首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The carbon dioxide compensation point () was found to vary whenmeasured at increasing light intensities, in plants grown ata constant illumination. This response varied with the physiologicalage of the leaf. The also varied when measured at a constantillumination, with plants grown at different light intensities.The activity of the enzymes RuDP carboxylase, nitrate reductase,glycollate oxidase, and catalase was found to be influencedby the light intensity at which the plants were grown. A goodcorrelation was obtained between the measured and the ratioof nitrate reductase: RuDP carboxylase activities, suggestingthat nitrate reductase may be used as an indirect measure ofphotorespiration in plants receiving nitrate as the sole nitrogensource.  相似文献   

2.
The carbon dioxide compensation point () was found to vary underconstant environmental conditions, as the duration of lighttreatment increased, and also with leaf age. The activitiesof RuDP carboxylase, catalase, glycollate oxidase, and nitratereductase were found to vary with duration of the light treatmentduring the course of a single day. RuDP carboxylase activity was found to exhibit a rhythmic fluctuationof activity with age, which had a frequency common to all theleaves examined. The activities of RuDP carboxylase, glycollateoxidase, and nitrate reductase in the leaves was found to increasewith ascending leaf position; the activities generally decreasedwith leaf age. The ratio of nitrate reductase activity to RuDPcarboxylase activity was found to give an excellent correlationwith measured T, and the value of nitrate reductase as an indirectmeasure of photorespiration and the relationship between nitrogenmetabolism and photorespiration is discussed.  相似文献   

3.
Increasing the nitrate concentration in the nutrient media wasfound not to influence the carbon dioxide compensation point(). However, a higher value of was obtained in the presenceof ammonia nitrogen in the nutrient media. Increasing the nitrateconcentration in the media gave a higher activity of RuDP carboxylase,nitrate reductase, glycollate oxidase, and catalase. Similarlythe plants grown in ammonia nitrogen showed higher activitiesof RuDP carboxylase and catalase, and a considerably higherglycollate oxidase activity.  相似文献   

4.
The activities of phosphoenolpyruvate (PEP) carboxylase andribulose-1, 5-bisphosphate (RuDP) carboxylase have been determinedin the developing pod walls of six genotypes of Pisum sativum.Genotypes were chosen which varied in pod characters such aschlorophyll content and tissue morphology, which it was hopedwould be associated with variation in carboxylase levels. Whilst both enzymes were detected in all genotypes, the levelsof activity varied considerably with pod type and with age.In general RuDP carboxylase activity correlated with chlorophyllconcentration, and yellow podded types had considerably lessactivity than green types. The yellow podded genotypes, however,contained significantly higher levels of PEP carboxylase which,in terms of total carboxylase activity, compensated for thelower RuDP carboxylase levels. The activities of both enzymes were determined within the endocarpand within the mesocarp plus exocarp, using 16-day-old pods.All genotypes showed an enrichment for PEP carboxylase in theendocarp and all but one genotype showed a similar enrichmentfor RuDP carboxylase activity in this layer. The role of the carboxylase enzymes within the pod wall is discussedand it is suggested that their main function may be to maintainan appropriate level of CO2 within the pod cavity as well asrecycling carbon to the developing seeds. Pisum savitum L., pea, pods, carboxylase levels, genetic variation  相似文献   

5.
Ribulose-1,5-diphosphate carboxylase was purified fifteenfold from Rhodospirillum rubrum grown autotrophically under H2 and CO2. There was RuDP oxygenase activity associated with the carboxylase. The oxygenase had maximal activity at pH 9.4. Although these bacterial RuDP oxygenase and carboxylase activities were cold labile, activity could not be restored by treatment at 50° in the presence of Mg++ and a sulfhydryl reagent, in contrast to results with the enzyme from eukaryotes.  相似文献   

