首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The population structure of Plasmodium vivax remains elusive. The markers of choice for large-scale population genetic studies of eukaryotes, short tandem repeats known as microsatellites, have been recently reported to be less polymorphic in P. vivax. Here we investigate the microsatellite diversity and geographic structure in P. vivax, at both local and global levels, using 14 new markers consisting of tri- or tetranucleotide repeats. The local-level analysis, which involved 50 field isolates from Sri Lanka, revealed unexpectedly high diversity (average virtual heterozygosity [H(E)], 0.807) and significant multilocus linkage disequilibrium in this region of low malaria endemicity. Multiple-clone infections occurred in 60% of isolates sampled in 2005. The global-level analysis of field isolates or monkey-adapted strains identified 150 unique haplotypes among 164 parasites from four continents. Individual P. vivax isolates could not be unambiguously assigned to geographic populations. For example, we found relatively low divergence among parasites from Central America, Africa, Southeast Asia and Oceania, but substantial differentiation between parasites from the same continent (South Asia and Southeast Asia) or even from the same country (Brazil). Parasite relapses, which may extend the duration of P. vivax carriage in humans, are suggested to facilitate the spread of strains across continents, breaking down any pre-existing geographic structure.  相似文献   

2.
Plasmodium vivax, the second most prevalent of the human malaria parasites, is estimated to affect 75 million people annually. It is very rare, however, in west and central Africa, due to the high prevalence of the Duffy negative phenotype in the human population. Due to its rarity in Africa, previous studies on the phylogeny of world-wide P. vivax have suffered from insufficient samples of African parasites. Here we compare the mitochondrial sequence diversity of parasites from Africa with those from other areas of the world, in order to investigate the origin of present-day African P. vivax. Mitochondrial genome sequencing revealed relatively little polymorphism within the African population compared to parasites from the rest of the world. This, combined with sequence similarity with parasites from India, suggests that the present day African P. vivax population in humans may have been introduced relatively recently from the Indian subcontinent. Haplotype network analysis also raises the possibility that parasites currently found in Africa and South America may be the closest extant relatives of the ancestors of the current world population. Lines of evidence are adduced that this ancestral population may be from an ancient stock of P. vivax in Africa.  相似文献   

3.
While gene flow between distantly related populations is increasingly recognized as a potentially important source of adaptive genetic variation for humans, fully characterized examples are rare. In addition, the role that natural selection for resistance to vivax malaria may have played in the extreme distribution of the protective Duffy-null allele, which is nearly completely fixed in mainland sub-Saharan Africa and absent elsewhere, is controversial. We address both these issues by investigating the evolution of the Duffy-null allele in the Malagasy, a recently admixed population with major ancestry components from both East Asia and mainland sub-Saharan Africa. We used genome-wide genetic data and extensive computer simulations to show that the high frequency of the Duffy-null allele in Madagascar can only be explained in the absence of positive natural selection under extreme demographic scenarios involving high genetic drift. However, the observed genomic single nucleotide polymorphism diversity in the Malagasy is incompatible with such extreme demographic scenarios, indicating that positive selection for the Duffy-null allele best explains the high frequency of the allele in Madagascar. We estimate the selection coefficient to be 0.066. Because vivax malaria is endemic to Madagascar, this result supports the hypothesis that malaria resistance drove fixation of the Duffy-null allele in mainland sub-Saharan Africa.  相似文献   

