首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene duplications and gene losses are major determinants of genome evolution and phenotypic diversity. The frequency of gene turnover (gene gains and gene losses combined) is known to vary between organisms. Comparative genomic analyses of gene families can highlight such variation; however, estimates of gene turnover may be biased when using highly fragmented genome assemblies resulting in poor gene annotations. Here, we address potential biases introduced by gene annotation errors in estimates of gene turnover frequencies in a dataset including both well‐annotated angiosperm genomes and the incomplete gene sets of four Pinaceae, including two pine species, Norway spruce and Douglas‐fir. We show that Pinaceae experienced higher gene turnover rates than angiosperm lineages lacking recent whole‐genome duplications. This finding is robust to both known major issues in Pinaceae gene sets: missing gene models and erroneous annotation of pseudogenes. A separate analysis limited to the four Pinaceae gene sets pointed to an accelerated gene turnover rate in pines compared with Norway spruce and Douglas‐fir. Our results indicate that gene turnover significantly contributes to genome variation and possibly to speciation in Pinaceae, particularly in pines. Moreover, these findings indicate that reliable estimates of gene turnover frequencies can be discerned in incomplete and potentially inaccurate gene sets. Because gymnosperms are known to exhibit low overall substitution rates compared with angiosperms, our results suggest that the rate of single‐base pair mutations is uncoupled from the rate of large DNA duplications and deletions associated with gene turnover in Pinaceae.  相似文献   

2.
基因捕捉及其在植物基因分离和功能基因组学上的应用   总被引:3,自引:0,他引:3  
基因捕捉是一种报告基因的随机整合技术。基因捕捉系统已成为分离基因、鉴定基因功能的重要手段。基因捕捉(gene traps)包括增强子捕捉(enhancer trap)、启动子捕捉(promoter trap)和基因捕捉(gene trap),通称为基因捕捉(gcne traps)。在增强子捕捉中,报告基因与一个基本启动子融合,这个启动子不能使报告基因表达,但可被临近的增强子激活。在启动子捕捉和基因捕捉中,报告基因的启动子被去除,融合基因只有以正确的方向插入到转录单元内才能表达。对基因捕捉系统的结构特征、构建方法、应用范围、研究现状和应用前景等作了系统论述,并对有关问题进行了讨论。  相似文献   

3.
We report results showing that several gamma gene promoter elements participate in the developmental control of gamma-globin genes. Four gamma gene constructs with 5' truncated at -141, -201, -382, and -730 of the A gamma gene promoter linked to a micro locus control region (microLCR) cassette were used for production of transgenic mice and analysis of gamma gene expression during development. Mice carrying a microLCR -141 A gamma construct displayed downregulation of gamma gene expression in the adult stage of development, indicating that the proximal promoter contains elements participating in gamma gene silencing. Mice carrying a microLCR -201 A gamma or a microLCR -382 A gamma construct displayed high gamma gene expression in the fetal stage of development and complete loss of gamma gene downregulation in the adult stage, suggesting that the -141 to -201 gamma gene sequence contains elements which upregulate gamma gene expression and are dominant over the negative element 3' to -141. Extension of the promoter to -730 resulted in reappearance of gamma gene downregulation, suggesting that the -382 to -730 sequences contain an adult-stage-specific silencer. gamma gene expression in the microLCR -201 A gamma and the microLCR -382 A gamma transgenic mice was copy number dependent. All the microLCR -730 A gamma transgenic mice expressed gamma mRNA; however, gamma gene expression was copy number independent, indicating that levels of gamma gene expression were modulated by the surrounding chromatin. Our results suggest that multiple elements participate in gamma gene silencing. The findings in the microLCR-201 A gamma and microLCR -382 A gamma transgenic mice are interpreted to indicate that the LCR interacts not only with the minimal gamma gene promoter but also with sequences of the upstream promoter. We postulate that gamma gene downregulation is achieved when the interaction between LCR and the upstream promoter is disturbed by the silencer located in the -382 to -730 region. We propose that gamma gene silencing is achieved by the combined effect of negative elements located 3' to -141, the negative element located between -382 and -730, and the competition by the beta gene promoter during the adult stage of development.  相似文献   