6.
After growth on various carbon sources, sonic extracts of Hydrogenomonas facilis contained ribulosediphosphate (RuDP) carboxylase and phosphoribulokinase (Ru5-P kinase). After very short sonic treatment, a reductive adenosine triphosphate (ATP)-dependent incorporation of (14)CO(2) was also detectable. Reduced nicotinamide adenine dinucleotide (NADH(2)) served as reductant 30-fold more effectively than reduced nicotinamide adenine dinucleotide phosphate (NADPH(2)). Adenosine 5'-phosphate (AMP) and adenosine 5'-pyrophosphate (ADP) inhibited Ru5-P kinase and NADH(2)-, ATP-dependent CO(2) fixation. The levels and duration of CO(2) fixation suggested that it is a cyclic process. The requirement of reduced pyridine nucleotide and ATP and the sensitivity of fixation to AMP and ADP support the conjecture that it occurs via the Calvin cycle. After thorough study of variables affecting catalysis, specific activities (millimicromoles of substrate disappearing per milligram of protein) at 30 C were determined for RuDP carboxylase (C), Ru5-P kinase (K) and ATP-, NADH(2)- dependent CO(2) fixation (CO(2) F) after growth autotrophically on fructose, glucose, ribose, glutamate, lactate, succinate, and acetate. Values for these growth modes were, respectively-for C: 67.3, 51.1, 51.4, 24.6, 2.05, 10.2, 2.25, 1.4; for K: 24.7, 24.0, 23.2, 14.2, 12.8, 12.9, 13.4, 2.8; and for CO(2) F: 4.54, 4.83, 3.10, 2.87, 0.85, 1.51, 0.24, 0.41. The qualitative parallel between values for RuDP carboxylase and CO(2) fixation suggests that one major control point in fixation is the step catalyzed by RuDP carboxylase.  相似文献   

7.
1. Cell-free extracts of the photosynthetic bacterium Chlorobium thiosulfatophilum, strains 8327 and Tassajara, were assayed for ribulose 1,5-diphosphate (RuDP) carboxylase and phosphoribulokinase-the two enzymes peculiar to the reductive pentose phosphate cycle. 2. RuDP carboxylase was consistently absent in strain 8327. The Tassajara strain showed a low RuDP-dependent CO2 fixation activity that was somewhat higher in cells following transatlantic air shipment than in freshly grown cells. The stability and behaviour of this activity in sucrose density gradients were similar to those described by other workers. 3. The radioactive carboxylation products formed in the presence of RuDP by enzyme preparations from the Tassajara strain did not include 3-phosphoglycerate-the known product of the RuDP carboxylase reaction, but instead consisted of the unrelated acids glutamate, aspartate and malate. 4. Phosphoribulokinase was absent in all preparations of the two Chlorobium strains tested. By contrast, phosphoribulokinase as well as RuDP carboxylase were readily demonstrated in preparations from pea chloroplasts and the photosynthetic bacterium Rhodospirillum rubrum. 5. It is concluded that C. thiosulfatophilum appears to lack RuDP carboxylase, phosphoribulokinase, and hence, the reductive pentose phosphate cycle.Support of a J. S. Guggenheim Fellowship is gratefully acknowledged  相似文献   

8.
The activities of several enzymes, including ribulose-1,5-diphosphate (RuDP) carboxylase (EC 4.1.1.39) and phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) were measured as a function of leaf age in Z. mays. Mature leaf tissue had a RuDP-carboxylase activity of 296.7 mol CO2 g-1 fresh weight h-1 and a PEP-carboxylase activity of 660.6 mol CO2 g-1 fresh weight h-1. In young corn leaves the activity of the two enzymes was 11 and 29%, respectively, of the mature leaves. In senescent leaf tissue, RuDP carboxylase activity declined more rapidly than that of any of the other enzymes assayed. On a relative basis the activities of NADP malic enzyme (EC 1.1.1.40), aspartate (EC 2.6.1.1) and alanine aminotransferase (EC 2.6.1.2), and NAD malate dehydrogenase (EC 1.1.1.37) exceeded those of both PEP and RuDP carboxylase in young and senescent leaf tissue. Pulse-chase labeling experiments with mature and senescent leaf tissue show that the predominant C4 acid differs between the two leaf ages. Labeling of alanine in senescent tissue never exceeded 4% of the total 14C remaining during the chase period, while in mature leaf tissue alanine accounted for 20% of the total after 60 s in 12CO2. The activity of RuDP carboxylase during leaf ontogeny in Z. mays parallels the development of the activity of this enzyme in C3 plants.Abbreviations RuDP ribulose-1,5-diphosphate - PEP phosphoenol pyruvate - PGA 3-phosphoglycerate  相似文献   