4.
OBJECTIVES--To identify which British residents travelling abroad are at greatest risk of malaria infection, and to determine the efficacy of malaria chemoprophylaxis for preventing P falciparum infections in tropical Africa. DESIGN--Prospective cohort study (case-base linkage) with routine national surveillance systems. Denominators (base population) were obtained from monitoring a random sample of returning British travellers with the international passenger survey. Numerators (cases) were obtained from reports of malaria infections in British residents, through the Malaria Reference Laboratory network. SETTING--International passenger survey conducted at passport control of international airports in Britain. Malaria reports received nationally were collated centrally in London. SUBJECTS--2948 British residents (0.2%) returning to Britain in 1987 randomly selected and questioned and 1052 British residents with microscopically confirmed malaria infections in 1987, whose case reports were reviewed and on whom additional data were collected by postal survey. MAIN OUTCOME MEASURES--Annual incidence subdivided by categories of risk. Chemoprophylactic efficacy for east and west Africa by principal regimens and compliance. RESULTS--Annual rates of reported infection per 100,000 travellers to Oceania were 4100; to west and east Africa were 375 and 172 respectively; to Latin America, the Far East, and the Middle East were 12, 2, and 1 respectively. Immigrants visiting friends and relatives in Ghana and Nigeria were at greatest risk (1303 and 952 per 100,000 respectively) in west Africa. Business travellers to Kenya experienced the highest attack rates in east Africa (465 per 100,000). Age-sex specific attack rates varied by region. No prophylaxis was reported to have been used by 23% of British visitors to west Africa, 17% to east Africa, 46% to central or southern Africa, and 58% visiting south Asia. The efficacy of chloroquine plus proguanil against P falciparum infection was 73% and 54% in west and east Africa respectively. Lower values were obtained for chloroquine alone and proguanil alone. The efficacy of Maloprim (pyrimethamine-dapsone) was 61% in west Africa, but only 9% in east Africa. Visitors to west Africa who did not comply with their chemoprophylactic regimen were at a 2.5-fold higher risk of infection than fully compliant users. Non-compliant visitors to east Africa had similar rates of infection as non-drug users. CONCLUSIONS--In 1987 chloroquine plus proguanil was the preferred chemoprophylactic regimen for P falciparum infection in Africa; antimalarial drugs must be taken regularly to be effective.  相似文献   

5.
Malaria kills approximately 1-2 million people every year, mostly in sub-Saharan Africa and in Asia. These deaths are at the most severe end of a scale of pathologies affecting approximately 500 million people per year. Much of the pathogenesis of malaria is caused by inappropriate or excessive immune responses mounted by the body to eliminate malaria parasites. In this review, we examine the evidence that immunopathology is responsible for malaria disease in the context of what we have learnt from animal models of malaria. In particular, we look in detail at the processes involved in endothelial cell damage leading to syndromes such as cerebral malaria, as well as generalised systemic manifestations such as anaemia, cachexia and problems with thermoregulation of the body. We also consider malaria in light of the variation of the severity of disease observed among people, and discuss the contribution from animal models to our understanding of this variation. Finally, we discuss some of the implications of immunopathology, and of host and parasite genetic variation, for the design and implementation of anti-malarial vaccines.  相似文献   

6.
It is widely believed that human malaria parasites infect only man as a natural host. However, earlier morphological observations suggest that great apes are likely to be natural reservoirs as well. To identify malaria parasites in great apes, we screened 60 chimpanzees imported into Japan. Using the sequences of small subunit rRNA and the mitochondrial genome, we identified infection of Plasmodium malariae, a human malaria parasite, in two chimpanzees that were imported about thirty years ago. The chimpanzees have been asymptomatic to the present. In Japan, indigenous malaria disappeared more than fifty years ago; and thus, it is most likely inferred that the chimpanzees were infected in Africa, and P. malariae isolates were brought into Japan from Africa with their hosts, suggesting persistence of parasites at low level for thirty years. Such a long term latent infection is a unique feature of P. malariae infection in humans. To our knowledge, this is the first to report P. malariae infection in chimpanzees and a human malaria parasite from nonhuman primates imported to a nonendemic country.  相似文献   

7.
Of the four Plasmodium species that routinely cause malaria in humans, Plasmodium falciparum is responsible for the majority of malaria mortality and consequently gets most of the headlines. Outside Africa, however, more malaria cases are caused by its distant cousin Plasmodium vivax, resulting in a daunting morbidity and economic burden for countries across Asia and the Americas. Plasmodium life cycles are complex, but the symptoms and pathology of malaria occur during the blood phase, when merozoites recognize and invade erythrocytes, initiating a developmental programme that culminates in lysis of the erythrocyte and release of multiple daughter merozoites. P. vivax merozoites are dependent on a single host cell receptor for erythrocyte invasion, the Duffy antigen receptor for chemokines, and humans that do not express this receptor on the surface of their erythrocytes are immune to P. vivax infection. This essential receptor-ligand interaction is addressed from both the host and parasite side in two papers in this issue of Molecular Microbiology, with important implications for plans to develop a P. vivax vaccine.  相似文献   

