selected developmental stages of the life cycle (germination, contact between the symbionts, cortex, squamule and perithecia development) were studied by light and scanning electron microscope.—It could be shown that the spores had no rigid spore walls with germination colpies and the spore cells which are in contact with the substrate were formed directly into germination tubes.— Further studies showed that the initial contact between the components was thigmotropic and both the form and the gelatinous matrix around the algal cells play an important role in this process. — The development of the cortex occurs under reduced moisture conditions resulting in a reduced algal reproduction. The thickness of the cortex was dependent on light intensity during cultivation. The cortex originated from hyphae, which developed beyond the algal layer and were combined to a tight network.—Fruiting bodies with spores and hymenial algae were only formed in cultures on soil substrate.
Frau Prof. Dr.Elisabeth Tschermak-Woess zu ihrem 70. Geburtstag gewidmet.  相似文献   

10.
Flocculation of algae using chitosan   总被引:9,自引:0,他引:9  
Flocculation of three freshwater algae, Spirulina,Oscillatoria and Chlorella, and onebrackish alga, Synechocystis, using chitosan was studiedinthe pH range 4 to 9, and chlorophyll-a concentrations inthe range 80 to 800 mg m–3, which produces aturbidity of 10 to 100 nephelometric turbidity units (NTU) in water. Chitosanreduced the algal content effectively by flocculation and settling. Theflocculation efficiency is very sensitive to pH, and reached a maximum at pH7.0for the freshwater species, but lower for the marine species. The optimalchitosan concentration that is required to effect maximum flocculation dependedon the concentration of alga. Flocculation and settling were faster whenconcentrations of chitosan higher than optimal are used. The settled algalcellsare intact and live, but will not be redispersed by mechanical agitation. Thede-algated water may be reused to produce fresh cultures of algae.  相似文献   

11.
Halymenia floresii is an edible species consumed in some Asian markets. In the Yucatan peninsula coast of Mexico, H. floresii dominates rocky substrata between 3 and 40 m where it grows up to 50 cm high. After analyzing the seasonal pattern of pigment content on H. floresii, we evaluate if and how the spectral composition of light affects growth and pigment dynamics under laboratory cultivation. Unialgal cultures were exposed to white, blue, red and green light in a 3-week experiment. Green light resulted in the highest algal growth rates. Synthesis of chlorophyll a, α-carotene and lutein, but not of β-carotene, was induced by white or green light. Phycocyanin synthesis was stimulated by blue light and phycoerythrin synthesis by blue or red light. Light quality treatments may be used to manipulate pigment composition in Halymenia floresii cultures.  相似文献   

12.
Three methods of algal quantification (direct cell counts, chlorophyll a extraction, in vivo fluorescence) were used to evaluate the response of the unicellular green flagellate Tetraselmis suecica to nutrients and grazers. Nutrient enrichment enhanced total cell counts, chlorophyll a concentration and in vivo and DCMU-fluorescence. Photosynthetic efficiency was reduced in the complete F2 medium as indicated by the high level of in vivo fluorescence, whereas photosynthetic efficiency was increased by the introduction of mussels to the F2 medium. The addition of mussels significantly increased the proportion of non-motile cells, but did not reduce the total cell count. The effect of mussel grazing on algae could be underestimated if only total cells were counted or only the chlorophyll a concentration was measured. The results indicate that these three methods measure different properties of an algal culture and are complementary to each other in assessing the quality and quantity of an algal population. Direct algal counting offers a reliable numerical assessment for cell population abundance. Chlorophyll a concentration was closely correlated to the total cell count. In the presence of mussels, in vivo fluorescence did not correlate with either algal cell counts or chlorophyll a concentration, indicating that the measurement of in vivo fluorescence may be misleading for estimating algal abundance under different culture conditions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
A simple, low-priced 30 liter tower-type algal pilot plant for the cultivation of light- and motion-sensitive species is described. Two hundred g wet weight of Microcystis aeruginosa were obtained per harvest. Since the self-shading of denser cultures could be compensated for only to a limited extent by increasing the light intensity without damaging the cells, the efficiency of various culture-vessel widths was determined for the growth of Microcystis : the best results were obtained with a width of 3.5 cm. Light requirements of Microcystis were studied in shadowless suspensions. The compensation point of photosynthesis varied between 200 and 300 lx, depending on the preillumination, whereas the light saturation point was found to be near 4000 Ix. The light optimum for photosynthesis was not identical with that for good growth.  相似文献   