9.
RuDP carboxylase was active mainly in chloroplasts and PEP carboxylaseactive principally outside of chloroplasts in Chlorella protothecoides. During the process of chloroplast degeneration in algal cellsinduced by addition of glucose, the activity of RuDP carboxylasesignificantly decreased, whereas the activities of PEP-carboxylaseand -carboxykinase markedly increased. During the process of chloroplast regeneration in "glucose-bleached"algal cells, which contained no detectable amounts of FractionI protein and showed only traces of RuDP carboxylase activity,a light-dependent development of RuDP carboxylase proceededalmost in parallel with the light-induced formation of chlorophyll.The activities of PEP-carboxylase and -carboxykinase, whichwere negligibly low in glucose-bleached cells, developed independentlyof light. Both chloramphenicol and cycloheximide severely inhibited thedevelopment of RuDP carboxylase activity. A relatively low concentrationof glucose also caused a significant suppression. Under theseconditions, chlorophyll formation was inhibited only slightlyby chloramphenicol and very strongly by cycloheximide and glucose. 1 Deceased, 11 June, 1972. (Received April 25, 1972; )  相似文献   

10.
The physiological and biochemical changes associated with and resulting in adaptation to both sub- and supra-optimal temperatures are presented for the thermophilic cyanophyte Synechococcus lividus Copeland. The optimum temperature for growth was 45 C. An increase in the optimum temperature of photosynthesis from 50 to 55 C was shown for cells grown at the supra-optimum temperature of 57 C; whereas, cells grown at the sub-optimal temperature of 35 C exhibited a decrease in the optimal temperature from 50 to 45 C for 14CO2 uptake. These changes in optimal temperatures are interpreted as adaptive. Associated with the 5 C increase in optimal temperature for photosynthesis was an increase in chlorophyll a, plastoquinone A, and activity of ribulose-1,5-diphosphate carboxylase (RuDP carboxylase). However, the increase in the temperature optimum for 57 C grown cells was associated with a reduced O2 yield correlated with a reduced ferricyanide photoreduction capacity. RuDP carboxylase activity decreased rapidly above 55 C. Therefore reduced rates above 55 C resulted from damage to ferricyanide reducing systems and reduced RuDP-carboxylase activity, whereas low photosynthesis rates at sub-optimal temperatures were probably due to rate limiting effect of low temperatures on RuDP carboxylase activity with no evidence of damage to ferricyanide photoreducing systems.  相似文献   

11.
Nitrate reductase, RuDP1 carboxylase, PEP carboxylase, and water-solubleproteins have been studied during the vegetative cycles of onesoft and one hard wheat cultivar. Nitrate reductase was similarin amount and in pattern of variation in both varieties, thevariations being related to the phenological state of the plant,because the seasonal trend was not in phase in the two varieties.The pattern of change in water-soluble proteins was significantlydifferent in the two cultivars, namely in the consistent declineshown by the upper leaves of soft wheat. RuDP carboxylase was almost identical in amount and absolutelyin phase between the two varieties, showing a dependence onseasonal factors, possibly through a photoperiodic effect. Thechanges in PEP carboxylase were similar in the two wheats andgenerally synchronous. The fluctuation in the RuDP carboxylase/PEPcarboxylase ratio was due primarily to the increase in RuDPcarboxvlase activity.  相似文献   