8.
Over the past 35 years, the incidence of malaria has increased 2-3-fold. At present, it affects 300-500 million people and causes about 1 million deaths, primarily in Africa. The continuing upsurge has come from a coincidence of drug-resistant parasites, insecticide-resistant mosquitoes, global climate change and continuing poverty and political instability. An analogous rapid increase in malaria might have taken place about 10,000 years ago. Patterns of genetic variation in mitochondrial DNA support this model, but variation in nuclear genes gives an ambiguous message. Resolving these discrepancies has implications for the evolution of drug resistance and vaccine evasion.  相似文献   

9.

Background and Aims

Subfamily Hyacinthoideae (Hyacinthaceae) comprises more than 400 species. Members are distributed in sub-Saharan Africa, Madagascar, India, eastern Asia, the Mediterranean region and Eurasia. Hyacinthoideae, like many other plant lineages, show disjunct distribution patterns. The aim of this study was to reconstruct the biogeographical history of Hyacinthoideae based on phylogenetic analyses, to find the possible ancestral range of Hyacinthoideae and to identify factors responsible for the current disjunct distribution pattern.

Methods

Parsimony and Bayesian approaches were applied to obtain phylogenetic trees, based on sequences of the trnL-F region. Biogeographical inferences were obtained by applying statistical dispersal-vicariance analysis (S-DIVA) and Bayesian binary MCMC (BBM) analysis implemented in RASP (Reconstruct Ancestral State in Phylogenies).

Key Results

S-DIVA and BBM analyses suggest that the Hyacinthoideae clade seem to have originated in sub-Saharan Africa. Dispersal and vicariance played vital roles in creating the disjunct distribution pattern. Results also suggest an early dispersal to the Mediterranean region, and thus the northward route (from sub-Saharan Africa to Mediterranean) of dispersal is plausible for members of subfamily Hyacinthoideae.

Conclusions

Biogeographical analyses reveal that subfamily Hyacinthoideae has originated in sub-Saharan Africa. S-DIVA indicates an early dispersal event to the Mediterranean region followed by a vicariance event, which resulted in Hyacintheae and Massonieae tribes. By contrast, BBM analysis favours dispersal to the Mediterranean region, eastern Asia and Europe. Biogeographical analysis suggests that sub-Saharan Africa and the Mediterranean region have played vital roles as centres of diversification and radiation within subfamily Hyacinthoideae. In this bimodal distribution pattern, sub-Saharan Africa is the primary centre of diversity and the Mediterranean region is the secondary centre of diversity. Sub-Saharan Africa was the source area for radiation toward Madagascar, the Mediterranean region and India. Radiations occurred from the Mediterranean region to eastern Asia, Europe, western Asia and India.  相似文献   

10.
The ancestors of present-day man (Homo sapiens sapiens) appeared in East Africa some three and a half million years ago (Australopithecs), and then migrated to Europe, Asia, and later to the Americas, thus beginning the differentiation process. The passage from nomadic to sedentary life took place in the Middle East in around 8000 BC. Wars, spontaneous migrations and forced migrations (slave trade) led to enormous mixtures of populations in Europe and Africa and favoured the spread of numerous parasitic diseases with specific strains according to geographic area. The three human plasmodia (Plasmodium falciparum, P. vivax, and P. malariae) were imported from Africa into the Mediterranean region with the first human migrations, but it was the Neolithic revolution (sedentarisation, irrigation, population increase) which brought about actual foci for malaria. The reservoir for Leishmania infantum and L. donovani--the dog--has been domesticated for thousands of years. Wild rodents as reservoirs of L. major have also long been in contact with man and probably were imported from tropical Africa across the Sahara. L. tropica, by contrast, followed the migrations of man, its only reservoir. L. infantum and L. donovani spread with man and his dogs from West Africa. Likewise, for thousands of years, the dog has played an important role in the spread and the endemic character of hydatidosis through sheep (in Europe and North Africa) and dromadary (in the Sahara and North Africa). Schistosoma haematobium and S. mansoni have existed since prehistoric times in populations living in or passing through the Sahara. These populations then transported them to countries of Northern Africa where the specific, intermediary hosts were already present. Madagascar was inhabited by populations of Indonesian origin who imported lymphatic filariosis across the Indian Ocean (possibly of African origin since the Indonesian sailors had spent time on the African coast before reaching Madagascar). Migrants coming from Africa and Arabia brought with them the two African forms of bilharziosis: S. haematobium and S. mansoni.  相似文献   