4.
Recent large-scale studies of evolutionary changes in gene expression among mammalian species have led to the proposal that gene expression divergence may be neutral with respect to organismic fitness. Here, we employ a comparative analysis of mammalian gene sequence divergence and gene expression divergence to test the hypothesis that the evolution of gene expression is predominantly neutral. Two models of neutral gene expression evolution are considered: 1-purely neutral evolution (i.e., no selective constraint) of gene expression levels and patterns and 2-neutral evolution accompanied by selective constraint. With respect to purely neutral evolution, levels of change in gene expression between human-mouse orthologs are correlated with levels of gene sequence divergence that are determined largely by purifying selection. In contrast, evolutionary changes of tissue-specific gene expression profiles do not show such a correlation with sequence divergence. However, divergence of both gene expression levels and profiles are significantly lower for orthologous human-mouse gene pairs than for pairs of randomly chosen human and mouse genes. These data clearly point to the action of selective constraint on gene expression divergence and are inconsistent with the purely neutral model; however, there is likely to be a neutral component in evolution of gene expression, particularly, in tissues where the expression of a given gene is low and functionally irrelevant. The model of neutral evolution with selective constraint predicts a regular, clock-like accumulation of gene expression divergence. However, relative rate tests of the divergence among human-mouse-rat orthologous gene sets reveal clock-like evolution for gene sequence divergence, and to a lesser extent for gene expression level divergence, but not for the divergence of tissue-specific gene expression profiles. Taken together, these results indicate that gene expression divergence is subject to the effects of purifying selective constraint and suggest that it might also be substantially influenced by positive Darwinian selection.  相似文献   

5.
6.
Gene targeting is the in situ manipulation of the sequence of an endogenous gene by the introduction of homologous exogenous DNA. Presently, the rate of gene targeting is too low for it to be broadly used in mammalian somatic cell genetics or to cure genetic diseases. Recently, it has been demonstrated that infection with recombinant adeno-associated virus (rAAV) vectors can mediate gene targeting in somatic cells, but the mechanism is unclear. This paper explores the balance between random integration and gene targeting with rAAV. Both random integration and spontaneous gene targeting are dependent on the multiplicity of infection (MOI) of rAAV. It has previously been shown that the introduction of a DNA double-stranded break (DSB) in a target gene can stimulate gene targeting by several-thousand-fold in somatic cells. Creation of a DSB stimulates the frequency of rAAV-mediated gene targeting by over 100-fold, suggesting that the mechanism of rAAV-mediated gene targeting involves, at least in part, the repair of DSBs by homologous recombination. Absolute gene targeting frequencies reach 0.8% with a dual vector system in which one rAAV vector provides a gene targeting substrate and a second vector expresses the nuclease that creates a DSB in the target gene. The frequencies of gene targeting that we achieved with relatively low MOIs suggest that combining rAAV vectors with DSBs is a promising strategy to broaden the application of gene targeting.  相似文献   

7.
8.
Gene flow is a fundamental evolutionary force in adaptation that is especially important to understand as humans are rapidly changing both the natural environment and natural levels of gene flow. Theory proposes a multifaceted role for gene flow in adaptation, but it focuses mainly on the disruptive effect that gene flow has on adaptation when selection is not strong enough to prevent the loss of locally adapted alleles. The role of gene flow in adaptation is now better understood due to the recent development of both genomic models of adaptive evolution and genomic techniques, which both point to the importance of genetic architecture in the origin and maintenance of adaptation with gene flow. In this review, we discuss three main topics on the genomics of adaptation with gene flow. First, we investigate selection on migration and gene flow. Second, we discuss the three potential sources of adaptive variation in relation to the role of gene flow in the origin of adaptation. Third, we explain how local adaptation is maintained despite gene flow: we provide a synthesis of recent genomic models of adaptation, discuss the genomic mechanisms and review empirical studies on the genomics of adaptation with gene flow. Despite predictions on the disruptive effect of gene flow in adaptation, an increasing number of studies show that gene flow can promote adaptation, that local adaptations can be maintained despite high gene flow, and that genetic architecture plays a fundamental role in the origin and maintenance of local adaptation with gene flow.  相似文献   

9.
The estimation of gene flow using gene frequency divergence information has become increasingly popular because of the difficulty involved in the direct determination of gene flow among populations. The present study examined allozyme gene frequencies in populations of eighteen aquatic invertebrate taxa at two sites in northern Canada. Gene frequencies at polymorpic loci were significantly different among 8–31 localized populations of all species at Igloolik and among 10–36 populations at Churchill confirming the generality of gene pool fragmentation in pond-dwelling organisms. Measures of gene flow estimated from gene frequency divergence, which assume that gene frequency distributions are at equilibrium, were inconsistent with the probable dispersal capacities of taxa. This provoked an examination of historical events as alternative explanations. Both theory and computer simulations demonstrated that when populations grow rapidly in size after founding from few individuals, the gene frequency divergence established during colonization is resistant to decay by gene exchange. Our work suggests that gene frequency distributions are often not in equilibrium and that caution should be employed in attempts to infer gene flow from them in natural populations.  相似文献   