12.
Rao MV  Hale BA  Ormrod DP 《Plant physiology》1995,109(2):421-432
O3-induced changes in growth, oxidative damage to protein, and specific activities of certain antioxidant enzymes were investigated in wheat plants (Triticum aestivum L. cv Roblin) grown under ambient or high CO2. High CO2 enhanced shoot biomass of wheat plants, whereas O3 exposure decreased shoot biomass. The shoot biomass was relatively unaffected in plants grown under a combination of high CO2 and O3. O3 exposure under ambient CO2 decreased photosynthetic pigments, soluble proteins, and ribulose-1,5-bisphosphate carboxylase/oxygenase protein and enhanced oxidative damage to proteins, but these effects were not observed in plants exposed to O3 under high CO2. O3 exposure initially enhanced the specific activities of superoxide dismutase, peroxidase, glutathione reductase, and ascorbate peroxidase irrespective of growth in ambient or high CO2. However, the specific activities decreased in plants with prolonged exposure to O3 under ambient CO2 but not in plants exposed to O3 under high CO2. Native gels revealed preferential changes in the isoform composition of superoxide dismutase, peroxidases, and ascorbate peroxidase of plants grown under a combination of high CO2 and O3. Furthermore, growth under high CO2 and O3 led to the synthesis of one new isoform of glutathione reductase. This could explain why plants grown under a combination of high CO2 and O3 are capable of resisting O3-induced damage to growth and proteins compared to plants exposed to O3 under ambient CO2.  相似文献   

13.
A comparative study was made on features of the induced synthesisof RuDP carboxylase in three strains of R. spheroides with differentbiochemical properties. In strains Sb and Sa, which were able to grow under either light-anaerobicor dark-aerobic conditions, activities of RuDP carboxylase inthe light-grown cells were much higher than those in dark-growncells. The level of RuDP carboxylase activity in dark-growncells of the Sb strain (wild type strain) increased two to threetimes in the dark by incubating the heavy cell suspension underlow aeration, but, for a further increase in enzyme activity,a light-anaerobic condition was required. This is in contrastto the induced formation of bacteriochlorophyll which has beenshown to proceed actively in the dark as well as in the light.On the other hand, with dark-grown cells of the Sa strain, whichhad possible partial defects in the chlorophyll synthesis system,the induced synthesis of RuDP carboxylase under the light-anaerobiccondition was markedly retarded as compared to that with theSb strain. RuDP carboxylase formation was not induced in L-57(a colorless mutant) under any of these conditions. The induced formation of RuDP carboxylase, as well as of bacteriochlorophyll,under the light-anaerobic condition was considerably suppressedby hydroxyurea and mitomycin C. This suggests that the geneticcontrol systems of RuDP carboxylase synthesis may be closelyrelated with those for the formation of the photosynthetic apparatus. 1This work was supported in part by Public Health Research GrantAM 08016 from the National Institute of Arthritis and MetabolicDiseases, U.S.A. (G. K.). 2Present address: Laboratory of Radioisotope Experiment, TohokuUniversity School of Medicine, Sendai, Japan. (Received September 6, 1968; )  相似文献   

14.
RuDP carboxylase isolated from autotrophically grown cells ofphotosynthetic sulfur bacterium, Chromatium strain D, was partiallypurified by (NH4)2SO4 precipitation and Sephadex G-200 gel filtration.The molecular size of the bacterial RuDP carboxylase was foundto be large, analogous to that of the plant enzyme, in agreementwith results of previous workers. Sucrose density gradient centrifugationshowed the Srel to be approximately 18; the omission of Mg++caused no dissociation of the enzyme molecule in its subunits.Chromatium RuDP carboxylase showed similarities to the plantenzyme in some of its kinetic properties; (a) a shift of pHoptimum to the neutral side from the alkaline side on the additionof Mg++, (b) deviation of the substrate concentration (NaHCO3)-activityrelationship from the MICHAELIS formula and (c) a marked stimulativeeffect of Mg++. A unique sigmoidal saturation curve of the enzymeto RuDP, which had been detected in Rhodospirillum rubrum andRhodopseudomonas spheroides RuDP carboxylase in the absenceof Mg++, was not found. Another characteristic feature of ChromatiumRuDP carboxylase is its partial immunological response to therabbit anti-spinach RuDP carboxylase serum as detected by theinhibition of the carboxylation reaction due to the antibody-antigenreaction. 1Part X, Structure and Function of Chloroplast Proteins. Supportedin part by research grants from the Ministry of Education ofJapan (No. 8719) and USPHS (AM-10792-03) (Received July 4, 1969; )  相似文献   