11.
North African populations are distinct from sub-Saharan Africans based on cultural, linguistic, and phenotypic attributes; however, the time and the extent of genetic divergence between populations north and south of the Sahara remain poorly understood. Here, we interrogate the multilayered history of North Africa by characterizing the effect of hypothesized migrations from the Near East, Europe, and sub-Saharan Africa on current genetic diversity. We present dense, genome-wide SNP genotyping array data (730,000 sites) from seven North African populations, spanning from Egypt to Morocco, and one Spanish population. We identify a gradient of likely autochthonous Maghrebi ancestry that increases from east to west across northern Africa; this ancestry is likely derived from "back-to-Africa" gene flow more than 12,000 years ago (ya), prior to the Holocene. The indigenous North African ancestry is more frequent in populations with historical Berber ethnicity. In most North African populations we also see substantial shared ancestry with the Near East, and to a lesser extent sub-Saharan Africa and Europe. To estimate the time of migration from sub-Saharan populations into North Africa, we implement a maximum likelihood dating method based on the distribution of migrant tracts. In order to first identify migrant tracts, we assign local ancestry to haplotypes using a novel, principal component-based analysis of three ancestral populations. We estimate that a migration of western African origin into Morocco began about 40 generations ago (approximately 1,200 ya); a migration of individuals with Nilotic ancestry into Egypt occurred about 25 generations ago (approximately 750 ya). Our genomic data reveal an extraordinarily complex history of migrations, involving at least five ancestral populations, into North Africa.  相似文献   

12.
Plasmodium vivax is considered to be rare in the predominantly Duffy negative populations of Sub-Saharan Africa, as this red blood cell surface antigen is essential for invasion by the parasite. However, despite only very few reports of molecularly confirmed P. vivax from tropical Africa, serological evidence indicated that 13% of the persons sampled in Congo had been exposed to P. vivax. We identified P. vivax by microscopy in 8 smears from Ugandan pregnant women who had been enrolled in a longitudinal study of malaria in pregnancy. A nested polymerase chain reaction (PCR) protocol was used to detect and identify the Plasmodium parasites present. PCR analysis confirmed the presence of P. vivax for three of the women and analysis of all available samples from these women revealed clinically silent chronic low-grade vivax infections for two of them. The parasites in one woman carried pyrimethamine resistance-associated double non-synonymous mutations in the P. vivax dihydrofolate reductase gene. The three women found infected with P. vivax were Duffy positive as were nine of 68 women randomly selected from the cohort. The data presented from these three case reports is consistent with stable transmission of malaria in a predominantly Duffy negative African population. Given the substantial morbidity associated with vivax infection in non-African endemic areas, it will be important to investigate whether the distribution and prevalence of P. vivax have been underestimated in Sub-Saharan Africa. This is particularly important in the context of the drive to eliminate malaria and its morbidity.  相似文献   

13.
We study data on variation in 52 worldwide populations at 377 autosomal short tandem repeat loci, to infer a demographic history of human populations. Variation at di-, tri-, and tetranucleotide repeat loci is distributed differently, although each class of markers exhibits a decrease of within-population genetic variation in the following order: sub-Saharan Africa, Eurasia, East Asia, Oceania, and America. There is a similar decrease in the frequency of private alleles. With multidimensional scaling, populations belonging to the same major geographic region cluster together, and some regions permit a finer resolution of populations. When a stepwise mutation model is used, a population tree based on TD estimates of divergence time suggests that the branches leading to the present sub-Saharan African populations of hunter-gatherers were the first to diverge from a common ancestral population (approximately 71-142 thousand years ago). The branches corresponding to sub-Saharan African farming populations and those that left Africa diverge next, with subsequent splits of branches for Eurasia, Oceania, East Asia, and America. African hunter-gatherer populations and populations of Oceania and America exhibit no statistically significant signature of growth. The features of population subdivision and growth are discussed in the context of the ancient expansion of modern humans.  相似文献   