10.
Ponce R  Hartl DL 《Gene》2006,376(2):174-183
The origin of new genes and of new functions for existing genes are fundamental processes in molecular evolution. Sdic is a newly evolved gene that arose recently in the D. melanogaster lineage. The gene encodes a novel sperm motility protein. It is a chimeric gene formed by duplication of two other genes followed by multiple deletions and other sequence rearrangements. The Sdic gene exists in several copies in the X chromosome, and is presumed to have undergone several duplications to form a tandemly arrayed gene cluster. Given the very recent origin of the gene and the gene cluster, the analysis of the composition of this gene cluster represents an excellent opportunity to study the origin and evolution of new gene functions and the fate of gene duplications. We have analyzed the nucleotide sequence of this region and reconstructed the evolutionary history of this gene cluster. We found that the cluster is composed by four tandem copies of Sdic; these duplicates are very similar but can be distinguished by the unique pattern of insertions, deletions, and point mutations in each copy. The oldest gene copy in the array has a 3' exon that has undergone accelerated diversification, and also shows divergent regulatory sequences. Moreover, there is evidence that this might be the only gene copy in the tandem array that is transcribed at a significant level, expressing a novel sperm-specific protein. There is also a retrotransposon located at the 3' end of each Sdic gene copy. We argue that this gene cluster was formed in the last two million years by at least three tandem duplications and one retrotransposition event.  相似文献   

11.
12.
Hao W  Golding GB 《Gene》2008,421(1-2):27-31
Methods for assessing gene presence and absence have been widely used to study bacterial genome evolution. A recent report by Zhaxybayeva et al. [Zhaxybayeva, O., Nesbo, C. L., and Doolittle, W. F., 2007. Systematic overestimation of gene gain through false diagnosis of gene absence. Genome. Biol. 8, 402] suggests that false diagnosis of gene absence or the presence of undetected truncated genes leads to a systematic overestimation of gene gain. Here (1) we argue that these annotation errors can cause more complicated effects and are not necessarily systematic, (2) we argue that current annotations (supplemented with BLAST searches) are the best way to consistently score gene presence/absence and (3) that genome wide estimates of gene gain/loss are not strongly affected by small differences in gene annotations but that the number of related gene families is strongly affected. We have estimated the rates of gene insertions/deletions using a variety of cutoff thresholds and match lengths as a way in which to alter the recognition of genes and gene fragments. The results reveal that different cutoffs for match length only cause a small variation of the estimated insertion/deletion rates. The rates of gene insertions/deletions on recent branches remain relatively high regardless of the thresholds for match length. Lastly (4), the dynamic process of gene truncation needs to be further considered in genome comparison studies. The data presented suggest that gene truncation tends to take place preferentially in recently transferred genes, which supports a fast turnover of recent laterally transferred genes. The presence of truncated genes or false diagnosis of gene absence therefore does not significantly affect the estimation of gene insertions/deletions rates, but there are several other factors that bias the results toward an under-estimation of the rate of gene insertion/deletion. All of these factors need to be considered.  相似文献   

13.
In-frame overlapping genes in phage, plasmid and bacterial genomes permit synthesis of more than one form of protein from the same gene. Having one gene entirely within another rather than two separate genes presumably precludes recombination events between the identical sequences. However, studies of such gene pairs indicate that the overlapping arrangement can make regulation of the genes more difficult. Here, we extend studies of in-frame overlapping genes II and X from filamentous phage f1 to determine if translational controls are required to regulate the gene properly. These genes encode proteins (pII and pX) with essential but opposing roles in phage DNA replication. They must be tightly regulated to maintain production of the proteins at relative steady state levels that permit continuous replication without killing the host. To determine why little or no pX appears to be made on the gene II/X mRNA, gene II translation was lowered by progressively deleting into the gene II initiator region. Increased pX translation resulted, suggesting that elongating ribosomes on the gene II mRNA interfere with internal initiation on the gene X ribosome binding site and limit gene X translation. As judged from systematically lowering the efficiency of suppression at a gene II amber codon upstream from the gene X start, the already modest level of gene II translation would have to be reduced by more than twofold to relieve all interference with internal initiation. Further downregulation of gene X expression proved to be required to maintain pX at levels relative to pII that are tolerated by the cell. Site-directed mutagenesis and nuclease mapping revealed that the gene X initiation site is sequestered in an extended RNA secondary structure that lowers gene X translation on the two mRNAs encoding it. The more general implications of the results for expression of in-frame overlapping genes are discussed.  相似文献   