15.
Robert A. Kennedy 《Planta》1976,128(2):149-154
Summary Ribulose diphosphate (RuDP) and (PEP) phosphoenolpyruvate carboxylase enzyme activities were studied in young, mature, and senescent Portulaca oleracea leaves. While the absolute amount of both the C3 (RuDP) and C4 (PEP) carboxylase is less in senescent leaves than in mature leaves, RuDP carboxylase activity is reduced to a lesser degree. In senescent leaves, PEP carboxylase activity equals 10% of that in mature tissue, but RuDP carboxylase is 27% of that in mature leaves. The same ontogenetic series was also used to determine photorespiration rates and responses to several gas treatments. Young and mature leaves were unaffected by changes in the light regime or oxygen concentrations, and exhibited typical C4-plant light/dark 14CO2 evolution ratios. Senescent leaves, on the other hand, have photorespiration ratios similar to C3-plants. In addition, senescent leaves were affected by minus CO2, 100% O2 and N2 in a manner expected of C3-plants, but not C4-plants. These results are discussed in terms of a relative increase in activity of the C3 cycle in later developmental stages in this plant.Abbreviation RuDP ribulose diphosphate - PEP phosphoenolpyruvate - PGA phosphoglyceric acid  相似文献   

16.
Ribulose 1,5-diphosphate (RuDP) carboxylase activity was examined in barley mutants deficient in chlorophyll, and the results were correlated with chlorophyll content and ultrastructure of these mutants. The mutants were induced by diethyl sulfate (dES) or ethyl methane sulfonate (EMS) in the inbred barley variety Himalaya. Essentially no RuDP carboxylase activity was found in 15 albino mutants tested, but mutants with reduced chlorophyll content show large variations in RuDP carboxylase activity. Three general groups of mutants can be recognized. One group has reduced chlorophyll content, but no reduction in RuDP carboxylase activity (dES 7, dES 19, and 28-3398). A second group shows reduced chlorophyll content and proportionally reduced RuDP carboxylase activity (EMS 11, dES 18, and yv), and a third group shows RuDP carboxylase activity reduced more than chlorophyll content (Unk 3, dES 1, Coast V, dES 17, and dES 9). Thus, no strict correlation between RuDP carboxylase activity and chlorophyll content was found in the mutants tested. A reduction in stroma density was observed in the mutants having greatly reduced RuDP carboxylase activity.Scientific Paper No. 3256, College of Agriculture, Washington State University, Pullman, Projects 1920 and 1916. Supported in part by funds provided for medical and biological research by Washington State Initiative Measure 171.  相似文献   

17.
Mesophyll cells and bundle sheath strands were isolated from Cyperus rotundus L. leaf sections infiltrated with a mixture of cellulase and pectinase followed by a gentle mortar and pestle grind. The leaf suspension was filtered through a filter assembly and mesophyll cells and bundle sheath strands were collected on 20-μm and 80-μm nylon nets, respectively. For the isolation of leaf epidermal strips longer leaf cross sections were incubated with the enzymes and gently ground as above. Loosely attached epidermal strips were peeled off with forceps. The upper epidermis, which lacks stomata, could be clearly distinguished from the lower epidermis which contains stomata. Microscopic evidence for identification and assessment of purity is provided for each isolated tissue.Enzymes related to the C4-dicarboxylic acid cycle such as phosphoenolpyruvate carboxylase, malate dehydrogenase (NADP+), pyruvate, Pi dikinase were found to be localized, ≥98%, in mesophyll cells. Enzymes related to operating the reductive pentose phosphate cycle such as RuDP carboxylase, phosphoribulose kinase, and malic enzyme are distributed, ≥99%, in bundle sheath strands. Other photosynthetic enzymes such as aspartate aminotransferase, pyrophosphatase, adenylate kinase, and glyceraldehyde 3-P dehydrogenase (NADP+) are quite active in both mesophyll and bundle sheath tissues.Enzymes involved in photorespiration such as RuDP oxygenase, catalase, glycolate oxidase, hydroxypyruvate reductase (NAD+), and phosphoglycolate phosphatase are preferentially localized, ≥84%, in bundle sheath strands.Nitrate and nitrite reductase can be found only in mesophyll cells, while glutamate dehydrogenase is present, ≥96%, in bundle sheath strands.Starch- and sucrose-synthesizing enzymes are about equally distributed between the mesophyll and bundle sheath tissues, except that the less active phosphorylase was found mainly in bundle sheath strands. Fructose-1,6-diP aldolase, which is a key enzyme in photosynthesis and glycolysis leading to sucrose and starch synthesis, is localized, ≥90%, in bundle sheath strands. The glycolytic enzymes, phosphoglyceromutase and enolase, have the highest activity in mesophyll cells, while the mitochondrial enzyme, cytochrome c oxidase, is more active in bundle sheath strands.The distribution of total nutsedge leaf chlorophyll, protein, and PEP carboxylase activity, using the resolved leaf components, is presented. 14CO2 Fixation experiments with the intact nutsedge leaves and isolated mesophyll and bundle sheath tissues show that complete C4 photosynthesis is compartmentalized into mesophyll CO2 fixation via PEP carboxylase and bundle sheath CO2 fixation via RuDP carboxylase. These results were used to support the proposed pathway of carbon assimilation in C4-dicarboxylic acid photosynthesis and to discuss the individual metabolic characteristics of intact mesophyll cells, bundle sheath cells, and epidermal tissues.  相似文献   