14.
Malaria, a disease that infects 300 million people throughout the world and kills more than a million people, mostly children in sub-Saharan Africa, involves three organisms. The human host where the disease is seen, the protozoan Plasmodium parasite and the mosquito. The parasite is transmitted to humans only by the mosquito vector, which in sub-Saharan regions is generally Anopheles gambiae. Malaria along with AIDS and tuberculosis are killing large numbers of people and crippling the economies of the affected African countries. Though an enormous effort has been made during the past twenty years to develop vaccines to block malaria in humans, the incidence of the disease is increasing in Africa. The reasons for this development include a breakdown in mosquito control related to increased insecticide resistance, as well as increased parasite resistance to antimalarial drugs. It is clear that new methods of Anopheles mosquito control are needed to ameliorate the medical and economic situation in sub-Saharan Africa. As a step toward new malaria control methods, the international Plasmodium falciparum and Anopheles gambiae consortia have carried out the full genome sequencing of the most deadly malaria parasite and the most efficient vector. These, combined with the human genome sequence, provide the genomic infrastructure for a better understanding of the complex interactions within the malaria triad. This essay discusses possible strategies as to how the Anopheles genome can contribute to malaria control.  相似文献   

15.
A 3-kb region encompassing the beta-globin gene has been analyzed for allelic sequence polymorphism in nine populations from Africa, Asia, and Europe. A unique gene tree was constructed from 326 sequences of 349 in the total sample. New maximum-likelihood methods for analyzing gene trees on the basis of coalescence theory have been used. The most recent common ancestor of the beta-globin gene tree is a sequence found only in Africa and estimated to have arisen approximately 800,000 years ago. There is no evidence for an exponential expansion out of a bottlenecked founding population, and an effective population size of approximately 10,000 has been maintained. Modest differences in levels of beta-globin diversity between Africa and Asia are better explained by greater African effective population size than by greater time depth. There may have been a reduction of Asian effective population size in recent evolutionary history. Characteristically Asian ancestry is estimated to be older than 200,000 years, suggesting that the ancestral hominid population at this time was widely dispersed across Africa and Asia. Patterns of beta-globin diversity suggest extensive worldwide late Pleistocene gene flow and are not easily reconciled with a unidirectional migration out of Africa 100,000 years ago and total replacement of archaic populations in Asia.  相似文献   

16.
Plasmodium knowlesi, a malaria parasite originally thought to be restricted to macaques in Southeast Asia, has recently been recognized as a significant cause of human malaria. Unlike the benign and morphologically similar P. malariae, these parasites can lead to fatal infections. Malaria parasites, including P. knowlesi, have not yet been detected in macaques of the Kapit Division of Malaysian Borneo, where the majority of human knowlesi malaria cases have been reported. In order to extend our understanding of the epidemiology and evolutionary history of P. knowlesi, we examined 108 wild macaques for malaria parasites and sequenced the circumsporozoite protein (csp) gene and mitochondrial (mt) DNA of P. knowlesi isolates derived from macaques and humans. We detected five species of Plasmodium (P. knowlesi, P. inui, P. cynomolgi, P. fieldi and P. coatneyi) in the long-tailed and pig-tailed macaques, and an extremely high prevalence of P. inui and P. knowlesi. Macaques had a higher number of P. knowlesi genotypes per infection than humans, and some diverse alleles of the P. knowlesi csp gene and certain mtDNA haplotypes were shared between both hosts. Analyses of DNA sequence data indicate that there are no mtDNA lineages associated exclusively with either host. Furthermore, our analyses of the mtDNA data reveal that P. knowlesi is derived from an ancestral parasite population that existed prior to human settlement in Southeast Asia, and underwent significant population expansion approximately 30,000-40,000 years ago. Our results indicate that human infections with P. knowlesi are not newly emergent in Southeast Asia and that knowlesi malaria is primarily a zoonosis with wild macaques as the reservoir hosts. However, ongoing ecological changes resulting from deforestation, with an associated increase in the human population, could enable this pathogenic species of Plasmodium to switch to humans as the preferred host.  相似文献   