14.
The light saturation effect imposes a serious limitation on the efficiency with which solar energy can be utilized in outdoor algal cultures. One solution proposed to reduce the intensity of incident solar radiation and overcome the light saturation effect is "spatial dilution of light" (i.e., distribution of the impinging photon flux on a greater photosynthetic surface area), but consistent experimental data supporting a significant positive influence of spatial light dilution on the productivity and the photosynthetic efficiency of outdoor algal cultures have never been reported. We used a coiled tubular reactor and compared a near-horizontal straight tubular reactor and a near-horizontal flat panel in outdoor cultivation of the cyanobacterium Arthrospira (Spirulina) platensis under defined operating conditions for optimum productivity. The photosynthetic efficiency achieved in the tubular systems was significantly higher because their curved surface "diluted" the impinging solar radiation and thus reduced the light saturation effect. This interpretation was supported by the results of experiments carried out in the laboratory under continuous artificial illumination using both a flat and a curved chamber reactor. The study also showed that, when the effect of light saturation is eliminated or reduced, productivity and solar irradiance are linearly correlated even at very high diurnal irradiance values, and supported findings that outdoor algal cultures are light-limited even during bright summer days. It was also observed that, besides improving the photosynthetic efficiency of the culture, spatial dilution of light also leads to higher growth rates and lowers the cellular content of accessory pigments; that is, it reduces mutual shading in the culture. The inadequacy of using volumetric productivity as the sole criterion for comparing reactors of different surface-to-volume ratio and of the areal productivity for evaluating the performance of elevated photobioreactors operated outdoors is stressed; it is furthermore suggested that the photosynthetic efficiency achieved by the culture also be calculated to provide a suitable parameter for comparison of different algal cultivation systems operated under similar climatic conditions. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

15.
Variability has been reported in the toxicity potential of Pfiesteria piscicida that is partly a function of the history of exposure to live fish. Grazing properties of P. piscicida and its susceptibility to ciliate predation were compared in three functional types or toxicity states of this species: actively toxic cultures, cultures with temporary loss of demonstrable toxicity, and cultures with no demonstrable toxicity. Pronounced differences in predator–prey interactions were found between actively toxic cultures and cultures with reduced toxicity. When grown with Rhodomonas sp. (Cryptophyceae) prey, specific growth rates were relatively low in actively toxic cultures under both relatively high and low irradiances. In the cultures with reduced toxicity, prey chloroplast material was apparent in nearly 100% of dinoflagellate cells 3 h after feeding, while chloroplast inclusions were found in <40% of actively toxic cells for ≤16 h (high light) and ≤23 h (low light). These results suggest a relatively high reliance on phagotrophic carbon assimilation and more rapid response to algal prey availability in Pfiesteria cells with lower toxicity. Grazing by two euplotid benthic ciliates (Euplotes vannus and E. woodruffi) on P. piscicida also varied among functional types. Grazing on actively toxic P. piscicida cells did not occur, whereas net positive ingestion rates were calculated for the other prey cultures. These results support concurrent experimental findings that a natural assemblage of microzooplankton displayed lower grazing potential on actively toxic P. piscicida than on cultures with reduced toxicity. In summary, pronounced differences in trophic interactions were found between actively toxic cultures and those with reduced or undetectable toxicity, providing additional evidence of the importance of cellular toxicity in the trophic ecology of Pfiesteria.  相似文献   

16.
Summary The protoplasts ofNicotiana plumbaginifolia required darkness for cell regeneration and colony formation. Maximal plating efficiency of the protoplasts could be achieved by keeping the cultures in dark instead of light or dark/light sequence. Only two days of darkness prior to the illumination at 400 or 3,000 lux resulted in appreciable plating efficiency, than those of light from the beginning, but these values could not match the high plating efficiency in total darkness.  相似文献   