14.
Phylogenetic trees based on gene repertoires are remarkably similar to the current consensus of life history. Yet it has been argued that shared gene content is unreliable for phylogenetic reconstruction because of convergence in gene content due to horizontal gene transfer and parallel gene loss. Here we test this argument, by filtering out as noise those orthologous groups that have an inconsistent phylogenetic distribution, using two independent methods. The resulting phylogenies do indeed contain small but significant improvements. More importantly, we find that the majority of orthologous groups contain some phylogenetic signal and that the resulting phylogeny is the only detectable signal present in the gene distribution across genomes. Horizontal gene transfer or parallel gene loss does not cause systematic biases in the gene content tree.  相似文献   

15.
We have used gene disruptions and nuclease probes to assess the roles of yeast 2 micron plasmid genes in plasmid chromatin organization. The chromatin structure at the replication origin is not dependent on any of the four major open reading frames, A, B, C, or D. While stable plasmid maintenance is known to depend on a cis-acting locus STB and genes B and C, we find that only gene B influences STB chromatin. Other interactions between plasmid gene products and sequences may reflect gene regulation: the chromatin organization at the 5' end of gene A, which codes for a site-specific recombinase, depends on both gene B and gene C. Since disruption of gene C results in an increase in plasmid copy number that is dependent on gene A, we propose that gene C (and probably gene B) control copy number by regulating the level of the gene A recombinase.  相似文献   

16.
Bacteria diversify into genetic clusters analogous to those observed in sexual eukaryotes, but the definition of bacterial species is an ongoing problem. Recent work has focused on adaptation to distinct ecological niches as the main driver of clustering, but there remains debate about the role of recombination in that process. One view is that homologous recombination occurs too rarely for gene flow to constrain divergent selection. Another view is that homologous recombination is frequent enough in many bacterial populations that barriers to gene flow are needed to permit divergence. Niche‐specific gene pools have been proposed as a general mechanism to limit gene flow. We use theoretical models to evaluate additional hypotheses that evolving genetic architecture, specifically the effect sizes of genes and gene gain and loss, can limit gene flow between diverging populations. Our model predicts that (a) in the presence of gene flow and recombination, ecological divergence is concentrated in few loci of large effect and (b) high rates of gene flow plus recombination promote gene loss and favor the evolution of niche‐specific genes. The results show that changing genetic architecture and gene loss can facilitate ecological divergence, even without niche‐specific gene pools. We discuss these results in the context of recent studies of sympatric divergence in microbes.  相似文献   

17.
18.
An abnormal globin gene from a patient heterozygous for Hemoglobin Miyada was cloned and sequenced. The results indicated that the 5′ flanking region and the 5′ side of the gene were identical to those of a β-globin gene and that the 3′ side was identical to that of a γ-globin gene. The part of the gene identical to a β-globin gene shifted to the part identical to the δ-globin gene somewhere in a homologous sequence region between the third nucleotide of the 17th codon and the second nucleotide of the 22nd codon of these two genes. Thus, results of analysis of the nucleotide sequence support the idea that the abnormal globin gene of Hemoglobin Miyada was generated as a fusion gene by unequal crossing over between a β- and a δ-globin gene.  相似文献   

19.
The possible linkage between a gene causing heterocellular hereditary persistence of fetal hemoglobin (HPFH) and human non-alpha globin loci has been studied in a large Sardinian family. In this family a homozygous beta o-thalassemic patient was found, with an unusually mild form of this disease, which was ascribed to the co-existence of a gene causing heterocellular HPFH. DNA polymorphisms in the non-alpha globin cluster were analyzed by restriction enzyme digestion with HincII, HindIII and BamHI and with epsilon-, gamma-and beta-globin probes; the pattern of inheritance of these polymorphisms indicates that the HPFH gene is transmitted with one beta o-thalassemic gene in a single instance, with the second beta o-thalassemic gene in three instances and with a normal beta-globin gene in two cases. These data indicate that this HPFH gene is not linked to the non-alpha globin gene cluster, in contrast to previous observations with different HPFH genes, and suggest that this gene might code for diffusible substances acting, directly or indirectly, on gamma-globin gene expression.  相似文献   

20.
J Shultz  T J Silhavy  M L Berman  N Fiil  S D Emr 《Cell》1982,31(1):227-235
The gene prlA codes for a factor that appears to function in the export of proteins in Escherichia coli. This conclusion is based on the finding that mutations altering the prlA gene product restore export of envelope proteins with defective signal sequences. Previous results showed that the prlA gene lies in an operon (spc) known to code for ten different ribosomal proteins. Our studies show that the prlA gene lies promoter-distal to the last known ribosomal protein gene in this operon. Evidence from gene fusions constructed in vitro suggests that prlA codes for a protein containing at least 300 amino acids. Thus a heretofore unidentified protein specified by a gene within the spc operon appears to be a component of the cellular protein export machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号