18.
The activities of carbon metabolism enzymes were determined in cellular extracts of the moderately thermophilic, chemolithotrophic, acidophilic bacteriumSulfobacillus thermosulfidooxidans subsp.asporogenes, strain 41, grown either at an atmospheric content of CO2 in the gas phase (autotrophically, heterotrophically, or mixotrophically) or autotrophically at a CO2 content increased to 5–10%. Regardless of the growth conditions, all TCA cycle enzymes (except for 2-oxoglutarate dehydrogenase), one glyoxylate bypass enzyme (malate synthase), and some carboxylases (ribulose bisphosphate carboxylase, pyruvate carboxylase, and phosphoenolpyruvate carboxylase) were detected in the cell-free extracts of strain 411. During autotrophic cultivation of strains 41 and 1269, the increase in the CO2 content of the supplied air to 5–10% resulted in the activation of growth and iron oxidation, a 20–30% increase in the cellular content of protein, enhanced activity of the key TCA enzymes (citrate synthase and aconitase), and, in strain 41, a decrease in the activity of carboxylases.  相似文献   

19.
Excised watermelon (Citrullus vulgaris Schrad.) cotyledons were grown in the dark in the presence of 0.1 mM benzyladenine (BA). Under these conditions reserve breakdown and organelle differentiation progress very slowly. Treatment with BA accelerates, breakdown of reserves and stimulates development of organelles. Electron micrographs of cells from treated cotyledons show a larger number of plastids with a more developed inner membrane system. The levels of plastid pigments and enzymes are increased while starch content is reduced. Glyoxysomal enzyme levels are increased by BA during the first three days of development and their decline is accelerated thereafter. Also the activity of hydroxypyruvate reductase (EC 1.1.1.81.), a peroxisomal enzyme, is increased, but this increase is not followed by a decay phase. In water controls, hydroxypyruvate reductase bands together with glyoxysomal enzymes after equilibrium centrifugation in a sucrose gradient. In treated cotyledons the equilibrium position of glyoxysomal enzymes is uchanged while that of hydroxypyruvate reductase is shifted to a lower density.Abbreviations BA benzyladenine - RuDP ribulose-1,5-diphosphate - HPR hydroxypyruvate reductase  相似文献   

20.
Sorghum and Pennisetum species are known to have predominantly C4 pathway. This pathway is associated with several other characteristics. These conclusions are based on studies confined largely to seedlings. A developmental study of PEP carboxylase and RuDP carboxylase in Sorghum bicolor and Pennisetum typhoides confirmed in seedlings the predominance of PEP carboxylase, high malate: 3-phorophoglycerate ratio and ‘Krantz’ anatomy. However, after flowering, RuDP carboxylase was predominant in the leaves of both Sorghum and Pennisetum. This observation was associated with higher 3-phosphoglycerate:malate ratio following 14CO2 fixation. The anatomy of the leaf remained unchanged and so was the chlorophyll a:b ratio. This change in system coincided with a slight fall in mean daily temperature. But in wheat RuDP carboxylase remained the predominant enzyme in spite of the rising mean daily temperature. Therefore, the change from C4 to C3 appears to be related more to the developmental stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号