17.
To understand the utilization property of light energy,Synechococcus sp. MA19, a poly-β-hydroxybutyrate (PHB) producer, was cultivated at the different incident light intensities of 15.3, 50.0 and 78.2 W/m2 using media with and without phosphate. From the results of metabolic flux analysis, it was found that the cell yield based on ATP synthesis was estimated as 3.5×10−3 kg-biomass/mol-ATP in these cultures. Under the examined conditions, there were no significant differences in the efficiency of light energy conversion to chemical energies estimated as ATP synthesis and reducing potential (NADH+NADPH) formation whether the PHB synthesis took place or not. The energy converted from light to ATP was kept relatively high around the energy absorbed by the cells of 2.5–3.0×106 J h−1 kg−1, whereas the energy of reducing potential was hardly changed in the examined range of the energy absorbed by the cells.  相似文献   

18.
It is often assumed that the use of a two-stage chemostat yields algal food with a well-defined nutritional composition that can maintain herbivores in a steady state of growth. In this study I investigated two bacteriafree culture techniques, continuous flow chemostats and batch cultures, to determine whether the biochemical composition of the rotifer Encentrum linnhei differed in the two cultures. Changes in the biochemical composition and calorific content of the algal food were also examined. In the rotifer reaction vessel only the lipid content of the algal food increased significantly with dilution rates, while significant decreases in protein and carbohydrates were detected at increasing algal densities. A different pattern was observed in the response of the unused algal cells to variables such as dilution, algal input and algal densities in the sump of the rotifer chemostat. In the chemostat the biochemical composition of the rotifers varied as expected with dilution rates, algal input and food availability but significant differences were found in the biochemical composition of the animals growing in the reaction vessel and those collected from the sump. In contrast, the biochemical content of batch-grown E. linnhei varied with time in a way that depended upon food availability and also on the biochemical state of the algal food. However, at the end of the exponential phase of growth, when maximum densities had been achieved, batch-grown rotifers were more biochemically nutritious than chemostat-grown animals in their steady-state phase.  相似文献   

19.
Sublethal effects in the aquatic snail Melanoides tuberculata were examined during exposure to whole cell extracts of Cylindrospermopsis raciborskii and live C. raciborskii cultures, containing varying concentrations of algal cells, cellular debris, and the blue-green algal toxin, cylindrospermopsin (CYN). Exposure to whole cell extracts or live algal cultures did not result in significant changes in adult snail behaviour or relative growth rates. However, clear changes in the number of hatchlings released from parent snails were observed. Exposure to whole cell extracts containing ≥200 μg L−1 extracellular CYN resulted in an increase in the number of hatchlings. In contrast, decreases in hatchling number were recorded from treatments containing ≥200 μg L−1 CYN during exposures to live C. raciborskii cultures, compared with controls. This suggests that CYN may be more toxic to grazing invertebrates if present in the intracellular form. Since CYN is a protein synthesis inhibitor, it is possible that CYN may be especially toxic to rapidly developing tissues such as snail embryos. This may also explain the lack of effects observed in adult snails.  相似文献   

20.
Pavia  Henrik  Toth  Gunilla B. 《Hydrobiologia》2000,440(1-3):299-305
Phlorotannins, C-based defence compounds in brown seaweeds, show a high degree of spatial and temporal variation within seaweed species. One important model explaining this variation is the Carbon Nutrient Balance Model (CNBM), which states that the relative supply of carbon and limiting nutrients will determine the level of defence compounds in plants. Nitrogen is often considered to be the limiting nutrient for marine macroalgal growth and the CNBM thus predicts that when the carbon:nitrogen ratio is high, photosynthetically fixed carbon will be allocated to production of phlorotannins. In the present study, we evaluated the effects of light (i.e. carbon) and nitrogen on the phlorotannin content of two intertidal brown seaweeds, Ascophyllum nodosum and Fucus vesiculosus. This was done in an observational field study, as well as in a manipulative experiment where plants from habitats with different light regimes were subjected to different nitrogen and light treatments, and their phlorotannin content was measured after 14 days. The results showed that there was a negative relationship between tissue nitrogen and phlorotannin content in natural populations of F. vesiculosus, but not in A. nodosum. In the short term, the phlorotannin content in both algal species was not affected by changes in nitrogen availability. Exposure to sunlight had a positive effect on the phlorotannin content in natural populations of both algal species but, in the manipulative experiment, only F. vesiculosus showed a rapid response to changes in light intensities. Plants subjected to sunlight contained higher phlorotannin content than shaded plants. In conclusion, the results imply that nitrogen availability explains some of the natural variation in the phlorotannin content of F. vesiculosus, but the light environment has greater importance than nitrogen availability in predicting the phlorotannin content of each species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号