17.
Human malaria caused by Plasmodium vivax infection (vivax malaria) is a major global health issue. It is the most geographically widespread form of the disease, accounting for 7 million annual clinical cases, the majority of cases in America and Asia and an estimation of over 2.5 billion people living under risk of infection. The general perception towards vivax malaria has shifted recently, following a series of reports, from being viewed as a benign infection to the recognition of its potential for more severe manifestations including fatal cases. However, the underlying pathogenic mechanisms of vivax malaria remain largely unresolved. Asymptomatic carriers of malaria parasites are a major challenge for malaria elimination. In the case of P. vivax, it has been widely accepted that the only source of cryptic parasites is hypnozoite dormant stages. Here, we will review new evidence indicating that cryptic erythrocytic niches outside the liver, in particular in the spleen and bone marrow, can represent a major source of asymptomatic infections. The origin of such parasites is being controversial and many key gaps in the knowledge of such infections remain unanswered. Yet, as parasites in these niches seem to be sheltered from immune response and antimalarial drugs, research on this area should be reinforced if elimination of malaria is to be achieved. Last, we will glimpse into the role of reticulocyte-derived exosomes, extracellular vesicles of endocytic origin, as intercellular communicators likely involved in the formation of such cryptic erythrocytic infections.  相似文献   

18.
The timing and nature of the arrival and the subsequent expansion of modern humans into eastern Asia remains controversial. Using Y-chromosome biallelic markers, we investigated the ancient human-migration patterns in eastern Asia. Our data indicate that southern populations in eastern Asia are much more polymorphic than northern populations, which have only a subset of the southern haplotypes. This pattern indicates that the first settlement of modern humans in eastern Asia occurred in mainland Southeast Asia during the last Ice Age, coinciding with the absence of human fossils in eastern Asia, 50,000-100,000 years ago. After the initial peopling, a great northward migration extended into northern China and Siberia.  相似文献   

19.
Each year, malaria parasites cause more than 500 million infections and 0.5-3 million deaths worldwide, mostly among children under five living in sub-Saharan Africa. In contrast with several viral and bacterial pathogens, which elicit long-lived immunity after a primary infection, these parasites require several years of continuous exposure to confer partial, usually non-sterilizing immune protection. One of the main obstacles to the acquisition of antimalarial immunity is the high degree of antigenic diversity in potential target antigens, which enables parasites to evade immune responses elicited by past exposure to variant forms of the same antigen. Allelic polymorphism, the existence of genetically stable alternative forms of antigen-coding genes, originates from nucleotide replacement mutations and intragenic recombination. In addition, malaria parasites display antigenic variation, whereby a clonal lineage of parasites expresses successively alternate forms of an antigen without changes in genotype. This review focuses on molecular and evolutionary processes that promote allelic polymorphism and antigenic variation in natural malaria parasite populations and their implications for naturally acquired immunity and vaccine development.  相似文献   

20.
Rhoptries are cellular organelles localized at the apical pole of apicomplexan parasites. Their content is rich in lipids and proteins that are released during target cell invasion. Plasmodium falciparum rhoptry-associated protein 1 (RAP1) has been the most widely studied among this parasite species' rhoptry proteins and is considered to be a good anti-malarial vaccine candidate since it displays little polymorphism and induces antibodies in infected humans. Monoclonal antibodies directed against RAP1 are also able to inhibit target cell invasion in vitro and protection against P. falciparum experimental challenge is induced when non-human primates are immunized with this protein expressed in its recombinant form. This study describes identifying and characterizing RAP1 in Plasmodium vivax, the most widespread parasite species causing malaria in humans, producing more than 80 million infections yearly, mainly in Asia and Latin America. This new protein is encoded by a two-exon gene, is proteolytically processed in a similar manner to its falciparum homologue and, as observed by microscopy, the immunofluorescence pattern displayed is suggestive of its rhoptry localization. Further studies evaluating P. vivax RAP1 protective efficacy in non-human primates should be carried out taking into account the relevance that its P. falciparum homologue has as an anti-malarial vaccine candidate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号